- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Faculty Research and Publications /
- Defining pain and interference recovery trajectories...
Open Collections
UBC Faculty Research and Publications
Defining pain and interference recovery trajectories after acute non-catastrophic musculoskeletal trauma through growth mixture modeling Lee, Joshua Y; Walton, David M; Tremblay, Paul; May, Curtis; Millard, Wanda; Elliott, James M; MacDermid, Joy C
Abstract
Background Recovery trajectories support early identification of delayed recovery and can inform personalized management or phenotyping of risk profiles in patients. The objective of this study was to investigate the trajectories in pain severity and functional interference following non-catastrophic musculoskeletal (MSK) trauma in an international, mixed injury sample. Methods A prospective longitudinal cohort (n = 241) was formed from patients identified within four weeks of trauma, from attendance at emergency or urgent care centres located in London, ON, Canada, or Chicago, IL, USA. Pain interference was measured via the Brief Pain Inventory (London cohort) or the Neck Disability Index (Chicago cohort). Pain severity was captured in both cohorts using the numeric pain rating scale. Growth mixture modeling and RM repeated measures ANOVA approaches identified distinct trajectories of recovery within pain interference and pain severity data. Results For pain interference, the three trajectories were labeled accordingly: Class 1 = Rapid recovery (lowest intercept, full or near full recovery by 3 months, 32.0% of the sample); Class 2 = Delayed recovery (higher intercept, recovery by 12 months, 26.7% of the sample); Class 3 = Minimal or no recovery (higher intercept, persistently high interference scores at 12 months, 41.3% of the sample). For pain severity, the two trajectories were labeled: Class 1 = Rapid recovery (lower intercept, recovery by 3 months, 81.3% of the sample); and Class 2 = Minimal or no recovery (higher intercept, flat curve, 18.7% of the sample). The “Minimal or No Recovery” trajectory could be predicted by female sex and axial (vs. peripheral) region of trauma with 74.3% accuracy across the 3 classes for the % Interference outcome. For the Pain Severity outcome, only region (axial trauma, 81.3% accuracy) predicted the “Minimal or No Recovery” trajectory. Conclusions These results suggest that three meaningful recovery trajectories can be identified in an international, mixed-injury sample when pain interference is the outcome, and two recovery trajectories emerge when pain severity is the outcome. Females in the sample or people who suffered axial injuries (head, neck, or low back) were more likely to be classed in poor outcome trajectories. Trial registration National Institutes of Health - clinicaltrials.gov ( NCT02711085 ; Retrospectively registered Mar 17, 2016).
Item Metadata
Title |
Defining pain and interference recovery trajectories after acute non-catastrophic musculoskeletal trauma through growth mixture modeling
|
Creator | |
Publisher |
BioMed Central
|
Date Issued |
2020-09-17
|
Description |
Background
Recovery trajectories support early identification of delayed recovery and can inform personalized management or phenotyping of risk profiles in patients. The objective of this study was to investigate the trajectories in pain severity and functional interference following non-catastrophic musculoskeletal (MSK) trauma in an international, mixed injury sample.
Methods
A prospective longitudinal cohort (n = 241) was formed from patients identified within four weeks of trauma, from attendance at emergency or urgent care centres located in London, ON, Canada, or Chicago, IL, USA. Pain interference was measured via the Brief Pain Inventory (London cohort) or the Neck Disability Index (Chicago cohort). Pain severity was captured in both cohorts using the numeric pain rating scale. Growth mixture modeling and RM repeated measures ANOVA approaches identified distinct trajectories of recovery within pain interference and pain severity data.
Results
For pain interference, the three trajectories were labeled accordingly: Class 1 = Rapid recovery (lowest intercept, full or near full recovery by 3 months, 32.0% of the sample); Class 2 = Delayed recovery (higher intercept, recovery by 12 months, 26.7% of the sample); Class 3 = Minimal or no recovery (higher intercept, persistently high interference scores at 12 months, 41.3% of the sample). For pain severity, the two trajectories were labeled: Class 1 = Rapid recovery (lower intercept, recovery by 3 months, 81.3% of the sample); and Class 2 = Minimal or no recovery (higher intercept, flat curve, 18.7% of the sample). The “Minimal or No Recovery” trajectory could be predicted by female sex and axial (vs. peripheral) region of trauma with 74.3% accuracy across the 3 classes for the % Interference outcome. For the Pain Severity outcome, only region (axial trauma, 81.3% accuracy) predicted the “Minimal or No Recovery” trajectory.
Conclusions
These results suggest that three meaningful recovery trajectories can be identified in an international, mixed-injury sample when pain interference is the outcome, and two recovery trajectories emerge when pain severity is the outcome. Females in the sample or people who suffered axial injuries (head, neck, or low back) were more likely to be classed in poor outcome trajectories.
Trial registration
National Institutes of Health - clinicaltrials.gov (
NCT02711085
; Retrospectively registered Mar 17, 2016).
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2020-09-18
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution 4.0 International (CC BY 4.0)
|
DOI |
10.14288/1.0394428
|
URI | |
Affiliation | |
Citation |
BMC Musculoskeletal Disorders. 2020 Sep 17;21(1):615
|
Publisher DOI |
10.1186/s12891-020-03621-7
|
Peer Review Status |
Reviewed
|
Scholarly Level |
Faculty; Researcher
|
Copyright Holder |
The Author(s)
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution 4.0 International (CC BY 4.0)