International Conference on Gas Hydrates (ICGH) (6th : 2008)

HYDRATE PLUGGING POTENTIAL IN UNDERINHIBITED SYSTEMS Hemmingsen, Pål V.; Li, Xiaoyun; Kinnari, Keijo

Abstract

An underinhibited system is defined as a system where an insufficient amount of thermodynamic inhibitor is present to prevent hydrate formation. Underinhibition might occur due to malfunctioning of equipment, temporary limitations in the inhibitor supplies or operational limitations or errors. Understanding the plugging risk of such systems is important in order to take the correct precautions to avoid blocked flowlines. In this paper we summarize the experimental efforts for the last decade within StatoilHydro on the hydrate plugging risk in underinhibited systems. The flow simulator has been used as the main experimental equipment. The overall results for systems underinhibited with ethylene glycol or methanol show that the plugging potential increases up to a maximum at concentrations around 10-15 wt%. At higher concentrations the plugging potential reduces compared to the uninhibited system. The results can be explained as follows: As water is converted to hydrates in a system containing a thermodynamic inhibitor, the inhibitor concentration will increase until the remaining aqueous phase is inhibited. This self-inhibited aqueous phase will wet the hydrate particles, giving raise to the characteristic term of “sticky” hydrate particles. The aqueous layer surrounding the hydrate particles will form liquid bridges, by capillary attractive forces, upon contact with other hydrate particles or the pipe wall. During the hydrate formation period, there is also a possibility that some of the liquid bridges are converted to solid ones, strengthening the agglomerates. Depending on the oil-water interfacial tension, the phase ratio between the aqueous phase and the solid hydrates and the conversion of liquid bridges to solid ones, this leads to increased plugging risk at lower concentrations of inhibitor (< 20 wt%) and reduced risk at higher concentrations as compared to the uninhibited system.

Item Media

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International