- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Faculty Research and Publications /
- Modeling the behavior of human induced pluripotent...
Open Collections
UBC Faculty Research and Publications
Modeling the behavior of human induced pluripotent stem cells seeded on melt electrospun scaffolds Hall, Meghan E; Mohtaram, Nima K; Willerth, Stephanie M; Edwards, Roderick
Abstract
Background: Human induced pluripotent stem cells (hiPSCs) can form any tissue found in the body, making them attractive for regenerative medicine applications. Seeding hiPSC aggregates into biomaterial scaffolds can control their differentiation into specific tissue types. Here we develop and analyze a mathematical model of hiPSC aggregate behavior when seeded on melt electrospun scaffolds with defined topography. Results: We used ordinary differential equations to model the different cellular populations (stem, progenitor, differentiated) present in our scaffolds based on experimental results and published literature. Our model successfully captures qualitative features of the cellular dynamics observed experimentally. We determined the optimal parameter sets to maximize specific cellular populations experimentally, showing that a physiologic oxygen level (∼ 5%) increases the number of neural progenitors and differentiated neurons compared to atmospheric oxygen levels (∼ 21%) and a scaffold porosity of ∼ 63% maximizes aggregate size. Conclusions: Our mathematical model determined the key factors controlling hiPSC behavior on melt electrospun scaffolds, enabling optimization of experimental parameters.
Item Metadata
Title |
Modeling the behavior of human induced pluripotent stem cells seeded on melt electrospun scaffolds
|
Creator | |
Contributor | |
Publisher |
BioMed Central
|
Date Issued |
2017-10-23
|
Description |
Background:
Human induced pluripotent stem cells (hiPSCs) can form any tissue found in the body, making them attractive for regenerative medicine applications. Seeding hiPSC aggregates into biomaterial scaffolds can control their differentiation into specific tissue types. Here we develop and analyze a mathematical model of hiPSC aggregate behavior when seeded on melt electrospun scaffolds with defined topography.
Results:
We used ordinary differential equations to model the different cellular populations (stem, progenitor, differentiated) present in our scaffolds based on experimental results and published literature. Our model successfully captures qualitative features of the cellular dynamics observed experimentally. We determined the optimal parameter sets to maximize specific cellular populations experimentally, showing that a physiologic oxygen level (∼ 5%) increases the number of neural progenitors and differentiated neurons compared to atmospheric oxygen levels (∼ 21%) and a scaffold porosity of ∼ 63% maximizes aggregate size.
Conclusions:
Our mathematical model determined the key factors controlling hiPSC behavior on melt electrospun scaffolds, enabling optimization of experimental parameters.
|
Subject | |
Genre | |
Type | |
Language |
eng
|
Date Available |
2018-05-16
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution 4.0 International (CC BY 4.0)
|
DOI |
10.14288/1.0366880
|
URI | |
Affiliation | |
Citation |
Journal of Biological Engineering. 2017 Oct 23;11(1):38
|
Publisher DOI |
10.1186/s13036-017-0080-5
|
Peer Review Status |
Reviewed
|
Scholarly Level |
Faculty
|
Copyright Holder |
The Author(s)
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution 4.0 International (CC BY 4.0)