International Conference on Gas Hydrates (ICGH) (6th : 2008)

GAS HYDRATE GROWTH MORPHOLOGIES AND THEIR EFFECT ON THE STIFFNESS AND DAMPING OF A HYDRATE BEARING SAND Kingston, Emily; Clayton, Chris R.I.; Priest, Jeffery

Abstract

Using a specially constructed Gas Hydrate Resonant Column (GHRC), the University of Southampton explored different methods of hydrate synthesis and measured the properties of the resulting sediments, such as shear wave velocity (Vs), compressional wave velocity (Vp) and their respective attenuation measurements (Qs -1 and Qp -1). Two approaches were considered. The first utilises an excess gas technique, where known water volume in the pore space dictates the quantity of hydrate. The second approach uses a known quantity of methane gas within the water saturated pore space to constrain the volume of hydrate. Results from the two techniques show that hydrates formed in excess gas environments cause stiffening of the sediment structure at low concentrations (3%), whereas, even at high concentrations of hydrate (40%) in excess water environments, only moderate increase in stiffness was observed. Additionally, attenuation results show a peak in damping at approximately 5% hydrate in excess gas tests, whereas in excess water tests, damping continues to increase with increasing hydrate content in the pore space. By considering the results from the two approaches, it becomes apparent that formation method has an influence on the properties of the hydrate bearing sand, and must therefore influence the morphology of the hydrate in the pore space.

Item Media

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International