- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Faculty Research and Publications /
- Tree Height Increment Models for National Forest Inventory...
Open Collections
UBC Faculty Research and Publications
Tree Height Increment Models for National Forest Inventory Data in the Pacific Northwest, USA Woo, Hyeyoung; Eskelson, Bianca N. I.; Monleon, Vicente J.
Abstract
The United States national inventory program measures a subset of tree heights in each plot in the Pacific Northwest. Unmeasured tree heights are predicted by adding the difference between modeled tree heights at two measurements to the height observed at the first measurement. This study compared different approaches for directly modeling 10-year height increment of red alder (RA) and ponderosa pine (PP) in Washington and Oregon using national inventory data from 2001–2015. In addition to the current approach, five models were implemented: nonlinear exponential, log-transformed linear, gamma, quasi-Poisson, and zero-inflated Poisson models using both tree-level (e.g., height, diameter at breast height, and compacted crown ratio) and plot-level (e.g., basal area, elevation, and slope) measurements as predictor variables. To account for negative height increment observations in the modeling process, a constant was added to shift all response values to greater than zero (log-transformed linear and gamma models), the negative increment was set to zero (quasi-Poisson and zero-inflated Poisson models), or a nonlinear model, which allows negative observations, was used. Random plot effects were included to account for the hierarchical data structure of the inventory data. Predictive model performance was examined through cross-validation. Among the implemented models, the gamma model performed best for both species, showing the smallest root mean square error (RSME) of 2.61 and 1.33 m for RA and PP, respectively (current method: RA—3.33 m, PP—1.40 m). Among the models that did not add the constant to the response, the quasi-Poisson model exhibited the smallest RMSE of 2.74 and 1.38 m for RA and PP, respectively. Our study showed that the prediction of tree height increment in Oregon and Washington can be improved by accounting for the negative and zero height increment values that are present in inventory data, and by including random plot effects in the models.
Item Metadata
Title |
Tree Height Increment Models for National Forest Inventory Data in the Pacific Northwest, USA
|
Creator | |
Publisher |
Multidisciplinary Digital Publishing Institute
|
Date Issued |
2019-12-18
|
Description |
The United States national inventory program measures a subset of tree heights in each plot in the Pacific Northwest. Unmeasured tree heights are predicted by adding the difference between modeled tree heights at two measurements to the height observed at the first measurement. This study compared different approaches for directly modeling 10-year height increment of red alder (RA) and ponderosa pine (PP) in Washington and Oregon using national inventory data from 2001–2015. In addition to the current approach, five models were implemented: nonlinear exponential, log-transformed linear, gamma, quasi-Poisson, and zero-inflated Poisson models using both tree-level (e.g., height, diameter at breast height, and compacted crown ratio) and plot-level (e.g., basal area, elevation, and slope) measurements as predictor variables. To account for negative height increment observations in the modeling process, a constant was added to shift all response values to greater than zero (log-transformed linear and gamma models), the negative increment was set to zero (quasi-Poisson and zero-inflated Poisson models), or a nonlinear model, which allows negative observations, was used. Random plot effects were included to account for the hierarchical data structure of the inventory data. Predictive model performance was examined through cross-validation. Among the implemented models, the gamma model performed best for both species, showing the smallest root mean square error (RSME) of 2.61 and 1.33 m for RA and PP, respectively (current method: RA—3.33 m, PP—1.40 m). Among the models that did not add the constant to the response, the quasi-Poisson model exhibited the smallest RMSE of 2.74 and 1.38 m for RA and PP, respectively. Our study showed that the prediction of tree height increment in Oregon and Washington can be improved by accounting for the negative and zero height increment values that are present in inventory data, and by including random plot effects in the models.
|
Subject | |
Genre | |
Type | |
Language |
eng
|
Date Available |
2020-01-24
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
CC BY 4.0
|
DOI |
10.14288/1.0388360
|
URI | |
Affiliation | |
Citation |
Forests 11 (1): 2 (2019)
|
Publisher DOI |
10.3390/f11010002
|
Peer Review Status |
Reviewed
|
Scholarly Level |
Faculty
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
CC BY 4.0