International Conference on Gas Hydrates (ICGH) (6th : 2008)

GAS HYDRATES IN THREE INDIAN OCEAN REGIONS, A COMPARATIVE STUDY OF OCCURRENCE AND SUBSURFACE HYDROLOGY Kastner, Miriam; Spivack, Arthur J.; Torres, Marta; Solomon, Evan A.; Borole, D.V.; Robertson, Gretchen; Das, Hamendra C.

Abstract

To establish the structural and lithological controls on gas hydrate distribution and to assess the potential energy resource and environmental hazards in the Indian Ocean, non-pressurized and pressurized cores were recovered from the Krishna-Godavari (K-G) and Mahanadi Basins offshore east India, and from an Andaman Sea site. The pore fluids were analyzed for: salinity, Cl-, sulfate, sulfide, carbonate alkalinity, Ca2+, Mg2+, Sr2+, K+, Na+, Ba2+, and Li+ concentrations, δ13C-DIC, δ18O, D/H, and 87Sr/86Sr ratios; together with infra-red imaging they provided important constraints on the presence and distribution of gas hydrates, thus on the subsurface hydrology. Evidence for methane hydrate was obtained at each of the sites. Only in the K-G Basin, between the sulfate-methane transition zone (SMT) depth and ~80 mbsf, higher than seawater chloride concentrations are observed; below this zone to the depth of the base of the gas hydrate zone (BGHSZ), chloride concentrations and salinity are lower than seawater value. In the Andaman Sea and Mahanadi Basin, only lower than seawater chloride concentrations are observed, and the shallowest gas hydrates occur at 100-200 m below the sulfate-methane transition zone (SMT) and extend to the depth of the BGHSZ. In the K-G Basin, the highest methane hydrate concentrations are associated with fracture zones in clay-rich sediments and/or in some coarser grained horizons. In the Andaman Sea, however, they are primarily associated with volcanic ash horizons. Assuming dilution by water released from dissociated methane hydrate, chloride and salinity anomalies suggest pore volume occupancies on the order of

Item Media

Item Citations and Data

License

Attribution-NonCommercial-NoDerivatives 4.0 International

Usage Statistics