UBC Faculty Research and Publications

Meta-analysis of human methylomes reveals stably methylated sequences surrounding CpG islands associated with high gene expression Edgar, Rachel; Tan, Powell P C; Portales-Casamar, Elodie; Pavlidis, Paul


Background: DNA methylation is thought to play an important role in the regulation of mammalian gene expression, partly based on the observation that a lack of CpG island methylation in gene promoters is associated with high transcriptional activity. However, the CpG island methylation level only accounts for a fraction of the variance in gene expression, and methylation in other domains is hypothesized to play a role. We hypothesized that regions of very high stability in methylation would exist and provide biological insight into the role of methylation both within and outside CpG islands. Results: We set out to identify highly stable regions in the human methylome, based on the subset of CpGs assayed with an Illumina Infinium 450 K array. Using 1,737 samples from 30 publically available studies, we identified 15,224 CpGs that are ‘ultrastable’ in their state across tissues and developmental stages (974 always methylated; 14,250 always unmethylated). Further analysis of ultrastable CpGs led us to identify a novel subset of CpG islands, ‘ravines’, which exhibit a markedly consistent pattern of low methylation with highly methylated flanking shores and shelves. We distinguish ravines from other CpG islands characterized by a broader flanking region of low methylation. Interestingly, ravines are associated with higher gene expression compared to typical unmethylated CpG islands, and are more often found near housekeeping genes. Conclusions: The identification of ultrastable sites in the human methylome led us to identify a subclass of CpG islands characterized by a very stable pattern of methylation encompassing the island and flanking regions, established early in development and maintained through differentiation. This pattern is associated with particularly high levels of gene expression, providing new evidence that methylation beyond the CpG island could play a role in gene expression.

Item Media

Item Citations and Data


Attribution 4.0 International (CC BY 4.0)

Usage Statistics