UBC Faculty Research and Publications

Evaluation of Industrial Urea Energy Consumption (EC) Based on Life Cycle Assessment (LCA) Shi, Longyu; Liu, Lingyu; Yang, Bin; Sheng, Gonghan; Xu, Tong


With the increasingly prominent environmental problems and the decline of fossil fuel reserves, the reduction of energy consumption (EC) has become a common goal in the world. Urea industry is a typical energy-intensive chemical industry. However, studies just focus on the breakthrough of specific production technology or only consider the EC in the production stage. This results in a lack of evaluations of the life cycle of energy consumption (LcEC). In order to provide a systematic, scientific, and practical theoretical basis for the industrial upgrading and the energy transformation, LcEC of urea production and the greenhouse gas (GHG) emissions generated in the process of EC are studied in this paper. The results show that the average LcEC is about 30.1 GJ/t urea. The EC of the materials preparation stage, synthesis stage, and waste-treatment stage (ECRMP, ECPP, ECWD) is about 0.388 GJ/t urea, 24.8 GJ/t urea, and 4.92 GJ/t urea, accounting for 1.3%, 82.4%, and 16.3% of LcEC, respectively. Thus, the synthesis stage is a dominant energy-consumer, in which 15.4 GJ/t urea of energy, accounting for 62.0% of ECpp, supports steam consumption. According to the energy distribution analysis, it can be concluded that coal presents the primary energy in the process of urea production, which supports 94.4% of LcEC. The proportion of coal consumption is significantly higher than that of the average of 59% in China. Besides, the GHG emissions in the synthesis stage are obviously larger than that in the other stage, with an average of 2.18 t eq.CO₂/t urea, accounting for 81.3% of the life cycle of GHG (LcGHG) emissions. In detail, CO₂ is the dominant factor accounting for 90.0% of LcGHG emissions, followed by CH₄, while N₂O is negligible. Coal is the primary source of CO₂ emissions. The severe high proportion of coal consumption in the life cycle of urea production is responsible for this high CO₂ content of GHG emissions. Therefore, for industrial urea upgrading and energy transformation, reducing coal consumption will still be an important task for energy structure transformation. At the same time, the reformation of synthesis technologies, especially for steam energy-consuming technology, will mainly reduce the EC of the urea industry. Furthermore, the application of green energy will be conducive to a win-win situation for both economic and environmental benefits.

Item Media

Item Citations and Data


CC BY 4.0

Usage Statistics