International Conference on Gas Hydrates (ICGH) (6th : 2008)

RELATING GAS HYDRATE SATURATION TO DEPTH OF SULFATE-METHANE TRANSITION Bhatnagar, Gaurav; Chapman, Walter G.; Hirasaki, George J.; Dickens, Gerald R.; Dugan, Brandon

Abstract

Gas hydrate can precipitate in pore space of marine sediment when gas concentrations exceed solubility conditions within a gas hydrate stability zone (GHSZ). Here we present analytical expressions that relate the top of the GHSZ and the amount of gas hydrate within the GHSZ to the depth of the sulfate-methane transition (SMT). The expressions are strictly valid for steady-state systems in which (1) all gas is methane, (2) all methane enters the GHSZ from the base, and (3) no methane escapes the top through seafloor venting. These constraints mean that anaerobic oxidation of methane (AOM) is the only sink of gas, allowing a direct coupling of SMT depth to net methane flux. We also show that a basic gas hydrate saturation profile can be determined from the SMT depth via analytical expressions if site-specific parameters such as sedimentation rate, methane solubility and porosity are known. We evaluate our analytical model at gas hydrate bearing sites along the Cascadia margin where methane is mostly sourced from depth. The analytical expressions provide a fast and convenient method to calculate gas hydrate saturation for a given geologic setting.

Item Media

Item Citations and Data

License

Attribution-NonCommercial-NoDerivatives 4.0 International

Usage Statistics