UBC Faculty Research and Publications

Sex, hormones, and neurogenesis in the hippocampus : Hormonal modulation of neurogenesis and potential functional implications Galea, Liisa A. M.; Wainwright, Steven R.; Duarte-Guterman, Paula; Chow, Carmen; Hamson, Dwayne K.; Roes, Meighen Maria

Abstract

The hippocampus is an area of the brain that undergoes dramatic plasticity in response to experience and hormone exposure. The hippocampus retains the ability to produce new neurons in most mammalian species and is a structure that is targeted in a number of neurodegenerative and neuropsychiatric diseases, many of which are influenced by both sex and sex hormone exposure. Intriguingly, gonadal and adrenal hormones affect the structure and function of the hippocampus differently in males and females. Sex differences in the effects of steroid hormones to modulate hippocampal plasticity should not be completely surprising as the physiology of males and females is different, with the most notable difference that the females gestate and nurse the offspring. Furthermore, reproductive experience (pregnancy and mothering) results in permanent changes to the maternal brain, including the hippocampus in females. Adult neurogenesis in the hippocampus is regulated by both gonadal and adrenal hormones in a sex and experience-dependent way. This review outlines the ability of gonadal and stress hormones to modulate multiple aspects of neurogenesis (cell proliferation and cell survival) in both male and female rodents. The function of adult neurogenesis in the hippocampus is linked to spatial memory and depression and this review provides early evidence of the functional links between hormonal modulation of neurogenesis to regulate cognition and stress.

Item Media

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International