- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP) (12th : 2015) /
- A comparison of unscented and extended Kalman filtering...
Open Collections
International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP) (12th : 2015)
A comparison of unscented and extended Kalman filtering for nonlinear system identification Al-Hussein, Abdullah; Haldar, Achintya
Abstract
A nonlinear system identification-based structural health assessment procedure is presented in this paper. The procedure uses the unscented Kalman filter (UKF) concept. The weighted global iteration with an objective function is incorporated with the UKF algorithm to obtain stable, convergent, and optimal solution. An iterative least squares technique is also integrated with the UKF algorithm. The procedure is capable of assessing health of any type of structures, represented by finite elements. It can identify the structure using limited noise-contaminated dynamic responses, measured at a small part of large structural systems and without using input excitation information. In order to demonstrate its effectiveness, the proposed procedure is compared with the extended Kalman filter (EKF)-based procedure. For numerical verification, a two-dimensional five-story two-bay steel frame is considered. Defect-free and two defective states with small and severe defects are considered. The study shows that the proposed UKF-based procedure can assess structural health more accurately and efficiently than the EKF-based procedures for nonlinear system identification.
Item Metadata
Title |
A comparison of unscented and extended Kalman filtering for nonlinear system identification
|
Creator | |
Contributor | |
Date Issued |
2015-07
|
Description |
A nonlinear system identification-based structural health assessment procedure is presented in this paper. The procedure uses the unscented Kalman filter (UKF) concept. The weighted global iteration with an objective function is incorporated with the UKF algorithm to obtain stable, convergent, and optimal solution. An iterative least squares technique is also integrated with the UKF algorithm. The procedure is capable of assessing health of any type of structures, represented by finite elements. It can identify the structure using limited noise-contaminated dynamic responses, measured at a small part of large structural systems and without using input excitation information. In order to demonstrate its effectiveness, the proposed procedure is compared with the extended Kalman filter (EKF)-based procedure. For numerical verification, a two-dimensional five-story two-bay steel frame is considered. Defect-free and two defective states with small and severe defects are considered. The study shows that the proposed UKF-based procedure can assess structural health more accurately and efficiently than the EKF-based procedures for nonlinear system identification.
|
Genre | |
Type | |
Language |
eng
|
Notes |
This collection contains the proceedings of ICASP12, the 12th International Conference on Applications of Statistics and Probability in Civil Engineering held in Vancouver, Canada on July 12-15, 2015. Abstracts were peer-reviewed and authors of accepted abstracts were invited to submit full papers. Also full papers were peer reviewed. The editor for this collection is Professor Terje Haukaas, Department of Civil Engineering, UBC Vancouver.
|
Date Available |
2015-05-20
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivs 2.5 Canada
|
DOI |
10.14288/1.0076081
|
URI | |
Affiliation | |
Citation |
Haukaas, T. (Ed.) (2015). Proceedings of the 12th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP12), Vancouver, Canada, July 12-15.
|
Peer Review Status |
Unreviewed
|
Scholarly Level |
Faculty; Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivs 2.5 Canada