- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Faculty Research and Publications /
- Characterization of Mineralogy in the Highland Valley...
Open Collections
UBC Faculty Research and Publications
Characterization of Mineralogy in the Highland Valley Porphyry Cu District Using Hyperspectral Imaging, and Potential Applications Lypaczewski, Philip; Rivard, Benoit; Lesage, Guillaume; Byrne, Kevin; D’Angelo, Michael; Lee, Robert G.
Abstract
The Highland Valley Copper (HVC) district in British Columbia, Canada, is host to at least four major porphyry Cu systems: Bethlehem (~209 Ma), and Valley, Lornex, and Highmont (~208 to 207 Ma). High spatial resolution (0.2–1.0 mm/pixel) hyperspectral imagery in the shortwave infrared (SWIR) were acquired on 755 rock samples and 400 m of continuous drill core. Spectral metrics are used to measure the relative abundance of 12 minerals and an additional metric is derived to estimate white mica grain size. In the Valley and Lornex deposits, coarse-grained white mica is associated with mineralization and is detectable up to 4 km away from the deposits. Kaolinite is present within 2 km of the mineralized centers but does not necessarily occur within strongly mineralized intervals. Prehnite is ubiquitous from 4 to 8 km from the deposits. In the Bethlehem deposit, tourmaline and epidote are associated with mineralization. We propose a spectral alteration score based on these proximal hyperspectral SWIR mineralogical patterns to assist explorers in targeting porphyry Cu systems when using drill core, surface rock samples and potentially remote sensing imagery. In a production environment, this metric could serve to facilitate ore-sorting.
Item Metadata
Title |
Characterization of Mineralogy in the Highland Valley Porphyry Cu District Using Hyperspectral Imaging, and Potential Applications
|
Creator | |
Contributor | |
Publisher |
Multidisciplinary Digital Publishing Institute
|
Date Issued |
2020-05-23
|
Description |
The Highland Valley Copper (HVC) district in British Columbia, Canada, is host to at least four major porphyry Cu systems: Bethlehem (~209 Ma), and Valley, Lornex, and Highmont (~208 to 207 Ma). High spatial resolution (0.2–1.0 mm/pixel) hyperspectral imagery in the shortwave infrared (SWIR) were acquired on 755 rock samples and 400 m of continuous drill core. Spectral metrics are used to measure the relative abundance of 12 minerals and an additional metric is derived to estimate white mica grain size. In the Valley and Lornex deposits, coarse-grained white mica is associated with mineralization and is detectable up to 4 km away from the deposits. Kaolinite is present within 2 km of the mineralized centers but does not necessarily occur within strongly mineralized intervals. Prehnite is ubiquitous from 4 to 8 km from the deposits. In the Bethlehem deposit, tourmaline and epidote are associated with mineralization. We propose a spectral alteration score based on these proximal hyperspectral SWIR mineralogical patterns to assist explorers in targeting porphyry Cu systems when using drill core, surface rock samples and potentially remote sensing imagery. In a production environment, this metric could serve to facilitate ore-sorting.
|
Subject | |
Genre | |
Type | |
Language |
eng
|
Date Available |
2020-05-28
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
CC BY 4.0
|
DOI |
10.14288/1.0391054
|
URI | |
Affiliation | |
Citation |
Minerals 10 (5): 473 (2020)
|
Publisher DOI |
10.3390/min10050473
|
Peer Review Status |
Reviewed
|
Scholarly Level |
Faculty
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
CC BY 4.0