- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Faculty Research and Publications /
- Correntropy-Based Pulse Rate Variability Analysis in...
Open Collections
UBC Faculty Research and Publications
Correntropy-Based Pulse Rate Variability Analysis in Children with Sleep Disordered Breathing Garde, Ainara; Dehkordi, Parastoo; Ansermino, John Mark; Dumont, G. (Guy), 1951-
Abstract
Pulse rate variability (PRV), an alternative measure of heart rate variability (HRV), is altered during obstructive sleep apnea. Correntropy spectral density (CSD) is a novel spectral analysis that includes nonlinear information. We recruited 160 children and recorded SpO₂ and photoplethysmography (PPG), alongside standard polysomnography. PPG signals were divided into 1-min epochs and apnea/hypoapnea (A/H) epochs labeled. CSD was applied to the pulse-to-pulse interval time series (PPIs) and five features extracted: the total spectral power (TP: 0.01–0.6 Hz), the power in the very low frequency band (VLF: 0.01–0.04 Hz), the normalized power in the low and high frequency bands (LFn: 0.04–0.15 Hz, HFn: 0.15–0.6 Hz), and the LF/HF ratio. Nonlinearity was assessed with the surrogate data technique. Multivariate logistic regression models were developed for CSD and power spectral density (PSD) analysis to detect epochs with A/H events. The CSD-based features and model identified epochs with and without A/H events more accurately relative to PSD-based analysis (area under the curve (AUC) 0.72 vs. 0.67) due to the nonlinearity of the data. In conclusion, CSD-based PRV analysis provided enhanced performance in detecting A/H epochs, however, a combination with overnight SpO₂ analysis is suggested for optimal results.
Item Metadata
Title |
Correntropy-Based Pulse Rate Variability Analysis in Children with Sleep Disordered Breathing
|
Creator | |
Publisher |
Multidisciplinary Digital Publishing Institute
|
Date Issued |
2017-06-16
|
Description |
Pulse rate variability (PRV), an alternative measure of heart rate variability (HRV), is altered during obstructive sleep apnea. Correntropy spectral density (CSD) is a novel spectral analysis that includes nonlinear information. We recruited 160 children and recorded SpO₂ and photoplethysmography (PPG), alongside standard polysomnography. PPG signals were divided into 1-min epochs and apnea/hypoapnea (A/H) epochs labeled. CSD was applied to the pulse-to-pulse interval time series (PPIs) and five features extracted: the total spectral power (TP: 0.01–0.6 Hz), the power in the very low frequency band (VLF: 0.01–0.04 Hz), the normalized power in the low and high frequency bands (LFn: 0.04–0.15 Hz, HFn: 0.15–0.6 Hz), and the LF/HF ratio. Nonlinearity was assessed with the surrogate data technique. Multivariate logistic regression models were developed for CSD and power spectral density (PSD) analysis to detect epochs with A/H events. The CSD-based features and model identified epochs with and without A/H events more accurately relative to PSD-based analysis (area under the curve (AUC) 0.72 vs. 0.67) due to the nonlinearity of the data. In conclusion, CSD-based PRV analysis provided enhanced performance in detecting A/H epochs, however, a combination with overnight SpO₂ analysis is suggested for optimal results.
|
Subject | |
Genre | |
Type | |
Language |
eng
|
Date Available |
2019-06-10
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
CC BY 4.0
|
DOI |
10.14288/1.0379389
|
URI | |
Affiliation | |
Citation |
Entropy 19 (6): 282 (2017)
|
Publisher DOI |
10.3390/e19060282
|
Peer Review Status |
Reviewed
|
Scholarly Level |
Faculty
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
CC BY 4.0