UBC Faculty Research and Publications

Reliability and validity of using the Lokomat to assess lower limb joint position sense in people with incomplete spinal cord injury Domingo, Antoinette; Lam, Tania


Background: Proprioceptive sense (knowing where the limbs are in space) is critical for motor control during posture and walking, and is often compromised after spinal cord injury (SCI). The purpose of this study was to assess the reliability and validity of using the Lokomat, a robotic exoskeleton used for gait rehabilitation, to quantitatively measure static position sense of the legs in persons with incomplete SCI. Methods: We used the Lokomat and custom software to assess static position sense in 23 able-bodied (AB) subjects and 23 persons with incomplete SCI (American Spinal Injury Association Impairment Scale level B, C or D). The subject’s leg was placed into a target position (joint angle) at either the hip or knee and asked to memorize that position. The Lokomat then moved the test joint to a “distractor” position. The subject then used a joystick controller to bring the joint back into the memorized target position. The final joint angle was compared to the target angle and the absolute difference was recorded as an error. All movements were passive. Known-groups validity was determined by the ability of the measure to discriminate between able-bodied and SCI subjects. To evaluate test-retest reliability, subjects were tested twice and intra-class correlation coefficients comparing errors from the two sessions were calculated. We also performed a traditional clinical test of proprioception in subjects with SCI and compared these scores to the robotic assessment. Results: The robot-based assessment test was reliable at the hip and knee in persons with SCI (P ≤ 0.001). Hip and knee angle errors in subjects with SCI were significantly greater (P ≤ 0.001) and more variable (P 

Item Media

Item Citations and Data


Attribution 4.0 International (CC BY 4.0)

Usage Statistics