UBC Faculty Research and Publications

Performance of semirigid timber frame with Lagscrewbolt connections: experimental, analytical, and numerical model results Mori, Takuro; Nakatani, Makoto; Tesfamariam, Solomon

Abstract

This paper presents analytical and numerical models for semirigid timber frame with Lagscrewbolt (LSB) connections. A series of static and reverse cyclic experimental tests were carried out for different beam sizes (400, 500, and 600 mm depth) and column–base connections with different numbers of LSBs (4, 5, 8). For the beam–column connections, with increase in beam depth, moment resistance and stiffness values increased, and ductility factor reduced. For the column–base connection, with increase in the number of LSBs, the strength, stiffness, and ductility values increased. A material model available in OpenSees, Pinching4 hysteretic model, was calibrated for all connection test results. Finally, analytical model of the portal frame was developed and compared with the experimental test results. Overall, there was good agreement with the experimental test results, and the Pinching4 hysteretic model can readily be used for full-scale structural model.

Item Media

Item Citations and Data

Rights

Attribution 4.0 International (CC BY 4.0)

Usage Statistics