- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Faculty Research and Publications /
- Tree-Rings Reveal Accelerated Yellow-Cedar Decline...
Open Collections
UBC Faculty Research and Publications
Tree-Rings Reveal Accelerated Yellow-Cedar Decline with Changes to Winter Climate after 1980 Comeau, Vanessa M.; Daniels, Lori D.; Knochenmus, Garrett; Chavardès, Raphaël D.; Zeglen, Stefan
Abstract
Research Highlights: Yellow-cedar decline on the island archipelago of Haida Gwaii is driven by warm winter temperatures and low winter precipitation, which is caused by anthropogenic climate change and exacerbated by the positive phase of the Pacific Decadal Oscillation (PDO). Background and Objectives: Declining yellow-cedars are limited by physiological drought during the growing season, caused by freezing damage to fine roots through a complex pathway identified by research in Alaska. Given this, we hypothesized: (1) yellow-cedars on Haida Gwaii were limited by the winter climate. (2) Trees of different health classes were responding differently to climatic variation. (3) Changing climate-growth relations would vary among phases of the PDO. Materials and Methods: We sampled 15 stands exhibiting crown symptoms and developed three regional chronologies from trees that were healthy, had crown or tree-ring symptoms of decline, and trees that had died. We tested for growth responses to inter-annual and multi-decadal variation in climate among trees of different health statuses using correlation functions and wavelet analyses. Results: The three chronologies had similar patterns from the early 1500s to 1900s and responded to climate in the same way, with multi-decadal variability, and common narrow marker years. Climate-growth responses among trees of different health statuses diverged after the 1976/1977 switch in the PDO. Warm growing season temperatures facilitated the growth of trees in the healthy chronology. By contrast, growth of trees that showed symptoms of decline or had died was negatively associated with low winter precipitation. After 1986, growth of trees in the declining chronology decreased sharply and mortality increased, which is concurrent with the warmest winter temperatures and consistent with the root-freezing hypothesis from Alaska. Conclusions: Yellow-cedar decline is driven by climate change, exacerbated by the PDO. Warming winter temperatures, accelerated by anthropogenic climate change, have led to dieback and death of yellow-cedars, even with the temperate ocean-moderated climate of Haida Gwaii.
Item Metadata
Title |
Tree-Rings Reveal Accelerated Yellow-Cedar Decline with Changes to Winter Climate after 1980
|
Creator | |
Publisher |
Multidisciplinary Digital Publishing Institute
|
Date Issued |
2019-11-29
|
Description |
Research Highlights: Yellow-cedar decline on the island archipelago of Haida Gwaii is driven by warm winter temperatures and low winter precipitation, which is caused by anthropogenic climate change and exacerbated by the positive phase of the Pacific Decadal Oscillation (PDO). Background and Objectives: Declining yellow-cedars are limited by physiological drought during the growing season, caused by freezing damage to fine roots through a complex pathway identified by research in Alaska. Given this, we hypothesized: (1) yellow-cedars on Haida Gwaii were limited by the winter climate. (2) Trees of different health classes were responding differently to climatic variation. (3) Changing climate-growth relations would vary among phases of the PDO. Materials and Methods: We sampled 15 stands exhibiting crown symptoms and developed three regional chronologies from trees that were healthy, had crown or tree-ring symptoms of decline, and trees that had died. We tested for growth responses to inter-annual and multi-decadal variation in climate among trees of different health statuses using correlation functions and wavelet analyses. Results: The three chronologies had similar patterns from the early 1500s to 1900s and responded to climate in the same way, with multi-decadal variability, and common narrow marker years. Climate-growth responses among trees of different health statuses diverged after the 1976/1977 switch in the PDO. Warm growing season temperatures facilitated the growth of trees in the healthy chronology. By contrast, growth of trees that showed symptoms of decline or had died was negatively associated with low winter precipitation. After 1986, growth of trees in the declining chronology decreased sharply and mortality increased, which is concurrent with the warmest winter temperatures and consistent with the root-freezing hypothesis from Alaska. Conclusions: Yellow-cedar decline is driven by climate change, exacerbated by the PDO. Warming winter temperatures, accelerated by anthropogenic climate change, have led to dieback and death of yellow-cedars, even with the temperate ocean-moderated climate of Haida Gwaii.
|
Subject | |
Genre | |
Type | |
Language |
eng
|
Date Available |
2020-01-08
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
CC BY 4.0
|
DOI |
10.14288/1.0388192
|
URI | |
Affiliation | |
Citation |
Forests 10 (12): 1085 (2019)
|
Publisher DOI |
10.3390/f10121085
|
Peer Review Status |
Reviewed
|
Scholarly Level |
Faculty; Other
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
CC BY 4.0