International Conference on Gas Hydrates (ICGH) (6th : 2008)

TWELVE YEARS OF LABORATORY AND FIELD EXPERIENCE FOR POLYETHER POLYAMINE GAS HYDRATE INHIBITORS Pakulski, Marek; Szymczak, Steve

Abstract

The chemical structure of polyether amines (PEA), mainly electron donating multiple oxygen and nitrogen atoms as well as active hydrogen atoms, make such compounds actively participating in the formation of hydrogen bonds with surrounding molecules. Hydrophobic polypropylene glycol functionality gives PEA's properties of multi-headed surfactants having hydrophilic amine groups. These groups have a strong affinity for water molecules, ice and hydrate crystals. Such PEA compounds have been known for several years. However, the hydrate inhibition properties of PEA’s were only discovered about twelve years ago. The first discovery stimulated more research in laboratories and led to practical applications for hydrate inhibition in gas fields. An interesting property of PEAs is their synergistic effect on hydrate inhibition when applied concurrently with polymeric kinetic hydrate inhibitors (KHI) or thermodynamic inhibitors (THI). The combination inhibitors are better inhibitors than a single component one. Quaternized polyether diamines are efficient antiagglomerant (AA) hydrate inhibitors while different derivatization can produce dual functionality compounds, i.e. corrosion inhibitors/gas hydrate inhibitors (CI/GHI). With all of this versatility, PEAs found application for hydrate inhibition in oil and gas fields onshore and offshore in production, flowlines and completion. The PEAs have an excellent record in protecting gas-producing wells from plugging with hydrates. (Final corrected copy of ICGH paper 5347)

Item Media

Item Citations and Data

License

Attribution-NonCommercial-NoDerivatives 4.0 International

Usage Statistics