- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Faculty Research and Publications /
- Suppression of CINNAMOYL-CoA REDUCTASE increases the...
Open Collections
UBC Faculty Research and Publications
Suppression of CINNAMOYL-CoA REDUCTASE increases the level of monolignol ferulates incorporated into maize lignins Smith, Rebecca A.; Cass, Cynthia L.; Mazaheri, Mona; Sekhon, Rajandeep S.; Heckwolf, Marlies; Kaeppler, Heidi; de Leon, Natalia; Mansfield, Shawn D., 1969-; Kaeppler, Shawn M.; Sedbrook, John C.; Karlen, Steven D.; Ralph, John
Abstract
Background: The cell wall polymer lignin provides structural support and rigidity to plant cell walls, and therefore to the plant body. However, the recalcitrance associated with lignin impedes the extraction of polysaccharides from the cell wall to make plant-based biofuels and biomaterials. The cell wall digestibility can be improved by introducing labile ester bonds into the lignin backbone that can be easily broken under mild base treatment at room temperature. The FERULOYL-CoA MONOLIGNOL TRANSFERASE (FMT) enzyme, which may be naturally found in many plants, uses feruloyl-CoA and monolignols to synthesize the ester-linked monolignol ferulate conjugates. A mutation in the first lignin-specific biosynthetic enzyme, CINNAMOYL-CoA REDUCTASE (CCR), results in an increase in the intracellular pool of feruloyl-CoA. Results: Maize (Zea mays) has a native putative FMT enzyme, and its ccr mutants produce an increased pool of feruloyl-CoA that can be used for conversion to monolignol ferulate conjugates. The decreased lignin content and monomers did not, however, impact the plant growth or biomass. The increase in monolignol conjugates correlated with an improvement in the digestibility of maize stem rind tissue. Conclusions: Together, increased monolignol ferulates and improved digestibility in ccr1 mutant plants suggests that they may be superior biofuel crops.
Item Metadata
Title |
Suppression of CINNAMOYL-CoA REDUCTASE increases the level of monolignol ferulates incorporated into maize lignins
|
Creator | |
Publisher |
BioMed Central
|
Date Issued |
2017-05-02
|
Description |
Background:
The cell wall polymer lignin provides structural support and rigidity to plant cell walls, and therefore to the plant body. However, the recalcitrance associated with lignin impedes the extraction of polysaccharides from the cell wall to make plant-based biofuels and biomaterials. The cell wall digestibility can be improved by introducing labile ester bonds into the lignin backbone that can be easily broken under mild base treatment at room temperature. The FERULOYL-CoA MONOLIGNOL TRANSFERASE (FMT) enzyme, which may be naturally found in many plants, uses feruloyl-CoA and monolignols to synthesize the ester-linked monolignol ferulate conjugates. A mutation in the first lignin-specific biosynthetic enzyme, CINNAMOYL-CoA REDUCTASE (CCR), results in an increase in the intracellular pool of feruloyl-CoA.
Results:
Maize (Zea mays) has a native putative FMT enzyme, and its ccr mutants produce an increased pool of feruloyl-CoA that can be used for conversion to monolignol ferulate conjugates. The decreased lignin content and monomers did not, however, impact the plant growth or biomass. The increase in monolignol conjugates correlated with an improvement in the digestibility of maize stem rind tissue.
Conclusions:
Together, increased monolignol ferulates and improved digestibility in ccr1 mutant plants suggests that they may be superior biofuel crops.
|
Subject | |
Genre | |
Type | |
Language |
eng
|
Date Available |
2017-05-03
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution 4.0 International (CC BY 4.0)
|
DOI |
10.14288/1.0347296
|
URI | |
Affiliation | |
Citation |
Biotechnology for Biofuels. 2017 May 02;10(1):109
|
Publisher DOI |
10.1186/s13068-017-0793-1
|
Peer Review Status |
Reviewed
|
Scholarly Level |
Faculty
|
Copyright Holder |
The Author(s)
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution 4.0 International (CC BY 4.0)