- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP) (12th : 2015) /
- Importance sampling in the evaluation and optimization...
Open Collections
International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP) (12th : 2015)
Importance sampling in the evaluation and optimization of buffered failure probability Harajli, Marwan M.; Rockafellar, R. Tyrrell; Royset, Johannes O.
Abstract
Engineering design is a process in which a system’s parameters are selected such that the system meets certain criteria. These criteria vary in nature and may involve such matters as structural strength, implementation cost, architectural considerations, etc. When random variables are part of a system model, an added criterion is usually the failure probability. In this paper, we examine the buffered failure probability as an attractive alternative to the failure probability in design optimization problems. The buffered failure probability is more conservative and possesses properties that make it more convenient to compute and optimize. Since a failure event usually occurs with small probability in structural systems, Monte-Carlo sampling methods require large sample sizes for high accuracy estimates of failure and buffered failure probabilities. We examine importance sampling techniques for efficient evaluation of buffered failure probabilities, and illustrate their use in structural design of two multi-story frames subject to ground motion. We formulate a problem of design optimization as a cost minimization problem subject to buffered failure probability constraints. The problem is solved using importance sampling and a nonlinear optimization algorithm.
Item Metadata
Title |
Importance sampling in the evaluation and optimization of buffered failure probability
|
Creator | |
Contributor | |
Date Issued |
2015-07
|
Description |
Engineering design is a process in which a system’s parameters are selected such that the system meets certain criteria. These criteria vary in nature and may involve such matters as structural strength, implementation cost, architectural considerations, etc. When random variables are part of a system model, an added criterion is usually the failure probability. In this paper, we examine the buffered failure probability as an attractive alternative to the failure probability in design optimization problems. The buffered failure probability is more conservative and possesses properties that make it more convenient to compute and optimize. Since a failure event usually occurs with small probability in structural systems, Monte-Carlo sampling methods require large sample sizes for high accuracy estimates of failure and buffered failure probabilities. We examine importance sampling techniques for efficient evaluation of buffered failure probabilities, and illustrate their use in structural design of two multi-story frames subject to ground motion. We formulate a problem of design optimization as a cost minimization problem subject to buffered failure probability constraints. The problem is solved using importance sampling and a nonlinear optimization algorithm.
|
Genre | |
Type | |
Language |
eng
|
Notes |
This collection contains the proceedings of ICASP12, the 12th International Conference on Applications of Statistics and Probability in Civil Engineering held in Vancouver, Canada on July 12-15, 2015. Abstracts were peer-reviewed and authors of accepted abstracts were invited to submit full papers. Also full papers were peer reviewed. The editor for this collection is Professor Terje Haukaas, Department of Civil Engineering, UBC Vancouver.
|
Date Available |
2015-05-22
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivs 2.5 Canada
|
DOI |
10.14288/1.0076214
|
URI | |
Affiliation | |
Citation |
Haukaas, T. (Ed.) (2015). Proceedings of the 12th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP12), Vancouver, Canada, July 12-15.
|
Peer Review Status |
Unreviewed
|
Scholarly Level |
Faculty; Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivs 2.5 Canada