- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- British Columbia Mine Reclamation Symposium /
- An inverse Soil-Plant-Atmosphere model to estimate...
Open Collections
British Columbia Mine Reclamation Symposium
An inverse Soil-Plant-Atmosphere model to estimate vegetation and hydraulic properties of materials from field measurements to improve performance predictions and confidence in mine reclamation Shurniak, R. E.
Abstract
Cover system and landform design are crucial components of mine reclamation, of which the hydraulic performance is largely controlled by vegetation and material properties. Field monitoring (especially volumetric water content profiles) of a reclaimed area provides valuable information on a cover system’s and/or landform’s performance and indirectly measure a site’s vegetation and material properties. One of the most challenging and time-consuming numerical modelling problems is calibrating a model for near-surface (i.e., vadose zone) water movement, which accounts for atmospheric, vegetation, and material interactions (referred to as a Soil-Plant-Atmosphere or SPA model), to such field measurements. Previously, establishing inputs for vegetation and hydraulic properties required the model user to estimate initial inputs and then subjectively adapt the inputs while completing a multitude of iterations until a reasonable fit to field conditions was realized. To improve this process, the author has developed a simplified SPA model using the GoldSim software to quickly and objectively develop estimates of vegetation and hydraulic properties. The vegetation and hydraulic properties can then be validated within more rigorous and recognized SPA modelling software. The process can also be tailored to identify potential equifinal solutions, which can usually be eliminated through multiple factor calibration. The results of the model are calibrated vegetation and hydraulic properties that can be used to confidently predict mine reclamation performance. The paper provides an example where this modelling process has been successfully applied for a reclaimed site in the Northern Hemisphere.
Item Metadata
Title |
An inverse Soil-Plant-Atmosphere model to estimate vegetation and hydraulic properties of materials from field measurements to improve performance predictions and confidence in mine reclamation
|
Creator | |
Contributor | |
Date Issued |
2021
|
Description |
Cover system and landform design are crucial components of mine reclamation, of which the hydraulic performance is largely controlled by vegetation and material properties. Field monitoring (especially volumetric water content profiles) of a reclaimed area provides valuable information on a cover system’s and/or landform’s performance and indirectly measure a site’s vegetation and material properties. One of the most challenging and time-consuming numerical modelling problems is calibrating a model for near-surface (i.e., vadose zone) water movement, which accounts for atmospheric, vegetation, and material interactions (referred to as a Soil-Plant-Atmosphere or SPA model), to such field measurements. Previously, establishing inputs for vegetation and hydraulic properties required the model user to estimate initial inputs and then subjectively adapt the inputs while completing a multitude of iterations until a reasonable fit to field conditions was realized. To improve this process, the author has developed a simplified SPA model using the GoldSim software to quickly and objectively develop estimates of vegetation and hydraulic properties. The vegetation and hydraulic properties can then be validated within more rigorous and recognized SPA modelling software. The process can also be tailored to identify potential equifinal solutions, which can usually be eliminated through multiple factor calibration. The results of the model are calibrated vegetation and hydraulic properties that can be used to confidently predict mine reclamation performance. The paper provides an example where this modelling process has been successfully applied for a reclaimed site in the Northern Hemisphere.
|
Subject | |
Genre | |
Type | |
Language |
eng
|
Date Available |
2021-10-29
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0402760
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Other
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International