- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Faculty Research and Publications /
- IL-7Rα and L-selectin, but not CD103 or CD34, are required...
Open Collections
UBC Faculty Research and Publications
IL-7Rα and L-selectin, but not CD103 or CD34, are required for murine peanut-induced anaphylaxis Maltby, Steven; DeBruin, Erin J; Bennett, Jami; Gold, Matthew J; Tunis, Matthew C; Jian, Zhiqi; Marshall, Jean S; McNagny, Kelly M
Abstract
Background: Allergy to peanuts results in severe anaphylactic responses in affected individuals, and has dramatic effects on society and public policy. Despite the health impacts of peanut-induced anaphylaxis (PIA), relatively little is known about immune mechanisms underlying the disease. Using a mouse model of PIA, we evaluated mice with deletions in four distinct immune molecules (IL7Rα, L-selectin, CD34, CD103), for perturbed responses. Methods: PIA was induced by intragastric sensitization with peanut antigen and cholera toxin adjuvant, followed by intraperitoneal challenge with crude peanut extract (CPE). Disease outcome was assessed by monitoring body temperature, clinical symptoms, and serum histamine levels. Resistant mice were evaluated for total and antigen specific serum IgE, as well as susceptibility to passive systemic anaphylaxis. Results: PIA responses were dramatically reduced in IL7Rα−/− and L-selectin−/− mice, despite normal peanut-specific IgE production and susceptibility to passive systemic anaphylaxis. In contrast, CD34−/− and CD103−/− mice exhibited robust PIA responses, indistinguishable from wild type controls. Conclusions: Loss of L-selectin or IL7Rα function is sufficient to impair PIA, while CD34 or CD103 ablation has no effect on disease severity. More broadly, our findings suggest that future food allergy interventions should focus on disrupting sensitization to food allergens and limiting antigen-specific late-phase responses. Conversely, therapies targeting immune cell migration following antigen challenge are unlikely to have significant benefits, particularly considering the rapid kinetics of PIA.
Item Metadata
Title |
IL-7Rα and L-selectin, but not CD103 or CD34, are required for murine peanut-induced anaphylaxis
|
Creator | |
Contributor | |
Publisher |
BioMed Central
|
Date Issued |
2012-08-31
|
Description |
Background:
Allergy to peanuts results in severe anaphylactic responses in affected individuals, and has dramatic effects on society and public policy. Despite the health impacts of peanut-induced anaphylaxis (PIA), relatively little is known about immune mechanisms underlying the disease. Using a mouse model of PIA, we evaluated mice with deletions in four distinct immune molecules (IL7Rα, L-selectin, CD34, CD103), for perturbed responses.
Methods:
PIA was induced by intragastric sensitization with peanut antigen and cholera toxin adjuvant, followed by intraperitoneal challenge with crude peanut extract (CPE). Disease outcome was assessed by monitoring body temperature, clinical symptoms, and serum histamine levels. Resistant mice were evaluated for total and antigen specific serum IgE, as well as susceptibility to passive systemic anaphylaxis.
Results:
PIA responses were dramatically reduced in IL7Rα−/− and L-selectin−/− mice, despite normal peanut-specific IgE production and susceptibility to passive systemic anaphylaxis. In contrast, CD34−/− and CD103−/− mice exhibited robust PIA responses, indistinguishable from wild type controls.
Conclusions:
Loss of L-selectin or IL7Rα function is sufficient to impair PIA, while CD34 or CD103 ablation has no effect on disease severity. More broadly, our findings suggest that future food allergy interventions should focus on disrupting sensitization to food allergens and limiting antigen-specific late-phase responses. Conversely, therapies targeting immune cell migration following antigen challenge are unlikely to have significant benefits, particularly considering the rapid kinetics of PIA.
|
Subject | |
Genre | |
Type | |
Language |
eng
|
Date Available |
2016-02-02
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution 4.0 International (CC BY 4.0)
|
DOI |
10.14288/1.0223899
|
URI | |
Affiliation | |
Citation |
Allergy, Asthma & Clinical Immunology. 2012 Aug 31;8(1):15
|
Publisher DOI |
10.1186/1710-1492-8-15
|
Peer Review Status |
Reviewed
|
Scholarly Level |
Faculty
|
Copyright Holder |
Maltby et al.; licensee BioMed Central Ltd.
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution 4.0 International (CC BY 4.0)