- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP) (12th : 2015) /
- Integrated multi-hazard framework for the fragility...
Open Collections
International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP) (12th : 2015)
Integrated multi-hazard framework for the fragility analysis of roadway bridges Gehl, Pierre; D’Ayala, Dina
Abstract
This paper presents a method for the development of bridge fragility functions that are able to account for the cumulated impact of different hazard types, namely earthquakes, ground failures and fluvial floods. After identifying which loading mechanisms are affecting which bridge components, specific damage-dependent component fragility curves are derived. The definition of the global damage states at system level through a fault-tree analysis is coupled with a Bayesian Network formulation in order to account for the correlation structure between failure events. Fragility functions for four system damage states are finally derived as a function of flow discharge Q (for floods) and peak ground acceleration PGA (for earthquakes and ground failures): the results are able to represent specific failure configurations that can be linked to functionality levels or repair durations.
Item Metadata
Title |
Integrated multi-hazard framework for the fragility analysis of roadway bridges
|
Creator | |
Contributor | |
Date Issued |
2015-07
|
Description |
This paper presents a method for the development of bridge fragility functions that are
able to account for the cumulated impact of different hazard types, namely earthquakes, ground failures
and fluvial floods. After identifying which loading mechanisms are affecting which bridge components,
specific damage-dependent component fragility curves are derived. The definition of the global damage
states at system level through a fault-tree analysis is coupled with a Bayesian Network formulation in
order to account for the correlation structure between failure events. Fragility functions for four system damage states are finally derived as a function of flow discharge Q (for floods) and peak ground
acceleration PGA (for earthquakes and ground failures): the results are able to represent specific failure
configurations that can be linked to functionality levels or repair durations.
|
Genre | |
Type | |
Language |
eng
|
Notes |
This collection contains the proceedings of ICASP12, the 12th International Conference on Applications of Statistics and Probability in Civil Engineering held in Vancouver, Canada on July 12-15, 2015. Abstracts were peer-reviewed and authors of accepted abstracts were invited to submit full papers. Also full papers were peer reviewed. The editor for this collection is Professor Terje Haukaas, Department of Civil Engineering, UBC Vancouver.
|
Date Available |
2015-05-21
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivs 2.5 Canada
|
DOI |
10.14288/1.0076190
|
URI | |
Affiliation | |
Citation |
Haukaas, T. (Ed.) (2015). Proceedings of the 12th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP12), Vancouver, Canada, July 12-15.
|
Peer Review Status |
Unreviewed
|
Scholarly Level |
Faculty; Researcher
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivs 2.5 Canada