International Conference on Gas Hydrates (ICGH) (6th : 2008)

ONSET AND STABILITY OF GAS HYDRATES UNDER PERMAFROST IN AN ENVIRONMENT OF SURFACE CLIMATIC CHANGE - PAST AND FUTURE Majorowicz, Jacek A.; Osadetz, Kirk; Safanda, Jan

Abstract

Modeling of the onset of permafrost formation and succeeding gas hydrate formation in the changing surface temperature environment has been done for the Beaufort-Mackenzie Basin (BMB). Numerical 1D modeling is constrained by deep heat flow from deep well bottom hole temperatures, deep conductivity, present permafrost thickness and thickness of Type I gas hydrates. Latent heat effects were applied to the model for the entire ice bearing permafrost and Type I hydrate intervals. Modeling for a set of surface temperature forcing during the glacial-interglacial history including the last 14 Myr, the detailed Holocene temperature history and a consideration of future warming due to a doubling of atmospheric CO2 was performed. Two scenarios of gas formation were considered; case 1: formation of gas hydrate from gas entrapped under deep geological seals and case 2: formation of gas hydrate from gas in a free pore space simultaneously with permafrost formation. In case 1, gas hydrates could have formed at a depth of about 0.9 km only some 1 Myr ago. In case 2, the first gas hydrate formed in the depth range of 290 – 300 m shortly after 6 Myr ago when the GST dropped from -4.5 °C to -5.5. °C. The gas hydrate layer started to expand both downward and upward subsequently. More detailed modeling of the more recent glacial–interglacial history and extending into the future was done for both BMB onshore and offshore models. These models show that the gas hydrate zone, while thinning will persist under the thick body of BMB permafrost through the current interglacial warming and into the future even with a doubling of atmospheric CO2.

Item Media

Item Citations and Data

License

Attribution-NonCommercial-NoDerivatives 4.0 International

Usage Statistics