International Conference on Gas Hydrates (ICGH) (6th : 2008)

RELATIVE PERMEABILITY CURVES DURING HYDRATE DISSOCIATION IN DEPRESSURIZATION Konno, Yoshihiro; Masuda, Yoshihiro; Sheu, Chie Lin; Oyama, Hiroyuki; Ouchi, Hisanao; Kurihara, Masanori


Depressurization is thought to be a promising method for gas recovery from methane hydrate reservoirs, but considerable water production is expected when this method is applied to the hydrate reservoir of high initial water saturation. In this case, the prediction of water production is a critical problem. This study examined relative permeability curves during hydrate dissociation by comparing numerical simulations with laboratory experiments. Data of gas and water volumes produced during depressurization were taken from gas recovery experiments using sand-packed cores containing methane hydrates. In each experiment, hydrates were dissociated by depressurization at a constant pressure. The surrounding temperature was held constant during dissociation. The volumes of gas and water produced, the temperatures inside of the core, and the pressures at the both ends of the core were measured continuously. The experimental results were compared with numerical simulations by using the simulator MH21-HYDRES (MH21 Hydrate Reservoir Simulator). The experimental results showed that considerable volume of water was produced during hydrate dissociation, and the simulator could not reproduce the large water production when we used typical relative permeability curves such as the Corey model. To obtain good matching for the volumes of gas and water produced during hydrate dissociation, the shape of relative permeability curves was modified to express the rapid decrease in gas permeability with increasing water saturation. This result suggests that the connate water can be easily displaced by hydrate-dissociated gas and move forward in the hydrate reservoir of high initial water saturation.

Item Media

Item Citations and Data


Attribution-NonCommercial-NoDerivatives 4.0 International

Usage Statistics