- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP) (12th : 2015) /
- Random field modeling for the prediction of wall thickness...
Open Collections
International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP) (12th : 2015)
Random field modeling for the prediction of wall thickness of nuclear pipes considering data misalignment Adegbola, Adetola; Yuan, Xian-Xun; Wang, Min
Abstract
Probabilistic structural integrity assessment has been increasingly used to ensure the fitness-for-service of the major systems, structures and components (SSCs) of a nuclear power plant. The probabilistic approach requires a sophisticated mathematical model to quantify the variability and uncertainty of the degradation involved in the SSCs. This paper presents a nonhomogeneous random field modeling approach to the prediction of wall thickness of nuclear pipes due to flow-accelerated corrosion. The approach addresses two practical issues in random field-based degradation modeling. It uses a moving-window kriging technique to estimate the missing measurements involved in ultrasonic scans, and then stitch the overlapping scan patches to make a whole random field for the wall thickness. The uniform random field becomes an important input for next-step structural integrity assessment using, e.g., stochastic finite element analysis. The proposed modeling approach is illustrated by a practical example of nuclear feeder piping.
Item Metadata
Title |
Random field modeling for the prediction of wall thickness of nuclear pipes considering data misalignment
|
Creator | |
Contributor | |
Date Issued |
2015-07
|
Description |
Probabilistic structural integrity assessment has been increasingly used to ensure the fitness-for-service of the major systems, structures and components (SSCs) of a nuclear power plant. The probabilistic approach requires a sophisticated mathematical model to quantify the variability and uncertainty of the degradation involved in the SSCs. This paper presents a nonhomogeneous random field modeling approach to the prediction of wall thickness of nuclear pipes due to flow-accelerated corrosion. The approach addresses two practical issues in random field-based degradation modeling. It uses a moving-window kriging technique to estimate the missing measurements involved in ultrasonic scans, and then stitch the overlapping scan patches to make a whole random field for the wall thickness. The uniform random field becomes an important input for next-step structural integrity assessment using, e.g., stochastic finite element analysis. The proposed modeling approach is illustrated by a practical example of nuclear feeder piping.
|
Genre | |
Type | |
Language |
eng
|
Notes |
This collection contains the proceedings of ICASP12, the 12th International Conference on Applications of Statistics and Probability in Civil Engineering held in Vancouver, Canada on July 12-15, 2015. Abstracts were peer-reviewed and authors of accepted abstracts were invited to submit full papers. Also full papers were peer reviewed. The editor for this collection is Professor Terje Haukaas, Department of Civil Engineering, UBC Vancouver.
|
Date Available |
2015-05-21
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivs 2.5 Canada
|
DOI |
10.14288/1.0076145
|
URI | |
Affiliation | |
Citation |
Haukaas, T. (Ed.) (2015). Proceedings of the 12th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP12), Vancouver, Canada, July 12-15.
|
Peer Review Status |
Unreviewed
|
Scholarly Level |
Faculty; Researcher
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivs 2.5 Canada