The Open Collections site will be undergoing maintenance 8-11am PST on Tuesday Dec. 3rd. No service interruption is expected, but some features may be temporarily impacted.
- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Faculty Research and Publications /
- High throughput sequencing of small RNAs reveals dynamic...
Open Collections
UBC Faculty Research and Publications
High throughput sequencing of small RNAs reveals dynamic microRNAs expression of lipid metabolism during Camellia oleifera and C. meiocarpa seed natural drying Feng, Jin-Ling; Yang, Zhi-Jian; Chen, Shi-Pin; El-Kassaby, Yousry A.; Chen, Hui
Abstract
Background: Camellia species are ancient oilseed plants with a history of cultivation over two thousand years. Prior to oil extraction, natural seed drying is often practiced, a process affecting fatty acid quality and quantity. MicroRNAs (miRNA) of lipid metabolism associated with camellia seed natural drying are unexplored. To obtain insight into the function of miRNAs in lipid metabolism during natural drying, Illumina sequencing of C. oleifera and C. meiocarpa small-RNA was conducted. Results A total of 274 candidate miRNAs were identified and 3733 target unigenes were annotated by performing a BLASTX. Through integrated GO and KEGG function annotation, 23 miRNA regulating 131 target genes were identified as lipid metabolism, regulating fatty acid biosynthesis, accumulation and catabolism. We observed one, two, and four miRNAs of lipid metabolism which were specially expressed in C. Meiocarpa, C. oleifera, and the two species collectively, respectively. At 30% moisture contents, C. meiocarpa and C. oleifer produced nine and eight significant differentially expressed miRNAs, respectively, with high fatty acid synthesis and accumulation activities. Across the two species, 12 significant differentially expressed miRNAs were identified at the 50% moisture content. Conclusions Sequencing of small-RNA revealed the presence of 23 miRNAs regulating lipid metabolism in camellia seed during natural drying and permitted comparative miRNA profiles between C. Meiocarpa and C. oleifera. Furthermore, this study successfully identified the best drying environment at which the quantity and quality of lipid in camellia seed are at its maximum.
Item Metadata
Title |
High throughput sequencing of small RNAs reveals dynamic microRNAs expression of lipid metabolism during Camellia oleifera and C. meiocarpa seed natural drying
|
Creator | |
Publisher |
BioMed Central
|
Date Issued |
2017-07-20
|
Description |
Background:
Camellia species are ancient oilseed plants with a history of cultivation over two thousand years. Prior to oil extraction, natural seed drying is often practiced, a process affecting fatty acid quality and quantity. MicroRNAs (miRNA) of lipid metabolism associated with camellia seed natural drying are unexplored. To obtain insight into the function of miRNAs in lipid metabolism during natural drying, Illumina sequencing of C. oleifera and C. meiocarpa small-RNA was conducted.
Results
A total of 274 candidate miRNAs were identified and 3733 target unigenes were annotated by performing a BLASTX. Through integrated GO and KEGG function annotation, 23 miRNA regulating 131 target genes were identified as lipid metabolism, regulating fatty acid biosynthesis, accumulation and catabolism. We observed one, two, and four miRNAs of lipid metabolism which were specially expressed in C. Meiocarpa, C. oleifera, and the two species collectively, respectively. At 30% moisture contents, C. meiocarpa and C. oleifer produced nine and eight significant differentially expressed miRNAs, respectively, with high fatty acid synthesis and accumulation activities. Across the two species, 12 significant differentially expressed miRNAs were identified at the 50% moisture content.
Conclusions
Sequencing of small-RNA revealed the presence of 23 miRNAs regulating lipid metabolism in camellia seed during natural drying and permitted comparative miRNA profiles between C. Meiocarpa and C. oleifera. Furthermore, this study successfully identified the best drying environment at which the quantity and quality of lipid in camellia seed are at its maximum.
|
Subject | |
Genre | |
Type | |
Language |
eng
|
Date Available |
2017-07-21
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution 4.0 International (CC BY 4.0)
|
DOI |
10.14288/1.0349033
|
URI | |
Affiliation | |
Citation |
BMC Genomics. 2017 Jul 20;18(1):546
|
Publisher DOI |
10.1186/s12864-017-3923-z
|
Peer Review Status |
Reviewed
|
Scholarly Level |
Faculty
|
Copyright Holder |
The Author(s).
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution 4.0 International (CC BY 4.0)