- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Faculty Research and Publications /
- Fabrication of Circuits on Flexible Substrates Using...
Open Collections
UBC Faculty Research and Publications
Fabrication of Circuits on Flexible Substrates Using Conductive SU-8 for Sensing Applications Gerardo, Carlos D.; Cretu, Edmond; Rohling, Robert
Abstract
This article describes a new low-cost rapid microfabrication technology for high-density interconnects and passive devices on flexible substrates for sensing applications. Silver nanoparticles with an average size of 80 nm were used to create a conductive SU-8 mixture with a concentration of wt 25%. The patterned structures after hard baking have a sheet resistance of 11.17 Ω /□. This conductive SU-8 was used to pattern planar inductors, capacitors and interconnection lines on flexible Kapton film. The conductive SU-8 structures were used as a seed layer for a subsequent electroplating process to increase the conductivity of the devices. Examples of inductors, resistor-capacitor (RC) and inductor-capacitor (LC) circuits, interconnection lines and a near-field communication (NFC) antenna are presented as a demonstration. As an example of high-resolution miniaturization, we fabricated microinductors having line widths of 5 μ m. Mechanical bending tests were successful down to a 5 mm radius. To the best of the authors’ knowledge, this is the first report of conductive SU-8 used to fabricate such planar devices and the first on flexible substrates. This is a proof of concept that this fabrication approach can be used as an alternative for microfabrication of planar passive devices on flexible substrates.
Item Metadata
Title |
Fabrication of Circuits on Flexible Substrates Using Conductive SU-8 for Sensing Applications
|
Creator | |
Publisher |
Multidisciplinary Digital Publishing Institute
|
Date Issued |
2017-06-17
|
Description |
This article describes a new low-cost rapid microfabrication technology for high-density interconnects and passive devices on flexible substrates for sensing applications. Silver nanoparticles with an average size of 80 nm were used to create a conductive SU-8 mixture with a concentration of wt 25%. The patterned structures after hard baking have a sheet resistance of 11.17 Ω /□. This conductive SU-8 was used to pattern planar inductors, capacitors and interconnection lines on flexible Kapton film. The conductive SU-8 structures were used as a seed layer for a subsequent electroplating process to increase the conductivity of the devices. Examples of inductors, resistor-capacitor (RC) and inductor-capacitor (LC) circuits, interconnection lines and a near-field communication (NFC) antenna are presented as a demonstration. As an example of high-resolution miniaturization, we fabricated microinductors having line widths of 5 μ m. Mechanical bending tests were successful down to a 5 mm radius. To the best of the authors’ knowledge, this is the first report of conductive SU-8 used to fabricate such planar devices and the first on flexible substrates. This is a proof of concept that this fabrication approach can be used as an alternative for microfabrication of planar passive devices on flexible substrates.
|
Subject | |
Genre | |
Type | |
Language |
eng
|
Date Available |
2019-06-05
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
CC BY 4.0
|
DOI |
10.14288/1.0379297
|
URI | |
Affiliation | |
Citation |
Sensors 17 (6): 1420 (2017)
|
Publisher DOI |
10.3390/s17061420
|
Peer Review Status |
Reviewed
|
Scholarly Level |
Faculty
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
CC BY 4.0