UBC Faculty Research and Publications

Application of a hybrid wavelet feature selection method in the design of a self-paced brain interface system Fatourechi, Mehrdad; Birch, Gary E.; Ward, Rabab Kreidieh

Abstract

Background: Recently, successful applications of the discrete wavelet transform have been reported in brain interface (BI) systems with one or two EEG channels. For a multi-channel BI system, however, the high dimensionality of the generated wavelet features space poses a challenging problem. Methods: In this paper, a feature selection method that effectively reduces the dimensionality of the feature space of a multi-channel, self-paced BI system is proposed. The proposed method uses a two-stage feature selection scheme to select the most suitable movement-related potential features from the feature space. The first stage employs mutual information to filter out the least discriminant features, resulting in a reduced feature space. Then a genetic algorithm is applied to the reduced feature space to further reduce its dimensionality and select the best set of features. Results: An offline analysis of the EEG signals (18 bipolar EEG channels) of four able-bodied subjects showed that the proposed method acquires low false positive rates at a reasonably high true positive rate. The results also show that features selected from different channels varied considerably from one subject to another. Conclusion: The proposed hybrid method effectively reduces the high dimensionality of the feature space. The variability in features among subjects indicates that a user-customized BI system needs to be developed for individual users.

Item Media

Item Citations and Data

Rights

Attribution 4.0 International (CC BY 4.0)