- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Faculty Research and Publications /
- Comparative Analysis of Bacterial and Archaeal Community...
Open Collections
UBC Faculty Research and Publications
Comparative Analysis of Bacterial and Archaeal Community Structure in Microwave Pretreated Thermophilic and Mesophilic Anaerobic Digesters Utilizing Mixed Sludge under Organic Overloading Kor-Bicakci, Gokce; Ubay-Cokgor, Emine; Eskicioglu, Cigdem
Abstract
The effects of microwave (MW) pretreatment were investigated by six anaerobic digesters operated under thermophilic and mesophilic conditions at high organic loading rates (4.9–5.7 g volatile solids/L/d). The experiments and analyses were mainly designed to reveal the impact of MW pretreatment and digester temperatures on the process stability and microbial community structure by correlating the composition of microbial populations with volatile fatty acid (VFA) concentrations. A slight shift from biogas production (with a reasonable methane content) to VFA accumulation was observed in the thermophilic digesters, especially in the MW-irradiated reactors. Microbial population structure was assessed using a high-throughput sequencing of 16S rRNA gene on the MiSeq platform. Microbial community structure was slightly affected by different MW pretreatment conditions, while substantially affected by the digester temperature. The phylum Bacteroidetes proliferated in the MW-irradiated mesophilic digesters by resisting high-temperature MW (at 160 °C). Hydrogenotrophic methanogenesis (mostly the genus of Methanothermobacter) was found to be a key route of methane production in the thermophilic digesters, whereas aceticlastic methanogenesis (mostly the genus of Methanosaeta) was the main pathway in the mesophilic digesters.
Item Metadata
Title |
Comparative Analysis of Bacterial and Archaeal Community Structure in Microwave Pretreated Thermophilic and Mesophilic Anaerobic Digesters Utilizing Mixed Sludge under Organic Overloading
|
Creator | |
Contributor | |
Publisher |
Multidisciplinary Digital Publishing Institute
|
Date Issued |
2020-03-21
|
Description |
The effects of microwave (MW) pretreatment were investigated by six anaerobic digesters operated under thermophilic and mesophilic conditions at high organic loading rates (4.9–5.7 g volatile solids/L/d). The experiments and analyses were mainly designed to reveal the impact of MW pretreatment and digester temperatures on the process stability and microbial community structure by correlating the composition of microbial populations with volatile fatty acid (VFA) concentrations. A slight shift from biogas production (with a reasonable methane content) to VFA accumulation was observed in the thermophilic digesters, especially in the MW-irradiated reactors. Microbial population structure was assessed using a high-throughput sequencing of 16S rRNA gene on the MiSeq platform. Microbial community structure was slightly affected by different MW pretreatment conditions, while substantially affected by the digester temperature. The phylum Bacteroidetes proliferated in the MW-irradiated mesophilic digesters by resisting high-temperature MW (at 160 °C). Hydrogenotrophic methanogenesis (mostly the genus of Methanothermobacter) was found to be a key route of methane production in the thermophilic digesters, whereas aceticlastic methanogenesis (mostly the genus of Methanosaeta) was the main pathway in the mesophilic digesters.
|
Subject | |
Genre | |
Type | |
Language |
eng
|
Date Available |
2020-03-27
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
CC BY 4.0
|
DOI |
10.14288/1.0389665
|
URI | |
Affiliation | |
Citation |
Water 12 (3): 887 (2020)
|
Publisher DOI |
10.3390/w12030887
|
Peer Review Status |
Reviewed
|
Scholarly Level |
Faculty
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
CC BY 4.0