- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Faculty Research and Publications /
- The Effect of Concentration Factor on Membrane Fouling
Open Collections
UBC Faculty Research and Publications
The Effect of Concentration Factor on Membrane Fouling Lok, Appana; Bérubé, Pierre R.; Andrews, Robert C.
Abstract
Bench-scale systems are often used to evaluate pretreatment methods and operational conditions that can be applied in full-scale ultrafiltration (UF) systems. However, the membrane packing density is substantially different in bench and full-scale systems. Differences in concentration factor (CF) at the solution–membrane interface as a result of packing density may impact the mass transfer and fouling rate and the applicability of bench-scale systems. The present study compared membrane resistance when considering raw water (CF = 1) and reject water (also commonly referred to as concentrate water) (CF > 1) as feed in UF systems operated in deposition (dead-end) mode. A positive relationship was observed between the concentration of the organic matter in the solution being filtered and resistance. Bench-scale trials conducted with CF = 1 water were more representative of full-scale operation than trials conducted with elevated CFs when considering membrane resistance and permeate quality. As such, the results of this study indicate that the use of the same feed water as used at full-scale (CF = 1) is appropriate to evaluate fouling in UF systems operated in deposition mode.
Item Metadata
Title |
The Effect of Concentration Factor on Membrane Fouling
|
Creator | |
Publisher |
Multidisciplinary Digital Publishing Institute
|
Date Issued |
2017-09-01
|
Description |
Bench-scale systems are often used to evaluate pretreatment methods and operational conditions that can be applied in full-scale ultrafiltration (UF) systems. However, the membrane packing density is substantially different in bench and full-scale systems. Differences in concentration factor (CF) at the solution–membrane interface as a result of packing density may impact the mass transfer and fouling rate and the applicability of bench-scale systems. The present study compared membrane resistance when considering raw water (CF = 1) and reject water (also commonly referred to as concentrate water) (CF > 1) as feed in UF systems operated in deposition (dead-end) mode. A positive relationship was observed between the concentration of the organic matter in the solution being filtered and resistance. Bench-scale trials conducted with CF = 1 water were more representative of full-scale operation than trials conducted with elevated CFs when considering membrane resistance and permeate quality. As such, the results of this study indicate that the use of the same feed water as used at full-scale (CF = 1) is appropriate to evaluate fouling in UF systems operated in deposition mode.
|
Subject | |
Genre | |
Type | |
Language |
eng
|
Date Available |
2019-06-26
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
CC BY 4.0
|
DOI |
10.14288/1.0379625
|
URI | |
Affiliation | |
Citation |
Membranes 7 (3): 50 (2017)
|
Publisher DOI |
10.3390/membranes7030050
|
Peer Review Status |
Reviewed
|
Scholarly Level |
Faculty
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
CC BY 4.0