UBC Faculty Research and Publications

Exploring Microtubule-Dependent Cellulose-Synthase-Complex Movement with High Precision Particle Tracking Woodley, Marcus; Mulvihill, Adam; Fujita, Miki; Wasteneys, Geoffrey O.

Abstract

Cellulose synthesis at the plasma membrane is a critical process in plant growth and development. The displacement of cellulose synthase complexes (CSCs) by the rigid cellulose polymers they produce is a measure of enzyme activity. Connections between cortical microtubules and CSCs have been identified but it remains unclear how these affect CSC displacement speed. In this study, we applied a high throughput automated particle tracking method using near-total internal reflection fluorescence microscopy to measure the speed of CSCs. We found CSC speeds did not vary according to their proximity to microtubules, and that inhibiting microtubule polymerization could have opposite effects on CSC speed, depending on the nature of inhibition. While CSC speed increased in the temperature-sensitive mor1-1 mutant, it decreased after treatment with the drug oryzalin. Moreover, introducing the mor1-1 mutation into the CesA1 mutant any1 increased CSC speed, suggesting that microtubule dynamics affect CSC speed by a mechanism other than Cellulose Synthase A (CesA) catalytic activity. CSC speed varied widely in a range of mutants with reduced growth anisotropy, indicating that the relationship between CSC speed and anisotropy is complex. We conclude that microtubules affect CSC speed by finely tuned mechanisms that are independent of their physical association with CSCs.

Item Media

Item Citations and Data

Rights

CC BY 4.0