- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Faculty Research and Publications /
- Poly-G/poly-C tracts in the genomes of Caenorhabditis
Open Collections
UBC Faculty Research and Publications
Poly-G/poly-C tracts in the genomes of Caenorhabditis Zhao, Yang; O'Neil, Nigel J; Rose, Ann M
Abstract
Background: In the genome of Caenorhabditis elegans, homopolymeric poly-G/poly-C tracts (G/C tracts) exist at high frequency and are maintained by the activity of the DOG-1 protein. The frequency and distribution of G/C tracts in the genomes of C. elegans and the related nematode, C. briggsae were analyzed to investigate possible biological roles for G/C tracts. Results In C. elegans, G/C tracts are distributed along every chromosome in a non-random pattern. Most G/C tracts are within introns or are close to genes. Analysis of SAGE data showed that G/C tracts correlate with the levels of regional gene expression in C. elegans. G/C tracts are over-represented and dispersed across all chromosomes in another Caenorhabditis species, C. briggsae. However, the positions and distribution of G/C tracts in C. briggsae differ from those in C. elegans. Furthermore, the C. briggsae dog-1 ortholog CBG19723 can rescue the mutator phenotype of C. elegans dog-1 mutants. Conclusion The abundance and genomic distribution of G/C tracts in C. elegans, the effect of G/C tracts on regional transcription levels, and the lack of positional conservation of G/C tracts in C. briggsae suggest a role for G/C tracts in chromatin structure but not in the transcriptional regulation of specific genes.
Item Metadata
Title |
Poly-G/poly-C tracts in the genomes of Caenorhabditis
|
Creator | |
Publisher |
BioMed Central
|
Date Issued |
2007-11-07
|
Description |
Background:
In the genome of Caenorhabditis elegans, homopolymeric poly-G/poly-C tracts (G/C tracts) exist at high frequency and are maintained by the activity of the DOG-1 protein. The frequency and distribution of G/C tracts in the genomes of C. elegans and the related nematode, C. briggsae were analyzed to investigate possible biological roles for G/C tracts.
Results
In C. elegans, G/C tracts are distributed along every chromosome in a non-random pattern. Most G/C tracts are within introns or are close to genes. Analysis of SAGE data showed that G/C tracts correlate with the levels of regional gene expression in C. elegans. G/C tracts are over-represented and dispersed across all chromosomes in another Caenorhabditis species, C. briggsae. However, the positions and distribution of G/C tracts in C. briggsae differ from those in C. elegans. Furthermore, the C. briggsae dog-1 ortholog CBG19723 can rescue the mutator phenotype of C. elegans dog-1 mutants.
Conclusion
The abundance and genomic distribution of G/C tracts in C. elegans, the effect of G/C tracts on regional transcription levels, and the lack of positional conservation of G/C tracts in C. briggsae suggest a role for G/C tracts in chromatin structure but not in the transcriptional regulation of specific genes.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2015-10-24
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution 4.0 International (CC BY 4.0)
|
DOI |
10.14288/1.0132638
|
URI | |
Affiliation | |
Citation |
BMC Genomics. 2007 Nov 07;8(1):403
|
Publisher DOI |
10.1186/1471-2164-8-403
|
Peer Review Status |
Reviewed
|
Scholarly Level |
Faculty
|
Copyright Holder |
Zhao et al.
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution 4.0 International (CC BY 4.0)