- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Faculty Research and Publications /
- The Cumulative Effects of Forest Disturbance and Climate...
Open Collections
UBC Faculty Research and Publications
The Cumulative Effects of Forest Disturbance and Climate Variability on Streamflow in the Deadman River Watershed Giles-Hansen, Krysta; Li, Qiang; Wei, Xiaohua
Abstract
Climatic variability and cumulative forest cover change are the two dominant factors affecting hydrological variability in forested watersheds. Separating the relative effects of each factor on streamflow is gaining increasing attention. This study adds to the body of literature by quantifying the relative contributions of those two drivers to the changes in annual mean flow, low flow, and high flow in a large forested snow dominated watershed, the Deadman River watershed (878 km²) in the Southern Interior of British Columbia, Canada. Over the study period of 1962 to 2012, the cumulative effects of forest disturbance significantly affected the annual mean streamflow. The effects became statistically significant in 1989 at the cumulative forest disturbance level of 12.4% of the watershed area. The modified double mass curve and sensitivity-based methods consistently revealed that forest disturbance and climate variability both increased annual mean streamflow during the disturbance period (1989–2012), with an average increment of 14 mm and 6 mm, respectively. The paired-year approach was used to further investigate the relative contributions to low and high flows. Our analysis showed that low and high flow increased significantly by 19% and 58%, respectively over the disturbance period (p < 0.05). We conclude that forest disturbance and climate variability have significantly increased annual mean flow, low flow and high flow over the last 50 years in a cumulative and additive manner in the Deadman River watershed.
Item Metadata
Title |
The Cumulative Effects of Forest Disturbance and Climate Variability on Streamflow in the Deadman River Watershed
|
Creator | |
Publisher |
Multidisciplinary Digital Publishing Institute
|
Date Issued |
2019-02-22
|
Description |
Climatic variability and cumulative forest cover change are the two dominant factors affecting hydrological variability in forested watersheds. Separating the relative effects of each factor on streamflow is gaining increasing attention. This study adds to the body of literature by quantifying the relative contributions of those two drivers to the changes in annual mean flow, low flow, and high flow in a large forested snow dominated watershed, the Deadman River watershed (878 km²) in the Southern Interior of British Columbia, Canada. Over the study period of 1962 to 2012, the cumulative effects of forest disturbance significantly affected the annual mean streamflow. The effects became statistically significant in 1989 at the cumulative forest disturbance level of 12.4% of the watershed area. The modified double mass curve and sensitivity-based methods consistently revealed that forest disturbance and climate variability both increased annual mean streamflow during the disturbance period (1989–2012), with an average increment of 14 mm and 6 mm, respectively. The paired-year approach was used to further investigate the relative contributions to low and high flows. Our analysis showed that low and high flow increased significantly by 19% and 58%, respectively over the disturbance period (p < 0.05). We conclude that forest disturbance and climate variability have significantly increased annual mean flow, low flow and high flow over the last 50 years in a cumulative and additive manner in the Deadman River watershed.
|
Subject | |
Genre | |
Type | |
Language |
eng
|
Date Available |
2019-04-25
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
CC BY 4.0
|
DOI |
10.14288/1.0378460
|
URI | |
Affiliation | |
Citation |
Forests 10 (2): 196 (2019)
|
Publisher DOI |
10.3390/f10020196
|
Peer Review Status |
Reviewed
|
Scholarly Level |
Faculty
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
CC BY 4.0