- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Faculty Research and Publications /
- Human endometrial regenerative cells attenuate renal...
Open Collections
UBC Faculty Research and Publications
Human endometrial regenerative cells attenuate renal ischemia reperfusion injury in mice Sun, Peng; Liu, Jian; Li, Wenwen; Xu, Xiaoxi; Gu, Xiangying; Li, HongYue; Han, Hongqiu; Du, Caigan; Wang, Hao
Abstract
Background: Endometrial regenerative cells (ERCs) is an attractive novel type of adult mesenchymal stem cells that can be non-invasively obtained from menstrual blood and are easily replicated at a large scale without tumorigenesis. We have previously reported that ERCs exhibit unique immunoregulatory properties in experimental studies in vitro and in vivo. In this study, the protective effects of ERCs on renal ischemia–reperfusion injury (IRI) were examined. Methods Renal IRI in C57BL/6 mice was induced by clipping bilateral renal pedicles for 30 min, followed by reperfusion for 48 h. ERCs were isolated from healthy female menstrual blood, and were injected (1 million/mouse, i.v.) into mice 2 h prior to IRI induction. Renal function, pathological and immunohistological changes, cell populations and cytokine profiles were evaluated after 48 h of renal reperfusion. Results Here, we showed that as compared to untreated controls, administration of ERCs effectively prevented renal damage after IRI, indicated by better renal function and less pathological changes, which were associated with increased serum levels of IL-4, but decreased levels of TNF-α, IFN-γ and IL-6. Also, ERC-treated mice displayed significantly less splenic and renal CD4+ and CD8+ T cell populations, while the percentage of splenic CD4+CD25+ regulatory T cells and infiltrating M2 macrophages in the kidneys were significantly increased in ERC-treated mice. Conclusions This study demonstrates that the novel anti-inflammatory and immunoregulatory effects of ERCs are associated with attenuation of renal IRI, suggesting that the unique features of ERCs may make them a promising candidate for cell therapies in the treatment of ischemic acute kidney injury in patients.
Item Metadata
Title |
Human endometrial regenerative cells attenuate renal ischemia reperfusion injury in mice
|
Creator | |
Contributor | |
Publisher |
BioMed Central
|
Date Issued |
2016-01-28
|
Description |
Background:
Endometrial regenerative cells (ERCs) is an attractive novel type of adult mesenchymal stem cells that can be non-invasively obtained from menstrual blood and are easily replicated at a large scale without tumorigenesis. We have previously reported that ERCs exhibit unique immunoregulatory properties in experimental studies in vitro and in vivo. In this study, the protective effects of ERCs on renal ischemia–reperfusion injury (IRI) were examined.
Methods
Renal IRI in C57BL/6 mice was induced by clipping bilateral renal pedicles for 30 min, followed by reperfusion for 48 h. ERCs were isolated from healthy female menstrual blood, and were injected (1 million/mouse, i.v.) into mice 2 h prior to IRI induction. Renal function, pathological and immunohistological changes, cell populations and cytokine profiles were evaluated after 48 h of renal reperfusion.
Results
Here, we showed that as compared to untreated controls, administration of ERCs effectively prevented renal damage after IRI, indicated by better renal function and less pathological changes, which were associated with increased serum levels of IL-4, but decreased levels of TNF-α, IFN-γ and IL-6. Also, ERC-treated mice displayed significantly less splenic and renal CD4+ and CD8+ T cell populations, while the percentage of splenic CD4+CD25+ regulatory T cells and infiltrating M2 macrophages in the kidneys were significantly increased in ERC-treated mice.
Conclusions
This study demonstrates that the novel anti-inflammatory and immunoregulatory effects of ERCs are associated with attenuation of renal IRI, suggesting that the unique features of ERCs may make them a promising candidate for cell therapies in the treatment of ischemic acute kidney injury in patients.
|
Subject | |
Genre | |
Type | |
Language |
eng
|
Date Available |
2017-12-11
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution 4.0 International (CC BY 4.0)
|
DOI |
10.14288/1.0361795
|
URI | |
Affiliation | |
Citation |
Journal of Translational Medicine. 2016 Jan 28;14(1):28
|
Publisher DOI |
10.1186/s12967-016-0782-3
|
Peer Review Status |
Reviewed
|
Scholarly Level |
Faculty
|
Copyright Holder |
Sun et al.
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution 4.0 International (CC BY 4.0)