- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Faculty Research and Publications /
- Rinne test: does the tuning fork position affect the...
Open Collections
UBC Faculty Research and Publications
Rinne test: does the tuning fork position affect the sound amplitude at the ear? Butskiy, Oleksandr; Ng, Denny; Hodgson, Murray; Nunez, Desmond A
Abstract
Background: Guidelines and text-book descriptions of the Rinne test advise orienting the tuning fork tines in parallel with the longitudinal axis of the external auditory canal (EAC), presumably to maximise the amplitude of the air conducted sound signal at the ear. Whether the orientation of the tuning fork tines affects the amplitude of the sound signal at the ear in clinical practice has not been previously reported. The present study had two goals: determine if (1) there is clinician variability in tuning fork placement when presenting the air-conduction stimulus during the Rinne test; (2) the orientation of the tuning fork tines, parallel versus perpendicular to the EAC, affects the sound amplitude at the ear. Methods To assess the variability in performing the Rinne test, the Canadian Society of Otolaryngology – Head and Neck Surgery members were surveyed. The amplitudes of the sound delivered to the tympanic membrane with the activated tuning fork tines held in parallel, and perpendicular to, the longitudinal axis of the EAC were measured using a Knowles Electronics Mannequin for Acoustic Research (KEMAR) with the microphone of a sound level meter inserted in the pinna insert. Results 47.4 and 44.8 % of 116 survey responders reported placing the fork parallel and perpendicular to the EAC respectively. The sound intensity (sound-pressure level) recorded at the tympanic membrane with the 512 Hz tuning fork tines in parallel with as opposed to perpendicular to the EAC was louder by 2.5 dB (95 % CI: 1.35, 3.65 dB; p < 0.0001) for the fundamental frequency (512 Hz), and by 4.94 dB (95 % CI: 3.10, 6.78 dB; p < 0.0001) and 3.70 dB (95 % CI: 1.62, 5.78 dB; p = .001) for the two harmonic (non-fundamental) frequencies (1 and 3.15 kHz), respectively. The 256 Hz tuning fork in parallel with the EAC as opposed to perpendicular to was louder by 0.83 dB (95 % CI: −0.26, 1.93 dB; p = 0.14) for the fundamental frequency (256 Hz), and by 4.28 dB (95 % CI: 2.65, 5.90 dB; p < 0.001) and 1.93 dB (95 % CI: 0.26, 3.61 dB; p = .02) for the two harmonic frequencies (500 and 4 kHz) respectively. Conclusions Clinicians vary in their orientation of the tuning fork tines in relation to the EAC when performing the Rinne test. Placement of the tuning fork tines in parallel as opposed to perpendicular to the EAC results in a higher sound amplitude at the level of the tympanic membrane.
Item Metadata
Title |
Rinne test: does the tuning fork position affect the sound amplitude at the ear?
|
Creator | |
Publisher |
BioMed Central
|
Date Issued |
2016-03-24
|
Description |
Background:
Guidelines and text-book descriptions of the Rinne test advise orienting the tuning fork tines in parallel with the longitudinal axis of the external auditory canal (EAC), presumably to maximise the amplitude of the air conducted sound signal at the ear. Whether the orientation of the tuning fork tines affects the amplitude of the sound signal at the ear in clinical practice has not been previously reported. The present study had two goals: determine if (1) there is clinician variability in tuning fork placement when presenting the air-conduction stimulus during the Rinne test; (2) the orientation of the tuning fork tines, parallel versus perpendicular to the EAC, affects the sound amplitude at the ear.
Methods
To assess the variability in performing the Rinne test, the Canadian Society of Otolaryngology – Head and Neck Surgery members were surveyed. The amplitudes of the sound delivered to the tympanic membrane with the activated tuning fork tines held in parallel, and perpendicular to, the longitudinal axis of the EAC were measured using a Knowles Electronics Mannequin for Acoustic Research (KEMAR) with the microphone of a sound level meter inserted in the pinna insert.
Results
47.4 and 44.8 % of 116 survey responders reported placing the fork parallel and perpendicular to the EAC respectively. The sound intensity (sound-pressure level) recorded at the tympanic membrane with the 512 Hz tuning fork tines in parallel with as opposed to perpendicular to the EAC was louder by 2.5 dB (95 % CI: 1.35, 3.65 dB; p < 0.0001) for the fundamental frequency (512 Hz), and by 4.94 dB (95 % CI: 3.10, 6.78 dB; p < 0.0001) and 3.70 dB (95 % CI: 1.62, 5.78 dB; p = .001) for the two harmonic (non-fundamental) frequencies (1 and 3.15 kHz), respectively. The 256 Hz tuning fork in parallel with the EAC as opposed to perpendicular to was louder by 0.83 dB (95 % CI: −0.26, 1.93 dB; p = 0.14) for the fundamental frequency (256 Hz), and by 4.28 dB (95 % CI: 2.65, 5.90 dB; p < 0.001) and 1.93 dB (95 % CI: 0.26, 3.61 dB; p = .02) for the two harmonic frequencies (500 and 4 kHz) respectively.
Conclusions
Clinicians vary in their orientation of the tuning fork tines in relation to the EAC when performing the Rinne test. Placement of the tuning fork tines in parallel as opposed to perpendicular to the EAC results in a higher sound amplitude at the level of the tympanic membrane.
|
Subject | |
Genre | |
Type | |
Language |
eng
|
Date Available |
2016-08-19
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution 4.0 International (CC BY 4.0)
|
DOI |
10.14288/1.0308643
|
URI | |
Affiliation | |
Citation |
Journal of Otolaryngology - Head & Neck Surgery. 2016 Mar 24;45(1):21
|
Publisher DOI |
10.1186/s40463-016-0133-7
|
Peer Review Status |
Reviewed
|
Scholarly Level |
Faculty
|
Copyright Holder |
Butskiy et al.
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution 4.0 International (CC BY 4.0)