- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Faculty Research and Publications /
- Network-based analysis reveals novel gene signatures...
Open Collections
UBC Faculty Research and Publications
Network-based analysis reveals novel gene signatures in peripheral blood of patients with chronic obstructive pulmonary disease Obeidat, Ma’en; Nie, Yunlong; Chen, Virginia; Shannon, Casey P.; Andiappan, Anand K.; Lee, Bernett; Rotzschke, Olaf; Castaldi, Peter J.; Hersh, Craig P.; Fishbane, Nick; Ng, Raymond T.; McManus, Bruce M.; Miller, Bruce E.; Rennard, Stephen; Paré, Peter D.; Sin, Don D.
Abstract
Background: Chronic obstructive pulmonary disease (COPD) is currently the third leading cause of death and there is a huge unmet clinical need to identify disease biomarkers in peripheral blood. Compared to gene level differential expression approaches to identify gene signatures, network analyses provide a biologically intuitive approach which leverages the co-expression patterns in the transcriptome to identify modules of co-expressed genes. Methods: A weighted gene co-expression network analysis (WGCNA) was applied to peripheral blood transcriptome from 238 COPD subjects to discover co-expressed gene modules. We then determined the relationship between these modules and forced expiratory volume in 1 s (FEV1). In a second, independent cohort of 381 subjects, we determined the preservation of these modules and their relationship with FEV1. For those modules that were significantly related to FEV1, we determined the biological processes as well as the blood cell-specific gene expression that were over-represented using additional external datasets. Results: Using WGCNA, we identified 17 modules of co-expressed genes in the discovery cohort. Three of these modules were significantly correlated with FEV1 (FDR < 0.1). In the replication cohort, these modules were highly preserved and their FEV1 associations were reproducible (P < 0.05). Two of the three modules were negatively related to FEV1 and were enriched in IL8 and IL10 pathways and correlated with neutrophil-specific gene expression. The positively related module, on the other hand, was enriched in DNA transcription and translation and was strongly correlated to CD4+, CD8+ T cell-specific gene expression. Conclusions: Network based approaches are promising tools to identify potential biomarkers for COPD. Trial registration The ECLIPSE study was funded by GlaxoSmithKline, under ClinicalTrials.gov identifier NCT00292552 and GSK No. SCO104960
Item Metadata
Title |
Network-based analysis reveals novel gene signatures in peripheral blood of patients with chronic obstructive pulmonary disease
|
Creator | |
Contributor | |
Publisher |
BioMed Central
|
Date Issued |
2017-04-24
|
Description |
Background:
Chronic obstructive pulmonary disease (COPD) is currently the third leading cause of death and there is a huge unmet clinical need to identify disease biomarkers in peripheral blood. Compared to gene level differential expression approaches to identify gene signatures, network analyses provide a biologically intuitive approach which leverages the co-expression patterns in the transcriptome to identify modules of co-expressed genes.
Methods:
A weighted gene co-expression network analysis (WGCNA) was applied to peripheral blood transcriptome from 238 COPD subjects to discover co-expressed gene modules. We then determined the relationship between these modules and forced expiratory volume in 1 s (FEV1). In a second, independent cohort of 381 subjects, we determined the preservation of these modules and their relationship with FEV1. For those modules that were significantly related to FEV1, we determined the biological processes as well as the blood cell-specific gene expression that were over-represented using additional external datasets.
Results:
Using WGCNA, we identified 17 modules of co-expressed genes in the discovery cohort. Three of these modules were significantly correlated with FEV1 (FDR < 0.1). In the replication cohort, these modules were highly preserved and their FEV1 associations were reproducible (P < 0.05). Two of the three modules were negatively related to FEV1 and were enriched in IL8 and IL10 pathways and correlated with neutrophil-specific gene expression. The positively related module, on the other hand, was enriched in DNA transcription and translation and was strongly correlated to CD4+, CD8+ T cell-specific gene expression.
Conclusions:
Network based approaches are promising tools to identify potential biomarkers for COPD.
Trial registration
The ECLIPSE study was funded by GlaxoSmithKline, under ClinicalTrials.gov identifier
NCT00292552
and GSK No. SCO104960
|
Subject | |
Genre | |
Type | |
Language |
eng
|
Date Available |
2017-11-03
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution 4.0 International (CC BY 4.0)
|
DOI |
10.14288/1.0357445
|
URI | |
Affiliation | |
Citation |
Respiratory Research. 2017 Apr 24;18(1):72
|
Publisher DOI |
10.1186/s12931-017-0558-1
|
Peer Review Status |
Reviewed
|
Scholarly Level |
Faculty
|
Copyright Holder |
The Author(s).
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution 4.0 International (CC BY 4.0)