- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP) (12th : 2015) /
- Energy-based seismic collapse risk assessment of structures
Open Collections
International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP) (12th : 2015)
Energy-based seismic collapse risk assessment of structures Deniz, Derya; Song, Junho; Hajjar, Jerome F.
Abstract
Structural collapse is traditionally associated with the exceedance of a target value of inter-story drift or plastic hinge rotation at structural components. However, such an approach may not accurately estimate the structural collapse potential due to load redistribution and variation of structural damage within the structure. Moreover, collapse prediction may be sensitive to such assumed threshold values. Therefore, in this study, energy balance of a structural system is utilized to represent the severe structural damage history that eventually leads to structural collapse. Performing energy-based collapse analyses, a new dynamic-instability based collapse criterion is developed and key collapse measures are identified. Using the results, a new collapse fragility model is then established for estimating and improving structural reliability against collapse. Moreover, extensive parametric studies are performed to investigate sensitivity of collapse fragilities to variability in structural and earthquake parameters.
Item Metadata
Title |
Energy-based seismic collapse risk assessment of structures
|
Creator | |
Contributor | |
Date Issued |
2015-07
|
Description |
Structural collapse is traditionally associated with the exceedance of a target value of inter-story drift or plastic hinge rotation at structural components. However, such an approach may not accurately estimate the structural collapse potential due to load redistribution and variation of structural damage within the structure. Moreover, collapse prediction may be sensitive to such assumed threshold values. Therefore, in this study, energy balance of a structural system is utilized to represent the severe structural damage history that eventually leads to structural collapse. Performing energy-based collapse analyses, a new dynamic-instability based collapse criterion is developed and key collapse measures are identified. Using the results, a new collapse fragility model is then established for estimating and improving structural reliability against collapse. Moreover, extensive parametric studies are performed to investigate sensitivity of collapse fragilities to variability in structural and earthquake parameters.
|
Genre | |
Type | |
Language |
eng
|
Notes |
This collection contains the proceedings of ICASP12, the 12th International Conference on Applications of Statistics and Probability in Civil Engineering held in Vancouver, Canada on July 12-15, 2015. Abstracts were peer-reviewed and authors of accepted abstracts were invited to submit full papers. Also full papers were peer reviewed. The editor for this collection is Professor Terje Haukaas, Department of Civil Engineering, UBC Vancouver.
|
Date Available |
2015-05-25
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivs 2.5 Canada
|
DOI |
10.14288/1.0076252
|
URI | |
Affiliation | |
Citation |
Haukaas, T. (Ed.) (2015). Proceedings of the 12th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP12), Vancouver, Canada, July 12-15.
|
Peer Review Status |
Unreviewed
|
Scholarly Level |
Faculty; Researcher
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivs 2.5 Canada