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Abs t rac t 

Due to the complexities of analyzing repeated binary outcomes, changes in respiratory 

symptoms over time are rarely studied. In fact, most respiratory epidemiology studies to date 

have not taken full advantage of longitudinal symptom data. 

This thesis evaluated discrete mixture models (SAS® Proc Traj) and generalized linear 

mixed models (SAS® Proc Glimmix) with respect for their applicability to six basic 

respiratory symptom research questions. These methods are both capable of handling 

repeated binary outcome data and permit inclusion of time varying covariates. These two 

techniques were then applied in a case study. 

Results from the evaluation of the methods indicated that Proc Glimmix can model the 

predictors of respiratory symptoms as well as population trends in symptom reporting over 

time. But Proc Glimmix is not suitable for modeling pattern or shape of change over time. 

In contrast, Proc Traj models patterns of change over time, and identifies multiple subgroups 

within the population. Proc Traj is not capable of modeling overall population trends. Both 

methods have statistical limitations that researchers need to understand; to help with this a 

simple guide describing both techniques was compiled. 

The case study utilized longitudinal data from a population of marine workers and focused 

on the outcome breathlessness, or dyspnea. Results from both Proc Traj and Proc Glimmix 

models indicated that the probability of reporting dyspnea changed over time in this 

population. Proc Traj models identified two distinct patterns of change in the population 

(one increasing over time, one steady over time). Proc Glimmix models identified several 

factors that were associated with dyspnea reporting; older age, childhood asthma, smoking 

and being female were associated with more dyspnea, whereas better lung function and 

current exposure to respiratory irritants were associated with less dyspnea. 

The overall conclusion was that both Proc Traj and Proc Glimmix models are suitable for 

analyzing repeated binary respiratory symptom data and researchers are encouraged to 

consider their use. Proc Glimmix is best for modeling the predictors of reporting a symptom 

at the population level, while Proc Traj is suited for modeling multiple subgroups in the 

population and their patterns of change over time. 
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1 Introduction 

This thesis is motivated by the hypothesis that patterns of respiratory symptom change 

over time may be useful in predicting (or describing) subsequent pulmonary function 

deterioration in general populations of working adults and by the fact that, to date, most 

respiratory epidemiology studies have not taken full advantage of longitudinal symptom data. 

The focus of this thesis is an exploration of existing statistical methods for the 

investigation of respiratory symptoms in longitudinal epidemiologic studies of lung health. 

The thesis objectives are: 

• To review what analytic approaches have been used to date in longitudinal studies of 
respiratory symptoms (Chapter 2); 

• To evaluate the potential for application of two existing statistical approaches that 
make full use of the longitudinal nature of respiratory symptom data almost always 
collected, but seldom used (Chapter 3); 

• To apply and compare both 'traditional' and 'newer' approaches in one case study 
example, using data from a longitudinal study of marine transportation workers 
(Chapter 4); and 

• To prepare a guidance document to facilitate respiratory epidemiologists using these 
newer approaches (Appendix A). 
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2 Background & Literature Review 

2.1 Resp i ra to ry S y m p t o m s 

The American Thoracic Society (ATS) Questionnaire was originally developed in 1978 as 

part of the Epidemiology Standardization Project (1). The goal of the Epidemiology 

Standardization Project was to develop standardized criteria for respiratory disease survey 

questionnaires, tests of pulmonary function and chest radiographs (1). The Epidemiology 

Standardization Project used both the Medical Research Questionnaire and the National 

Heart and Lung Institute respiratory questionnaires as the basis for developing a new 

standardized questionnaire (1). The original ATS Questionnaire (ATS-DLD-78) was born of 

this process and contained thirty-four questions pertaining to respiratory symptoms (cough, 

phlegm, wheeze, dyspnea). Since the development of the ATS Questionnaire most studies of 

respiratory disease have included the questionnaire, or a variation of it, as part of their study 

protocol. 

Symptoms are important because they are what people experience as part of the disease 

process. Symptoms are also what people report to their physicians or other trusted health 

practitioner. The fact that respiratory symptoms, especially the changes over time in 

respiratory symptoms, have not been extensively studied makes them even more enticing as 

the focus of this thesis work. In terms of occupational disease, symptoms are key to 

successful occupational surveillance as they are what a worker will report to their physician, 

even when the worker themselves does not make the connection to their workplace (2, 3). 

For these reasons, it would benefit occupational health professionals to have further 

understanding of the longitudinal patterns of respiratory symptoms and their relationship to 

both workplace exposures as well as disease processes. 

Longitudinal studies of respiratory health using the ATS Questionnaire often result in 

symptom data with the following characteristics: 

a. repeated measures on the same individuals 

b. unequal spacing between repeated measures 

c. dichotomous outcomes (yes/no) 

d. unbalanced data (different number of observations for different individuals in the 
population) 
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e. missing data 

The main reason researchers have avoided studies of longitudinal respiratory symptoms is 

due to the challenges involved in the analysis of repeated, correlated dichotomous data. Two 

methods for handling data of this type are addressed in this thesis; (1) SAS® Trajectory 

Procedure (Proc Traj), and (2) SAS® Generalized Linear Mixed Model Procedure (Proc 

Glimmix) (4, 5). 

2.2 L i terature R e v i e w : Long i tud ina l S t u d i e s of Resp i ra to ry 
S y m p t o m s 

Studies have used longitudinal symptom data as a predictor of lung function outcomes (6-

17) but neither symptoms nor the pattern of symptom change over time have been studied 

thoroughly as an outcome. The literature examining symptoms at one point in time and their 

ability to predict lung function, as well as the literature examining cross sectional exposure 

levels and respiratory symptoms, is extensive and is not reviewed here. 

A thorough literature review was completed for articles that studied longitudinal 

respiratory symptoms; articles were included if they measured respiratory symptoms at 

multiple time points and used repeated measures (over time) of respiratory symptoms in the 

analysis. Nineteen articles fitting these requirements were located in the peer-reviewed 

literature. These articles are summarized in Table 1. 

The literature search began with searching for studies of longitudinal respiratory 

symptoms. PubMed and Web of Science were utilized. The reference lists from located 

articles were used to identify additional relevant literature; this proved valuable as the 

keywords that successfully located studies focused on longitudinal respiratory symptoms 

were varied. Initial search terms included specific symptoms (e.g. cough, phlegm, dyspnea, 

and wheeze) or diseases (e.g. asthma, chronic obstructive pulmonary disease or COPD) 

combined with variations on the longitudinal theme (e.g. "over time", "onset", "incidence", 

"cohort"). 
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Table 1 Summary of previous literature examining respiratory symptoms over time 
# of Visits Follow-up Predictor(s) of 

Lead Author Year Study Population Total #Used time Outcome Interest Analysis Method 
Symptoms as a Predictor Variable: 

Sharp (18) 1973 1263 white men from an 
electric company 

2 2 7 years Lung function Respiratory symptom 
change over time 

Student's t-test, 
chi square test 

Jedrychowski (19) 1988 1747 randomly selected 
individuals from Cracow, 
Poland 

3 3 13 years FEV1 decline 
during follow-up 

Pattern of symptom 
change between first 
2 visits 

Multiple linear 
regression 

Jaakkola (20) 1993 1044 young white adults, 
age 15-40 years 

3 2 7.7 years 
(mean) 

Rate of lung 
function change 
over time 

Longitudinal pattern 
of symptom reporting 

Multiple linear 
regression 

Brodkin (21) 1996 446 men in the Seattle 
Asbestos Lung Cancer 
Chemoprevention Trail 
with >3years of follow-up 

annual 
visits 

2 2.9-5.2 
years 

Annual loss of 
FEV1 and FVC 

Longitudinal pattern 
of symptom reporting 

Multiple linear 
regression 

Krzyzanowski 
(22) 

1990 Subjects from the Cracow 
and Tuscon studies with >2 
visits 
C: 740 Men, 1024 women, 
T: 266 Men, 374 Women 

C: 3 
T: 9 

3 C: 13 years 
T: 12 years 

Lung function 
(FEV l .FVC, 
FEV1/FVC ratio) 

Respiratory symptom 
pattern over time 

Multiple linear 
regression 

Krzyzanowski 
(23) 

1992 Subjects from Cracow and 
Tuscon studies with >1 
visits 
C: 1265 Men, 1818 
women. T: 613 Men, 839 
Women 

C: 3 
T: 9 

2 C: 13 years 
T: 12 years 

Respiratory 
symptom pattern 
between two time 
points 

Age, smoking, 
gender, city (Tuscon 
or Cracow) 

Log-linear 
regression and 
logistic regression 

Krzyzanowski 
(24) 

1993 Subjects from the Cracow 
and Tuscon studies who 
were smokers at baseline 
C: 815 Men, 439 women, 
T: 234 Men, 234 Women 

C: 3 
T: 9 

2 C: 13 years 
T: 12 years 

Incidence and 
prevalence of 
respiratory 
symptoms 

City, gender, age, 
smoking at first visit, 
age started smoking 

Log-linear 
regression and 
logistic regression 
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Table 1 Cont'd 

Lead Author Year Study Population 
# of Visits Follow-up 

Outcome 
Predictor(s) of 
Interest Analysis Method Lead Author Year Study Population Total #Used time Outcome 
Predictor(s) of 
Interest Analysis Method 

Christiani (25) 2001 447 cotton textile workers 
472 silk textile workers 
(controls) 

4 4 15 years Rate o f F E V l and 
F V C change over 
time 

Consistency of 
symptom reporting, 
number of symptoms 
reported 

Marginal model 
with generalized 
estimating 
equations 

Wang (26) 2002 240 newly hired female 
workers at 3 state-owned 
cotton mills, age 16-29 
years) 

3 J 1 year FEV1 at all visits "Symptomatic" -
reporting cough wt 
phlegm or dry cough 
at 3 month visit 

Marginal model 
with generalized 
estimating 
equations 

Sherrill (27) 1993 633 males and 891 females 
(>55yrs) from the Tuscon 
Study of Airways 
Obstructive Disease 

6 6 0-10 years FEV1, F V C , 
FEV1/FVC ratio 
from all visits 

Respiratory 
symptoms at each 
visit 

Mixed random 
effects model 

Symptoms as a Binary Outcome Variables: 
Pahwa (28) 1998 1848 asymptomatic male 

grain elevator workers 
5 5 9-15 years Onset of new 

wheeze 
Lung function, 
smoking, years in 
industry 

Survival analysis 

Carta (11) 1996 1078 Sardinian coal miners 7 7 11 years Onset of 
respiratory 
symptoms 

Exposure to coal dust Logistic 
regression 

Kongerud (7) 1991 1013 aluminum potroom 
workers 

2 2 4 years Development of 
respiratory 
symptoms 

Smoking, fluoride 
exposure 

Turnbull 
algorithm (similar 
to proportional 
hazards model) 

Boutet (29) 2006 769 apprentices 3 3 5 years Onset of 
respiratory 
symptoms 

Airway hyper-
responsiveness 

Logistic 
regression 

Gunnbjorasdottir 
(30) 

2006 16,190 adults, age 20-44 
years at baseline 

2 2 5-11 years Change in 
respiratory 
symptoms 

Self-reported indoor 
dampness 

Logistic 
regression 



Table 1 Cont'd 

Lead Author Year Study Population 
# of Visits Follow-up 

time Outcome 
Predictor(s) of 
Interest Analysis Method Lead Author Year Study Population Total #Used 

Follow-up 
time Outcome 

Predictor(s) of 
Interest Analysis Method 

Symptoms as a Score, Scale or other Outcome Variable: 

Mahler (31) 1995 76 male COPD patients 
recruited from outpatient 
clinics 

5 5 2 years Transition 
dyspnea index 
(TDI) 

Lung function 
(FEV1, FVC, 
inspiratory pressure) 

ANCOVA 

Lareau (32) 1999 34 male subjects with 
COPD 

5 5 5.3 years 
(mean) 

Change in dyspnea score and lung.function 
measures over time 

Linear correlation 

Hodgev (33) 2004 19 male COPD patients 2 2 at least 2 
years 

Change in dyspnea score and lung function 
measures over time 

Linear correlation 

Wu (34) 2004 764 workers from a 
steelworks surveillance 
program in Australia 

6 6 4.6 years 
(mean) 

Rate of symptom 
occurrence 

Age, smoking, work 
location, work 
duration 

Binomial logistic 
regression 



Several hundred abstracts were located and reviewed. The process was challenging 

because most longitudinal studies reported on symptoms but very few actually used 

multiple measures of symptoms in the analysis portion of the research. Adding to the 

challenge was the wide variety of terminology used to describe longitudinal studies of 

respiratory symptoms mentioned previously. 

The majority of excluded literature was longitudinal studies of respiratory disease that 

actually did measure symptoms at multiple time points, but only used symptoms 

measured at one time point in the analysis. 

Several articles were located that studied respiratory symptoms using daily diaries. 

These articles were excluded because they were from panel studies and the time series 

analysis techniques employed are not relevant for the repeated measures distributed over 

a longer period of time, such as in occupational studies of respiratory health. 

Most literature that reported on respiratory symptoms over time used symptom 

reporting at multiple time points as a predictor of lung function (18-23, 25-27) or 

investigated the correlation between symptom change and lung function (32, 33). Others 

attempted to use the pattern of respiratory symptom change as an outcome (7, 11, 28-30). 

With the exception of three studies (31-33), all other studies used the ATS questionnaire 

or a modified version of it (or its predecessors) to measure respiratory symptoms. 

Among studies using respiratory symptom change as a predictor of lung function, five 

studies categorized symptom change over time into patterns of change and used these 

patterns as the predictor variable (18-22). Each of these studies categorized symptom 

responses at two or three time points into four patterns: never reporting a symptom, 

always reporting a symptom (persistent), developing a new symptom and resolution 

(remission) of a symptom. The range of prevalence of these respiratory symptom 

patterns in previous studies is shown in Table 2. 
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Table 2 Range of respiratory symptom pattern frequencies reported in six previous 
studies* 

Symptom Category of Change over time Mean Min Max 
Cough Never 73.6 56 84.6 

Resolved (remission) 9.4 4.3 16.5 
New (development) 9.9 5.1 20.2 
Persistent 7.2 2.1 12 

Phlegm Never 70.3 47.5 83.4 
Resolved (remission) 10.2 4.8 16.9 
New (development) 10.8 3.8 21.4 
Persistent 8.8 2.9 20 

Wheeze Never 74.6 50.9 93.9 
Resolved (remission) 7.1 1.7 11 
New (development) 9.8 3.6 19.7 
Persistent 8.5 0.9 22 

Dyspnea Never 74.5 50.4 89.9 
Resolved (remission) 7.0 2.4 14 
New (development) 10.9 3.6 20.7 
Persistent 7.6 1.8 16.3 

*(18-23) 

2.2.1 Symptoms as a Predictor Variable 

An early study by Sharp and colleagues (18) explored the reversibility of respiratory 

symptoms, the incidence of new respiratory symptoms and the relationships between 

progression/regression of respiratory symptoms and lung function using data from a 

cohort of electric company workers (18). Using the four categories described previously 

(never, persistent, developed new, remission) Sharp et al grouped the workers for each 

symptom of interest and then related symptom change to categories of lung function 

change over time (worsened lung function, improved lung function and no change in lung 

function). Results from this analysis indicated that subjects without respiratory 

symptoms were more likely to have observable improvements in their lung function at 

follow-up. At the time of publication (1973) Sharp et al did not have access to the 

advanced modeling techniques available today and their analysis was constrained by this 

fact. 

8 



Jedrychowski et al (19) published on respiratory symptoms using data from the 

Cracow prospective study on chronic obstructive lung disease. The Cracow study was a 

random sample of the population in Cracow, Poland and consisted of three survey visits: 

1968, 1973 and 1981. 

Jedrychowski et al (19) categorized subjects based on their responses to the Medical 

Research Questionnaire respiratory symptom responses at the first two survey dates. 

Using these two responses resulted in the four categories mentioned previously (never, 

persistent, developed new and remission). 

A multiple linear regression analysis using lung function as the outcome and the 

symptom category as the primary independent variable was completed (19). Two 

iterations of the analysis were completed, one using the decline in lung function between 

the first two visits (five years), and one using lung function from the first and third survey 

(thirteen years). 

The results from the analyses including men only, showed that for chronic wheezing, 

shortness of breath and chronic cough the effect of reporting a persistent symptom on 

FEV1 decline is equal to smoking 40-50 cigarettes daily (19). This finding was not 

consistent in the female analysis. 

Unlike most other publications in this area, Jedrychowski et al (19) did not use linear 

regression of the FEV1 change over time as the outcome variable in the analyses, instead 

they calculated a metric they refer to as the FEV1 decrease index (FDI). The FDI metric 

does not account for the time period elapsed since the last visit date. The FDI 

measurement is the absolute change in FEV1 divided by the sum of both FEV1 

measurements (from the two dates in question). This metric does not appear to have been 

used in any other publications. 

Jaakkola et al (20) published on the relationship between respiratory symptoms and 

pulmonary function decline over 8 years in a population of 391 young adults recruited 

from Montreal, Canada. 

Jaakkola et al (20) used least squares regression to calculate the decline in FEV1 

during follow-up. A l l available measurements from an individual were used to calculate 
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the slope of FEV1 decline. The calculated FEV1 decline per year was used as the 

outcome variable in the analyses involving respiratory symptoms. 

The authors categorized subjects based on their response to the ATS questionnaire at 

baseline and at the final follow-up visit, ignoring the visits in between (20). A symptom 

was new if "it was absent at baseline but present at follow-up"(20). A symptom was 

classified as persistent i f "it was present at both examinations", and "remission of a 

symptom was defined i f it was present at baseline but not present" at the final follow-up 

visits. Subjects were categorized as never having a symptom if the symptom was not 

reported at either baseline or follow-up. 

Using the constructed symptom category as an independent variable, Jaakkola et al 

constructed a multiple linear regression model with FEV1 annual decline as the outcome 

variable and the category of symptom change over time as a predictor variable (20). 

Results indicated that particularly in non-smokers, development of new symptoms was 

associated with an increased loss of FEV1 during follow-up. Among former and current 

smokers the development of new symptoms as well as the persistence of symptoms was 

generally associated with more rapid FEV1 decline. These trends are of particular 

interest because the population was young (age 18-40 at baseline) and healthy, 

highlighting the importance of symptoms in relation to FEV1 decline even at an early 

age. 

Although Jaakkola et al used a fixed effects regression model, they did attempt to 

incorporate the longitudinal changes in both symptoms (categories of change) and 

smoking behavior into their smoking variable used in the model (20). The smoking 

variable classified persistent and new smokers as "smokers", ex-smokers either at 

baseline or follow-up as "ex-smokers" and never smokers at both baseline and follow-up 

were classified as "never smokers". This accounts for a portion of the longitudinal 

changes in smoking behavior but does not take into account the timing of a change in 

smoking behavior. 

Brodkin et al (21) studied respiratory symptoms in a cohort of men enrolled in the 

Seattle Asbestos Lung Cancer Chemoprevention Trial. Symptoms were classified based 

on responses at baseline and most recent follow-up, again ignoring the visits in between, 
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resulting in the same categories as Jaakkola et al (20): asymptomatic, persistent, 

development and resolution (remission). 

The annual rate of decline in both FEV1 and F V C were used as outcome variables in 

separate fixed effects multiple linear regression analyses controlling for smoking, age, 

height, race, baseline spirometry measurements and asbestos exposure. From these 

analyses Brodkin et al found that development of new symptoms (compared with 

consistent symptom reporting or resolution of symptoms) over the follow-up period was 

strongly associated with decrease in pulmonary function (21). 

The men enrolled in this cohort attended annual follow-up visits where they reported 

on their symptoms, but only the first and last visits were used in analysis possibly 

preventing detection of annual changes in symptoms (21). 

Because Brodkin et al (21) incorporated the longitudinal nature of the data into the 

outcome and predictor variables (annual decline as outcome, longitudinal pattern of 

symptom change as predictor) their model did not allow for time-varying covariates. For 

example, changes in smoking or body weight during follow-up were not accounted for. 

For these variables Brodkin et al used the baseline values in the model. 

In 1990, Krzyzanowski et al (22) published the first of three analyses of respiratory 

symptoms using the Cracow and Tuscon longitudinal studies of obstructive lung disease 

data. The goal of this first paper was to determine whether the longitudinal changes in 

respiratory symptoms were related to the baseline lung function values or the decline in 

lung function over time, and whether these relationships were consistent between 

populations. 

A l l subjects with three complete visits were included in the analysis (22). Subjects' 

pattern of respiratory symptoms were classified based on their reported symptoms (at all 

three visits) into the four categories previously described (never, persistent, new onset, 

remission) and this variable was used as a dummy variable in a multiple linear regression. 

Theoretically, subjects could report a pattern of Yes/No/Yes or No/Yes/No for a 

symptom at three visits. In order to have only four symptom change categories 

Krzyzanowski et al decided to group the Yes/No/Yes subjects in the Remission group 
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and the No/Yes/No subjects in the Persistent group. The baseline, final and annual 

decline in lung function were the outcome variables in three separate models. 

Krzyzanowski et al (22) showed that symptom change over time is related to lung 

function, and that the relationship is consistent across two different populations. In 

particular the presence of any dyspnea or asthma syndrome (two of wheeze, attacks of 

dyspnea or asthma diagnosis) were related to both lower FEV1 at baseline and FEV1 

annual decline. 

Krzyzanowski used the Tuscon and Cracow data for two other publications on 

respiratory symptoms and lung function (23, 24), these analyses were limited to subjects 

with at least two visits and subjects who reported smoking at baseline and completed two 

visits, respectively. In the 1992 paper (23), subjects were categorized based on their 

symptoms reported at baseline and most recent follow-up. A dummy variable describing 

symptom change over time was used as a variable in a log linear model along with the 

covariates age, smoking, gender and city. Briefly, a log linear model is the equivalent of 

a multiple linear regression for categorical variables, and no one variable is considered 

the outcome; all variables are referred to as response variables (35). Covariates with 

significant effects (main and interaction) were then used in logistic regression models to 

estimate odds ratios for the symptom patterns (yes/no). Models indicated that current 

smokers were more likely to report persistent or incident symptoms and lifetime never 

smokers were more likely to report remission of symptoms. In two separate logistic 

regression models, Krzyzanowski compared persistent and incident symptoms to the 

group with no symptoms, and the group with resolved symptoms to the persistent 

symptoms group. This subsetting of the population to facilitate a logistic regression 

results in an exclusion of subjects and may lead to biased results. 

In the 1993 Krzyzanowski publication (24) log linear models were used again, this 

time to determine the relationship between smoking cessation and other covariates. The 

significant effects were input into a logistic regression model to explain the effect of 

smoking cessation or persistence on the incidence or persistence of symptoms. Results 

indicated that persistent smokers have higher rates of persistent and incident symptoms 

compared to quitters. 
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Christiani et al (25) studied Chinese cotton textile workers over a 15-year period (1981 

- 1996); silk textile workers were used as a control group. Respiratory questionnaires 

and pulmonary function tests were completed at four visits during the follow-up period. 

Respiratory symptoms reported on the questionnaires were used to construct two 

different types of symptom variables. The first variable described the number of times a 

subject reported the symptom during follow-up; this variable was a scale variable with 

possible values from zero to 4. The second symptom variable was a binary variable that 

described whether a subject ever reported a symptom. 

These symptom variables were used in separate longitudinal linear regression models 

as predictors of change in the lung function parameters FEV1 and F V C (25). Christiani 

et al used generalized estimating equations (GEE) to estimate the parameters in their 

regression model. Results from the analyses indicated that both cotton and silk workers 

who consistently reported respiratory symptoms at work (at three or four of the test visits) 

had significantly greater F E V i decline during the follow-up period (25). 

In 2002, Wang et al (26) published a study of newly hired textile workers in Shanghai, 

China. Occupational exposure, lung function and respiratory symptoms were measured 

at baseline (before starting work) and at two follow-up surveys (one at three months and 

one at one year). As in Christiani (2001) (25), Wang et al (26) used longitudinal 

regression models (with GEE) to model the predictors of a change in lung function over 

follow-up. Results indicated that "symptomatic" workers, those who reported cough with 

phlegm at the. three month follow-up, had greater loss of lung function. 

The only publication to use a random effects to model respiratory symptoms at 

multiple points was published by Sherrill et al (27) in 1993. Sherrill and colleagues used 

a mixed effects model to describe the relationship between respiratory symptoms, 

smoking and lung function in the Tuscon cohort. There were six complete survey visits 

available in the Tuscon data and with the mixed effects model all six data points could be 

included (27) (unlike the other analyses of the same data that used only two or three visits 

(22-24)). In addition, time varying covariates (variables that are expected to change over 

time: symptoms, smoking, weight, job title) can be included for each visit date. Their 

model used lung function measures (FEVI, F V C and F E V I / F V C as three separate 
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models) as the outcome variable. Results from the models indicated that subjects 

reporting wheeze and dyspnea had lower lung function parameters (significant in all three 

models). 

2.2.2 Symptoms as an Outcome Variable 

Several studies have used a measure of respiratory symptoms as an outcome in 

analyses, this is an important difference because there may be factors not traditionally 

considered in studies of lung function that are relevant to respiratory symptoms. In the 

literature there were many different metrics for modeling respiratory symptoms as an 

outcome: the onset of new symptoms using hazard models (7, 28) or logistic regression 

(11, 29), directional change in symptom using logistic regression (30), the rate of 

symptom incidence or prevalence using binomial logistic regression (34) and a 

continuous dyspnea scale in a linear regression (31). 

2.2.2.1 Binary Outcomes 

Pahwa et al (28), Carta (11), Kongerud (7) and Boutet (29) all studied the 

development or onset of respiratory symptoms. Pahwa et al used Cox proportional 

hazards models, Kongerud et al (7) used the Turnbull algorithm (similar to Cox 

proportional hazards) and Carta and Boutet (11, 29) used logistic regression. 

Pahwa et al reported on risk factors for developing new wheeze, using data from a 

health surveillance program among Canadian grain elevator workers (28). The 

surveillance program consisted of pulmonary function tests, respiratory symptom 

questionnaires and chest x-rays at three-year intervals. Surveillance began in 1978 and 

continued until 1990-93 (cycle 5); due to incomplete data, cycle 2 (1981) was considered 

baseline in the analysis. The analysis by Pahwa in 1998 (28) included only individuals 

who were asymptomatic with normal chest x-ray at baseline. The outcome of interest 

was the development of new wheeze at any of the follow-up cycles. Survival analysis 

(Cox's proportional hazards) was used to identify the factors predictive of the onset of 

new wheeze during follow-up. The model adjusted for age, height and smoking and 

included years of exposure (categorical variable) and FEV1/FVC (at baseline) ratio as 

possible predictors of new wheeze. 

14 



Pahwa et al had data on subjects for at least two visits and as many as four visits, 

subjects were followed at each visit attended and follow-up ended at the last visit 

attended or at the time wheeze was first reported, whichever occurred first. Despite the 

ability to use all of the symptom data (at all visits) the survival analysis method did not 

allow for time varying covariates to be included, instead Pahwa et al used the repeated 

measures of smoking to influence the creation of a single smoking variable accounting 

for changes in smoking behavior between baseline and last follow-up. 

Results indicated that risk factors for the development of wheeze during follow-up 

were current smoking and decreased FEVI /FVC ratio at baseline. This seems to indicate 

that in this population of grain elevator workers, decreased pulmonary function measures 

preceded the development of wheeze. 

Kongerud et al (7) studied the development of dyspnea and wheeze in a group of 

aluminum pot room workers who were asymptomatic at baseline. The Turnbull 

algorithm, similar to a Cox proportional hazard model was used to model the probability 

of developing wheeze and dyspnea. Risk factors considered were sex, age, allergy, 

workplace exposure to fluorides and smoking metrics. Results indicated that fluoride 

exposure and smoking were related to the development of wheeze and dyspnea. 

Both Carta and Boutet (11, 29) used logistic regression to compare subjects who 

developed symptoms to asymptomatic subjects. Carta (11) studied the onset of dyspnea, 

chronic bronchitis, wheeze and "any symptom" in separate logistic models. Results 

indicated that workers in higher quartiles of exposure were more likely to develop 

symptoms. Boutet (29) investigated the predictors of reporting 2 or more symptoms at 

any time during follow-up; these subjects were classified as symptomatic and compared 

to asymptomatic subjects. Logistic regression results showed that symptomatic subjects 

were more likely to have bronchial hyper-responsiveness at baseline and also to have a 

personal history of rhinitis and a family history of asthma. 

Gunnbjornsdottir et al (30) reported on data from the Respiratory Health in Northern 

Europe (RHINE) study, a follow-up on subjects who participated in the European 

Respiratory Health Study (ECRHS). Subjects were originally selected at random from 

the population as part of the ECRHS; the RHINE study then focused on ECRHS subjects 
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living in Iceland, Norway and Sweden. Subjects completed a postal questionnaire as part 

of the ECRHS and then completed a follow-up questionnaire as part of the RHINE study. 

The questionnaire contained questions on respiratory symptoms and indoor dampness 

among other factors (i.e. smoking, body mass index, socioeconomic status). 

As in the case of Jaakkola (20) and Jedrychowski (19), Gunnbjornsdottir(30) 

categorized subjects symptom pattern over time based on their responses to the two 

questionnaires. This resulted in the same four patterns of symptom change as in previous 

papers: consistent symptoms, onset (new) symptoms, remission (resolution) of symptoms 

and symptomatic individuals. Subjects were also categorized as living in a 'damp' home 

or in a 'dry' home based on their questionnaire responses. Gunnbjornsdottir et al were 

interested in the association between living in a damp home and the pattern of respiratory 

symptom change over time. To answer this research question the authors subsetted the 

population based on the pattern of symptom change over time and ran two separate 

logistic regression models. First, the effect of a damp home on the onset of respiratory 

symptoms was modeled, with subjects experiencing a symptom onset being compared to 

asymptomatic subjects. Second, the effect of a damp home on the remission of 

symptoms was explored by comparing subjects experiencing a resolution (remission) of 

symptoms to subjects with persistent symptoms. 

The results of the two logistic regression models indicated that living in a damp home 

was a risk factor for developing new symptoms and also that living in a damp home 

prevented symptom resolution (30). The separate models support the same conclusion: 

that living in a damp home increases the risk of symptom development and decreases the 

chance of symptom resolution. 

2.2.2.2 Scores, Scales and other Outcomes 

Mahler et al (1995) studied the longitudinal changes in dyspnea, general health and 

lung function in a cohort of COPD patients. A repeated measures analysis of covariance 

model was used to model dyspnea as a continuous dependent variable. Dyspnea was 

measured by a clinical tool that resulted in a dyspnea scale that could be considered as a 

continuous variable. Repeated measures A N C O V A analysis is a technique for 

accounting for the modifying effects of categorical independent variables on interval 
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dependent variables (in this case the dyspnea score) (36). The output from a repeated 

measure A N C O V A analysis can be interpreted in a similar way as regression output. 

Results from Mahler et al (31) indicated that patients with better lung function also had 

better dyspnea scores. 

Another method for measuring the association between lung function and symptoms 

when symptoms are measured on a continuous scale is to calculate a linear correlation 

between the two variables. Lareau (32) and Hodgev (33) reported on the correlation 

between the longitudinal change in dyspnea and annual lung function decline. First an 

individual linear regression was run for each subject on their repeated lung function and 

their repeated dyspnea measurements. The calculated coefficients from each regression 

(lung function and dyspnea) were used as input for a linear correlation between dyspnea 

change and lung function change over time. 

Results from Hodgev (33) indicated that dyspnea scores did decrease over time, and 

that this decrease was significantly correlated with FEVI decline over the same period. 

Conversely, Lareau et al (32) did not observe a change in dyspnea during the study period 

and as a result found no correlation between dyspnea and F E V I change over time. Both 

study populations were comprised of COPD patients. 

Wu (34) used data from a surveillance program on steelworkers to study the rate of 

positive symptom responses using a binomial logistic regression. The outcome in this 

model was the total number of positive responses divided by the total number of visits (a 

rate). Because of how the rate outcome variable was constructed, Wu was able to include 

even subjects who had only one visit in the analysis. Included covariates were age, 

smoking, work location and work duration. Results indicated that working near the coke 

ovens (exposure source) was a risk factor for reporting a higher rate of symptoms. 

2.2.3 Strengths & Limitations of Previous Studies 

2.2.3.1 Limitations 

Previous respiratory epidemiology studies have made many attempts to deal with the 

longitudinal data they have collected, but these approaches have not always been ideal. 

The use of coefficient estimates as outcome variables, the categorization of symptoms 
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over time, the exclusion of intermediate data points and the subsetting of datasets to ease 

analyses have all been reported and all have the potential to bias results. 

Many respiratory epidemiology studies use the decline in lung function over time as 

an outcome in their analyses, and the studies involving symptoms are no different (19-

22). This decline is usually the estimated coefficient from an individual linear regression 

of lung function on time. Other studies have also used this estimated coefficient as a 

variable in linear correlation between two variables of interest (32, 33). By using this 

estimated coefficient researchers are ignoring the error associated with the estimated 

coefficient. Using all of the lung function measurements and applying a mixed effects or 

longitudinal regression model would better address the change over time. 

When considering symptom change over time, it is ideal to have as many 

measurements as possible. In six of the reviewed papers there was more respiratory 

symptom data available than was used in the analyses (19-24). In these papers, subjects 

were generally categorized based on their symptom responses at two time points, often 

the first and last visit, and all intermediate responses were ignored. Theoretically this 

means that someone could report no symptoms at the first and last visit, but have reported 

symptoms at every intermediate visit, and they would be classified as asymptomatic for 

the entire follow-up. 

Conversely, in the 1990 study by Krzyzanowski (22), data from three visits was used 

to categorize subjects. Using three visits resulted in symptom response patterns 

(Yes/No/Yes, and No/Yes/Yes) that did not fit easily into the previously reported Never, 

New, Persistent and Remission symptom categories. The authors decided to put 

Yes/No/Yes subjects in the Persistent group and the No/Yes/No subjects in the Remission 

group. This decision may bias the results, but the magnitude of bias would be dependent 

on the number of subjects reporting these patterns, which was not reported. 

When the number of repeated visits goes beyond two, the number of possible patterns 

increases exponentially. Three visits and a binary outcome results in eight possible 

patterns, four visits results in 16 possible patterns. Krzyzanowski (22) avoided the 

problem of having numerous categories of symptom change by forcing some categories 

into the four original categories reported in the literature. 
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In the study by Gunnbjornsdottir(30) the data was subsetted to allow for two separate 

logistic regression models to be run. In this case, the authors subsetted the data by 

symptom category. In the subsequent logistic regression models New symptoms were 

• compared to Never symptoms, and Remission of symptoms were compared to Persistent 

symptoms. By stratifying the study population in order to complete logistic regression, 

they may have biased their results, or at least limited the applicability of their results. 

Logistic regression is based on the assumption that the probabilities of the two possible 

outcomes sum to one in the population. In the case of splitting the population, the 

probabilities of the two outcomes (in each group) do indeed sum to one, but with respect 

to the original population, they do not. 

2.2.3.2 Strengths 

Despite the limitations of previous studies of longitudinal respiratory symptoms, there 

are also examples of 'better' approaches to addressing the longitudinal nature of the 

symptom data. Some studies have constructed new variables using information from 

repeated measures, used more appropriate statistical methods with lung function data 

(generalized estimating equations and random effects models) and considered novel 

symptom outcomes. 

When constructing single variables to describe behaviors like smoking, studies have 

taken the repeated measures into account (20). For example, if a subject begins as a 

smoker but then quit during follow-up they are classified as a quitter or ex-smoker. In 

contrast, i f the authors had used smoking status at baseline, the same subject would have 

been categorized as a smoker (21). 

Christiani (25) and Wang (26) both used generalized estimating equations (GEE) (37) 

to estimate the parameters of marginal regression models. GEE is a method for 

estimating parameters in models with correlated data, as in the case of repeated measure 

on individuals. A marginal model with GEE handles longitudinal data, accounts for the 

correlation between repeated measures and allow for time varying covariates. But GEE 

requires the researcher to explicitly specify the structure of the correlation between 

repeated measures (i.e. is the correlation constant, or does it decrease over time etc.). The 

main benefit of GEE is that the estimation process produces unbiased coefficients 

19 



estimates even when the researchers assumptions about the correlation structure are 

incorrect. 

Perhaps even better than a marginal model with GEE, is the approach of Sherrill et al 

(27) who applied random effects models to their study of lung function. Random effects 

models do not require an explicit assumption about the correlation structure between 

repeated measures. Random effects models also, as the name implies, allow the inclusion 

of random effects where the effect of the random variable on the outcome is estimated for 

each subject (in a longitudinal model). This approach is fairly new to the area of 

respiratory epidemiology and does not appear to have been used with symptoms as the 

outcome. 

The approach of Wu et al (34) is also interesting because it makes use of all available 

data by calculating a rate of symptom reporting for each subject (# of symptom reported/ 

possible # of symptoms reported). This approach ensures that you are considering the 

individual rather than only the population prevalence, and results in a rate outcome for 

each subject in the dataset (34). If the pattern of symptoms is seen to be unimportant or 

perhaps too variable, using the rate as an outcome is a good alternative because the 

estimated coefficients will provide insight into the predictors of reporting symptoms 

more often. 

Pahwa (28), Kongerud (7), Carta (11) and Boutet all used symptom development as 

the outcome in their analysis. Subjects were limited to asymptomatic individuals and 

followed for the onset of symptoms. These results can only inform about the 

development of new symptoms and not the resolution or persistence of symptoms, which 

may also be important symptom changes with respect to respiratory health. 

2.3 L i terature R e v i e w : Sta t is t i ca l M e t h o d s for Long i t ud ina l 
Data A n a l y s i s 

Two SAS® procedures that can model repeated, correlated, binary data are reviewed 

and evaluated in this thesis: 

• SAS® Trajectory Procedure (Proc Traj) 

• SAS® Generalized Linear Mixed Model Procedure (Proc Glimmix) 
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Both of these procedures run on base SAS® v9.1, but are not included in the shipped 

program. They must be downloaded from the web, Proc Traj from the developer's 

website 1 and Proc Glimmix from the SAS® download centre2. 

2.3.1 SAS® Proc Traj 

SAS® Proc Traj is a discrete mixture modeling procedure that is designed to model 

multiple patterns of change over time within a population (5). Bobby Jones, Daniel 

Nagin and Kathryn Roeder, from Carnegie Melon University, designed Proc Traj (5). 

Unlike a traditional growth curve or regression model, which models only one group (the 

population mean), a mixture model identifies multiple distinct subgroups within the 

population and models the mean of each group. As in the case of the group mean in a 

traditional model, Proc Traj estimates an intercept and regression coefficients for each 

group in the mixture model. In comparison to the random/mixed effects (see Glimmix 

below), Proc Traj does not provide any estimates of individual deviation from the group 

mean. Perhaps, most importantly, Proc Traj models linear and non-linear trajectories of 

change. This means that research questions relating to the pattern of change over time in 

the outcome variable can be explored using this procedure. 

Mixture models may be considered when the researcher expects there to be multiple 

trajectories over time in the population based on substantive knowledge, or perhaps, 

when there is little knowledge about how a certain outcome changes over time and one 

wants to model the unobserved heterogeneity in the data (5). 

Proc Traj is capable of modeling longitudinal data with a binomial distribution 

(dichotomous outcomes), Poisson distribution (count outcomes) and normally distributed 

censored outcomes (a scale variable). There are a series of steps in the process of fitting 

a model using Proc Traj; these steps and other tips for using Proc Traj are explored in 

Appendix A. 

www. andrew. emu. edu/user/bjones/ 
2 www.support.sas.com/rnd/app/'da'glimmix.html 
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Proc Traj has been almost exclusively applied in the social sciences, particularly in the 

criminology and psychology literature. Although the research using Proc Traj is not 

extensive, most have used Proc Traj to model count data (i.e. number of criminal 

conviction) or scale data (i.e. psychometric scale data - normally distributed but censored 

at zero). Fewer studies have used Proc Traj to model dichotomous outcomes. 

In the original Proc Traj publication (5) Jones, Nagin and Roeder briefly describe an 

application of the logit Proc Traj model using the Cambridge Study of Delinquent 

Development data. In this example, the logit model was used to model the 

presence/absence of offenses, rather than a count of offenses. The data support a three 

group model where the majority (88%) of the subjects follow a trajectory of never 

offending. The remainder of the population follows either a high or low prevalence of 

offending during adolescence. 

Mustillo et al (38) used a Proc Traj logit model to describe the presence/absence of 

obesity in a study of the development of psychiatric disorder in rural youth. Mustillo et 

al applied the SAS® Trajectory procedure because they "suspected that individuals do 

not vary continuously on obesity, but rather that there are a distinct number of obesity 

related trajectories". The logit model was used because they modeled the 

presence/absence of obesity, rather than a scale or continuous measure of obesity. The 

dependent variable was obesity (yes/no) and the predictor variable was age. The data 

supported a best fit model with four groups: one with children who were never/rarely 

obese, a second with children who developed obesity over time, a third with children who 

were chronically obese and fourth group with children who moved from obese to normal 

during adolescence. Mustillo and colleagues used the results from the basic Proc Traj 

logit model (four groups with probability of membership in each group) for further 

analyses; these capacities of Proc.Traj will be described further in the Chapter 3 and 

Appendix A. 
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2.3.2 SAS® Proc Gl immix 

The Glimmix procedure was recently added to the SAS® platform in June 2006. Prior 

to this, researchers interested in these modeling techniques had to run a Glimmix macro 

embedded in the SAS® linear mixed models procedure (Proc Mixed). 

Proc Glimmix is a SAS® procedure for constructing generalized linear models (39). 

Proc Glimmix is capable of running general and generalized linear models with and 

without random effects where the outcome has a normal, Poisson or binary distribution. 

Most important for this work is the capability of Proc Glimmix to model generalized 

linear mixed models (including random effects). Random effects are variables for which 

we are not particularly concerned with the fixed effect of each category, but we are 

interested in the variability between categories. 

Proc Glimmix estimates the model parameters (intercept, regression coefficients) as 

well as the subject specific deviation from the parameters for each identified random 

effect. In comparison to Proc Traj, Proc Glimmix and generalized linear models in 

general, should be used when the trajectory of change is expected to be similar 

throughout the population, and also when the research question may require the inclusion 

of random effects. 

Searches for Glimmix in databases of peer-reviewed literature produced few results. 

Web of Science located fifteen publications, while PubMed produced only nine - eight of 

which were common between the two databases. A further search using Google Scholar 

produced more results, likely due to two reasons: one, Google Scholar searches outside 

the medical and health science research searched by PubMed and Web of Science, and 

second because Google Scholar appears to be able to search the full text of articles rather 

than simply the abstract text. A l l but one of the publications located used the macro 

predecessor of Proc Glimmix. 

Redpath et al (40) used the new Proc Glimmix procedure to model prey items 

delivered to the nests of harriers (a type of bird). In the model the outcome is a 

proportion, the proportion of prey items delivered that are considered large divided by the 

total number of prey item delivered to the nest. The logit link function in Proc Glimmix 

was used to apply the binomial distribution to the data and model the data. 
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Of particular interest to this thesis because of its research topic, is an article by 

Mendell et al (41) which investigated the relationship between the ventilation system in 

office buildings and the respiratory symptoms reported by the building occupants. 

Mendel and colleagues used the Glimmix macro and Proc Logistic in SAS® to construct 

a generalized mixed logistic regression model (logit link function). 

In the mixed logistic model, the outcome was "work related symptom" (models were 

run for each symptom of interest) and the explanatory variables were related to the 

ventilation the office building where the subject worked (41). The random effect was the 

office building, so that the correlation between multiple measures of work related 

symptoms within the same office building were accounted for. 

Mendell et al (41) also tested the same models using Proc Logistic alone, without any 

random effects (a fixed effect logistic regression) and compared the results to the mixed 

logistic regression models. As they expected, the fixed effect and mixed effect model 

produced similar point estimates for the model parameters, but with wider confidence 

intervals in the mixed effects model. 
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3 Results I: Evaluation of Proc Traj and Proc Glimmix for 

use in Respiratory Epidemiology 

3.1 Int roduct ion 
As discussed in Chapter 2, repeated measures of respiratory symptoms are rarely analyzed 

and those studies that have attempted to investigate the pattern of symptom change over time 

have tended to use categorization techniques. The next section of this thesis will evaluate 

two statistical methods that are potentially useful for analyzing repeated respiratory symptom 

data: SAS® Proc Traj and SAS® Proc Glimmix. These two methods permit the study of 

repeated binary symptom data as the outcome and the inclusion of time-varying covariates. 

Both SAS® Proc Traj and SAS® Proc Glimmix will be evaluated based on their 

applicability to six basic respiratory symptom research questions: 

1. What factors predict reporting a respiratory symptom? 

2. Do respiratory symptoms change over time? 

3. What are the patterns of respiratory symptom change over time? 

4. What factors predict respiratory symptom change over time? 

5. Do different respiratory symptoms (e.g. cough and phlegm) change with 
similar/different patterns over time? 

6. How does event occurrence affect the pattern of respiratory symptom change over 
time? 

The ability of both Proc Glimmix and Proc Traj to answer the each question is outlined. 

In addition, the output generated from each model is briefly described and the relative 

strengths and limitations are discussed. For the purposes of comparison to a more common 

approach, and because simplicity is sometimes the best option, fixed effects logistic 

regression is compared and contrasted in some situations. 

In addition to the information in this chapter, Appendix A is provided as a user guide for 

both Proc Traj and Proc Glimmix. Where necessary, reference to the Appendix is made, but 

information is also duplicated for the purposes of understanding. 
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3.2 O v e r v i e w of the M e t h o d s 

3.2.1 SAS® Proc Gl immix: General ized Linear Mixed Models 

By definition, a mixed model contains both fixed and random effects. Fixed effects are 

variables that are of particular interest to the research question, and for which all levels of 

interest are represented in the population (42). Random effects are generally variables for 

which only a sample of possible values is included and the interest is in the variability 

between levels and not in the particular effect of each level on the outcome (42). For 

example, in a longitudinal model the subject is specified as a random effect because we are 

not interested in the particular effect of each subject on the outcome, but we are interested in 

estimating the variability between individuals. 

In a longitudinal mixed effects regression model the autocorrelation between repeated 

measures on individual subjects is accounted for, and one overall group mean is modeled. A 

mixed effect model runs in two stages, first the group mean is modeled and second the 

variation around this group mean is modeled for each subject. The output contains 

regression coefficients for the fixed effects and an estimate of the overall measure of the 

variability around the mean for each random variable. 

When applying mixed effects regression in a longitudinal model, subject is specified as a 

random effect. The mixed model will account for the correlation between the repeated 

measures on each subject. When the intercept is specified as a random variable, the model is 

called a random intercept model. If variables in the model are specified as random variables, 

the model is referred to as a random coefficient model. 

The SAS® platform has three procedures capable of running mixed models: Proc Mixed, 

Proc Glimmix, and Proc Nlmixed. Proc Mixed runs linear mixed model with a continuous 

normally distributed outcome variable. Proc Nlmixed runs non-linear mixed models for 

outcome variables belonging to a wide variety of distributions. And thirdly, Proc Glimmix 

runs generalized linear mixed models for both continuous and discrete outcome variables 

(39). 

Longitudinal studies of respiratory symptoms result in repeated binary (yes/no) data. The 

binary nature of the outcome variable means that Proc Mixed cannot be used. Proc Nlmixed 

26 



is designed for advanced non-linear mixed models and is programmatically complex. Proc 

Glimmix is suitable for constructing a mixed logistic regression model, also called a 

generalized linear mixed model with logit link function. 

Proc Glimmix is a fast, flexible procedure capable of running linear models (fixed 

effects), generalized linear models (fixed effects), linear mixed models (fixed and random 

effects) as well as generalized linear mixed models (fixed and random effects). The focus of 

Proc Glimmix for this research is the generalized linear mixed model capability. Proc 

Glimmix does not ship with the SAS® v.9, but the add-on and the documentation are both 

available for download on the SAS® support website3. 

Proc Glimmix uses a link function to approximately linearize the model and then estimate 

the parameters as i f it was a general linear model. Generalized linear mixed models with 

binary outcomes can result in biased parameter estimates when the variance components are 

large. This can happen when the number of subjects is small, the number of repetitions on 

each subject is low and the repeated measures are highly correlated (43). This discussion is 

beyond the scope of this thesis, but researchers should consult a statistician for advice in 

these circumstances (44). The potential for biased estimates in the Proc Glimmix models is 

one of the major limitations of the procedure, and researchers should keep this in mind when 

considering its application. 

Users of Proc Glimmix should be aware that the modeling procedure makes an 

assumption that the random effect is normally distributed with mean equal to zero. This 

means that the estimated deviations for each individual from the estimated mean parameters 

(intercept and coefficients) will belong to a normal distribution. 

When modeling using Proc Glimmix, the link function must be specified in the model 

statement (see Appendix A). The link function is what communicates the type of data you 

are modeling. With reference to respiratory symptoms (yes/no) the link function will always 

be logit. The user must also specify the categorical variables, the model structure and the 

random effects using the SAS® syntax (see Appendix A). 

3 www.support.sas.com/rnd/app/da/glimmix.html 
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The output from a generalized linear mixed model using Proc.Glimmix includes fit 

statistics, covariance estimates for the random effects and coefficient estimates for the fixed 

effects. (A description of the output and basics on interpretation can also be found in 

Appendix A.) 

The covariance parameter estimates are a measure of the variability from the modeled 

group mean and are provided for each variable specified as random in the model syntax. If 

the variance parameter is significantly different from zero this indicates that there are 

significant differences in the subject level estimates for the random variable. For example, i f 

a random intercept is included in the model and the estimated covariance parameter for the 

random intercept is significantly different from zero, this is interpreted to mean that subjects 

in the population have different intercept values, or in other words, they have different 

starting values. The covariance parameter estimates can also be thought of as the variability 

in the random variables that is not captured by the fixed effects. 

The fixed effects parameter estimates are analogous to the output from a fixed effect 

regression model and are interpreted in the same manner. In the case of a logistic regression 

for respiratory symptoms, the coefficient estimates can be thought of as the change in risk of 

reporting a symptom for a one-unit increase in the associated independent variable (when the 

independent variable is continuous). 

Deciding on model fit is more challenging because the output fit statistics do not include a 

traditional log-likelihood, in its place pseudo-likelihood is calculated by Proc Glimmix. This 

pseudo-likelihood cannot be used to compute a likelihood ratio test, instead, the researcher is 

advised to guide their modeling using substantive knowledge and other alternate methods for 

ensuring best model fit. Two examples are Akaike's information criterion (AIC) and 

Bayesian information criterion (BIC), in both of these fit indices smaller values indicate 

better model fit. Appendix A describes the syntax for requesting these fit indices in a SAS® 

Glimmix model. 

3.2.2 SAS® Proc Traj 

Proc Traj is a specialized mixture model (45), and as a mixture model Proc Traj models 

multiple groups within the population, in contrast to a traditional regression or growth curve 
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model that models only one mean within the population. Designed by researchers, Proc Traj 

is not part of the base SAS® program and must be downloaded from Dr. B. Jones' website4. 

The paper which serves as the documentation for the program is also available for download 

at this website (5). 

Proc Traj is designed to address research questions focused on describing the trajectory, or 

pattern, of change over time in the dependent variable, specifically questions concerned with 

multiple distinct patterns of change over time and modeling unobserved heterogeneity in the 

data. 

Proc Traj models the number of distinct patterns of change over time in the dependent 

variable and the shape of each modeled pattern of change. Proc Traj estimates a regression 

model for each discrete group within the population. These parameters are modeled using 

maximum likelihood estimation, where the probability of the estimates is maximized based 

on the model structure. The significance of the estimated intercept and regression 

coefficients is tested using the Wald test. 

Modeling in Proc Traj is step-wise and iterative (see Appendix A for further discussion). 

First, the number of trajectories of change over time in the population must be determined. 

Then the shape of each group's change over time must be specified. Before beginning, the 

researcher must use substantive knowledge to set reasonable limits on the modeling process. 

For example, when thinking about respiratory symptoms the published literature indicates 

that when two time points are used there are four possible patterns of symptom change, and 

when there are more time points included there may be more groups. In this case, five might 

be the maximum number of groups modeled. To begin, a one-group model is computed then 

a two-group model et cetera until the a priori maximum number of groups is modeled. 

Model selection in Proc Traj uses the change in the Bayesian Information Criterion (BIC) 

between two models to measure the weight of evidence against the null model. (For details 

of model fit, see Appendix A). Of important note is that Proc Traj models result in negative 

BIC values because the developers of Proc Traj use a slightly different equation for 

4 www. andrew. emu. edu/user/bjones 
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calculating the BIC (46). Therefore, in Proc Traj the best fit model is the one with the 

smallest negative BIC value. 

Again, in reference to the example with respiratory symptoms, i f we tested five models 

(one group up to five groups) we would have five BIC values to review. The comparisons 

are completed in a step-wise manner so that the two-group model is compared to the one-

group model, and the three-group model to the two-group model and so on. The change in 

BIC from one model to the next is a measure of the evidence for one model versus the other. 

The next step in fitting a model using Proc Traj is selecting the shape of each group's 

trajectory over time. Proc Traj can model up to a fourth order polynomial and can model 

both linear and non-linear trajectories within the same model. This can be done using 

substantive knowledge (i.e. we expect one group to never report symptoms so this group's 

trajectory will be a zero-order equation, or a straight line) or it can be done using the change 

in the BIC (ABIC). It seems ideal to use a combination of substantive knowledge and 

statistical inference to make the decision regarding the shape of each group's trajectory. 

Two methods of using the BIC to make model fit decisions are described in the Proc Traj 

literature. The first describes the approximation of the logged Bayes factor using 2*ABIC 

(5). The second, known as Jeffreys's scale of the evidence describes approximating the 

Bayes Factor itself, B,j, using e

B I C l " B I C j (47). Both provide a measure of the evidence 

for/against the complex model and both provide the same results. The crude scale (logged 

Bayes factor) is better suited to select the number of groups when the change in BIC between 

models is generally large. Jeffreys's scale of the evidence has a finer scale and seems to be 

better suited for selecting the shape of group trajectories (see Appendix A for the description 

of model fitting in Proc Traj). 

The output from a Proc Traj model contains information on the number of groups, the 

shape of their trajectories, as well as the probability of group membership for the study 

population. In addition, posterior group membership probabilities and group assignments for 

each subject can be obtained from the output dataset. These output variables can be used to 

.describe the population, or in further analyses as a dependent variable. 
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The macro included in the Proc Traj syntax creates a graphical output that visually 

describes the different groups, their trajectory of change over time and summarizes the group 

membership probabilities. 

Time stable and time varying covariates can be included in the Proc Traj model using 

separate command lines (see Appendix A for specific details). Included covariates must be 

binary variables (values of 0/1) or continuous. Proc Traj does not support the inclusion of 

categorical covariates that have not been transformed into dummy variables. 

In the case of time varying covariates the output does not change as drastically. If only 

time varying covariates are input, Proc Traj estimates a regression coefficient for the impact 

of the covariate on the outcome in each group. Group membership probabilities are still 

provided. 

A post-model procedure can also be used to graphically model the effect of a change in 

the time varying variable on the predicted trajectory. The benefit to modeling the time 

varying covariates is that you can visualize the change in trajectory at the point in time where 

the value of the time varying covariate changes. The drawback is that you can only model 

one pattern of change (in the covariate) at a time. 

Although the subject specific group assignment variable can be exported for use in further 

(separate) analyses, using a built-in Proc Traj option you can relate group membership to a 

subsequent outcome that occurs beyond the time frame included in the trajectory analysis. 

For example, a researcher could model the probability of a specific respiratory disease 

diagnosis later in life based on symptom trajectory group during the study period (before the 

diagnosis). 

SAS® Proc Traj can also model multiple outcomes simultaneously (details in Appendix 

A). This is called a dual trajectory model; each outcome is modeled separately, then the two 

outcomes are modeled together. The output from these analyses is more complex but begins 

by presenting simple group membership probabilities for each outcome independently (as i f 

each outcome was modeled independently), then shows conditional probabilities for each 

outcome conditional on the other, and finally contains joint probabilities for the dual 

trajectory. This capability may prove particularly useful for modeling related outcomes that 

you do not want to combine into one variable (e.g. cough and phlegm) 
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Researchers using Proc Traj should be careful not to reify the estimated groups. The 

groups themselves do not actually exist in reality; they are merely estimates of change over 

time. Because there is no random effect component in Proc Traj there is no estimate of 

subject level variability around the estimated group means. 

Proc Traj should be considered as an analysis tool when you are interested in, or expect 

that there are, multiple patterns of change over time in your dependent variable. 

3.3 Eva lua t i on of G e n e r a l i z e d L inea r M i x e d M o d e l s a n d P r o c Traj 

M o d e l s 

Both Proc Traj and Proc Glimmix are theoretically capable of dealing with the repeated 

binary data generated from the ATS questionnaire. However, the specific research questions 

that may be answered by each technique must be clarified. The next section of this thesis 

describes how Proc Traj and Proc Glimmix can, or cannot, be used to answer six basic 

research questions relating to respiratory symptoms and how they change over time. The six 

research questions investigated are: 

1. What factors predict reporting a respiratory symptom? 

2. Do respiratory symptoms change over time? 

3. What are the patterns of respiratory symptom change over time? 

4. What factors predict respiratory symptom change over time? 

5. Do different respiratory symptoms change with similar/different patterns over 
time? 

6. How does event occurrence affect the pattern of respiratory symptom change over 
time? 

An approach for answering each research question is described for both Proc Traj and 

Proc Glimmix. For comparison purposes, an approach using traditional fixed effects 

regression (SAS® Proc Logistic) is described where appropriate. The structure of each 

model is described and the interpretation of the output is discussed. In addition, the strengths 

and limitations of each approach for each research question are identified. 
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A summary of the analysis approaches described for each research question is shown in 

Table 3. This table is intended as a guide for determining which procedure, Proc Traj or Proc 

Glimmix, is most reasonable for a particular research question. 

3.3.1 What Factors Predict Reporting a Respiratory Symptom? 

The factors that predict reporting a respiratory symptom at any point in time can be 

identified using a regression model, either fixed or random effects including risk factors of 

interest. The basic fixed effects model would be a cross sectional analyses of one visit from 

a longitudinal data set to determine what factors predict reporting a symptom at one point in 

time. This method does not make use of the repeated measures on individuals, but may be of 

interest i f the research question itself is focused on one point in time (i.e. baseline measures, 

at last follow-up etc.). 

A marginal logistic regression model can also be used to model the predictors of reporting 

a symptom. In this case one would use all of the repeated measures on all subjects and 

would specify the correlation structure between these repeated measures. Using a marginal 

regression model and specifying the correlation structure is a feasible method for modeling 

the longitudinal data, but may not be as robust as using a random effects model because the 

coefficient estimates may be biased if the correlation structure is misspecified and do no 

include random effects. 

A generalized linear mixed model (i.e. Proc Glimmix) will account for the autocorrelation 

between repeated measure on subjects and will also allow each subject to vary around the 

group mean. This is valuable because the output will contain a measure of variability around 

the mean probability of reporting a symptom for each individual. Both marginal models and 

generalized linear mixed models will permit the inclusion of time-varying covariates. 

Proc Traj is a mixture model with the goal of identifying multiple groups within a 

population, so this technique is not the ideal method for answering what predicts reporting a 

respiratory symptom. In addition, Proc Traj is concerned mainly with change over time and 

not on the likelihood of an outcome at any time. However, by looking at the predictors of 

group membership for a trajectory group that consistently reports symptoms, some insight 
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into the predictors of reporting symptom could be gained. However, a random effects 

logistic regression model is really a better choice for this research question. 

3.3.2 Do Respiratory Symptoms Change Over T ime? 

If the researcher is interested in whether respiratory symptoms are changing over time, the 

first analysis may be to calculate crude prevalence rates at each visit date in the data. This 

will provide population level estimates of how prevalent a symptom is at each visit and 

whether these rates are changing over time, but this will not provide any information on how, 

or whether, the symptoms are changing at the individual level. For example, the population 

prevalence could remain steady even though an equal number of individuals in the 

population are gaining symptoms as losing them. If the research question is focused at a 

population level and is only interested in whether the prevalence is changing at the 

population level, crude prevalence rates may suffice. 

However, i f the research question is concerned with the change over time at the individual 

level further analyses must be undertaken. The correlation (or lack of correlation) between 

repeated measures on individuals over time can be modeled using a mixed effects model. 

This can be achieved by setting up a model with each visit date as a covariate and requesting 

that the correlation between the outcome at each visit date be estimated. With the output you 

receive a correlation matrix of correlation coefficients that measures the correlation between 

the covariates (each visit date), and thus the correlation between visit 1 and visit 2 (and each 

pair wise comparison between visits) can be obtained from the output. 

If the correlation between two visits is close to zero, the visits are not very highly 

correlated and there was probably a change in respiratory symptoms between these two 

measurements, but i f the correlation is close to one the measurements are similar and it is not 

likely that a change occurred between the two visits. Although this can provide some insight 

into whether the respiratory symptoms are changing over time, there is very little information 

on the direction of change or pattern of change over time. 

Using a generalized linear mixed model can account for the autocorrelation and provide 

an estimate of the variation around the modeled mean for the population. Similar to the fixed 

effects regression, the visit dates would be included in the model as covariates, but the 
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correlation structure does not need to be specified in any form. Because the visit dates are 

included in this manner the output will include the regression coefficients for each visit date; 

these regression coefficients indicate the probability of reporting a symptom at each visit date 

(recall that in logistic regression the coefficient is the probability of a ' 1' or 'yes' for a one 

unit increase in the value of the associated covariate). Interpretation of the output will allow 

for inferences to be made about whether the probability of reporting a symptom is the same 

or changing between visits, and unlike the fixed effects regression output, there will some 

ability to say whether reporting a symptom is more or less likely at one visit compared to 

another. Time can also be modeled as the continuous variable calendar year using a 

generalized linear mixed model. These results would provide an estimate of the change in 

the probability of the outcome per one year change in calendar year. 

Proc Traj is specifically designed to identify multiple patterns of change over time within 

the population. Proc Traj is also capable of modeling non-linear change in the outcome 

variable. In order to conclude that a symptom was not changing over time the output from 

Proc Traj would have to support a single group model where the shape of the trajectory was 

flat (zero-order equation) or a multiple group model where all the individual group 

trajectories were flat. This can be determined by fitting the basic model to the data to 

determine how many groups are supported by the data and the shape of each group's pattern 

of change over time. Only in the circumstances described previously (all groups having 

zero-order patterns of change) could you conclude that a symptom was not changing over 

time. In other situations, Proc Traj will model multiple groups each with their own pattern of 

change over time and this will provide a great deal of information regarding whether 

symptoms are changing over time, and, how they are changing over time within the 

population. 

3.3.3 What are the Patterns of Change in Respiratory Symptoms Over 

Time? 

The question of how respiratory symptoms change over time is a difficult question to 

answer when thinking about using a regression model to estimate the change over time in a 

binary outcome such as respiratory symptoms. The output from a regression model includes 

the regression coefficients and the intercept - the coefficients provide information on the 
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probability of an outcome occurring based on the value of the independent variable, and the 

intercept tells us the probability of an outcome occurring i f all included covariates are equal 

to zero (so that the coefficients are nullified). From this output it is not possible to determine 

the shape or pattern of change in the outcome over time. In research question two, it was 

described how you can use the output from a logistic regression (or generalized linear mixed 

model) to determine whether the probability of the outcome occurring is changing over time 

using the regression coefficients, but it is not possible to determine how the outcome is 

changing over time. 

Alternatively, Proc Traj is a powerful tool for answering questions of how an outcome 

changes over time. In addition, as a mixture model, Proc Traj is specifically designed to 

answer the question "how many patterns of change over time exist in the population?" In 

general, Proc Traj should not be applied when there is only one expected pattern of change 

(even if there was change expected). When only one group with one pattern of change is the 

expected in the population, the research questions are likely better answered with the use of a 

traditional growth curve models (not discussed in this thesis). 

As in research question two, a Proc Traj model can be fitted to the data so that the number 

of distinct groups and the shape (linear or non-linear) of the change over time are described 

for all groups. The probability of group membership (for each identified group) will also be 

included in the output. These results will allow the researcher to describe the different 

patterns of respiratory symptom change over time, and also to discuss the prevalence of each 

pattern. 

It is important to remember that group membership is fixed for each subject. Because 

Proc Traj does not model the subject level deviation from the group mean (as a mixed effects 

model does) each individual in the group is considered to follow the identical trajectory of 

change over time. 

3.3.4 What Factors Predict Respiratory Symptom Change Over Time? 

The basic Proc Traj model can easily be adapted to include covariates, and thus help 

answer research questions about the predictors of group membership. When covariates are 

included in the Proc Traj model, the output changes slightly. If covariates are time varying 
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you will receive a regression coefficient for each covariate. For time stable covariates you 

will receive an estimate of the effect of the covariate on group membership. If you 

hypothesized that being a current smoker meant an individual was more likely to consistently 

report respiratory symptoms, you would expect the output to indicate that a current smoker is 

more likely to belong to a group that consistently reports respiratory symptoms (rather than a 

group that never reports a symptom during follow-up). 

Another alternative, still using Proc Traj, would be to run a basic model with only the 

symptom of interest and time included to determine the number and shape of distinct groups 

within the population. The posterior group assignments contained in the output dataset can 

then be used to descriptively determine which factors differ between the groups. 

Additionally, the group assignment variable can be used as an outcome in a determinants of 

group assignment model. 

Although these analyses seem similar, it is possible that they would return different 

results. The first option (Proc Traj model with covariates) uses the included covariates to 

predict not only group membership, but also the shape of each group's trajectory of change 

over time. The second option, exporting the group membership data and modeling it as a 

static outcome, is concerned simply with the predictors of membership in each group. 

For research question three, it was concluded that neither random nor fixed effects logistic 

regression could be used to study the pattern of change in a dependent variable. However, it 

is possible to study the predictors of a change in a binary outcome variable such as a 

respiratory symptom using these methods. 

In the case of generalized linear mixed models a new variable can be created to describe a 

change in symptoms. The new variable could describe a simple change, or it could describe 

a directional change in symptoms, for example: 

• Yes symptom changed since last visit, no symptom did not change; 

• Yes subject developed a new symptom, no subject did not gain a new symptom; 

• Yes subject resolved a symptom, no subject did not resolve a symptom. 

The generalized linear mixed model will determine the predictors of a change in 

respiratory symptoms at any point in time because there will be a measure of change for each 
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subject at each visit (except the first visit). The model continues to account for the 

autocorrelation between repeated measures of change (a subject with >2 visits will have at 

least two measures of "symptom change") and will still provide an estimate of the individual 

deviation around the mean parameter estimates. 

One drawback to this method is the limitation of the outcome. By specifying only a 

"change" as the outcome, you cannot infer about the direction of this change. And, 

conversely, by specifying a directional change you are required to make a comparison against 

the remainder of the population - individuals who experienced a change in the opposite 

direction as well as individuals who experienced no change. Neither of these is an ideal 

situation, but both will provide some information on the predictors of a change in respiratory 

symptoms (either directional or not). 

This research question can also be answered in another manner using mixed effects 

logistic regression. However this method is more observational and iterative than the models 

described previously. 

In order to determine what factors predict respiratory symptom change over time using 

this mixed effects model you must include the visit dates as covariates (continuous or 

categorical) and time varying covariates for each visit date. The covariates in 

your final model are the time varying variables you hypothesize to predict symptom 

change over time. Iteration is key, you must include different covariates in different models 

and compare the coefficients estimates and the model fit statistics to determine which model 

is best. If a time varying covariate input into the model completely removes the effect of 

time, then we may be able to conclude that this variable is predicting change over time. 

Model fit can be assessed by BIC (smaller is better). It is important to realize that using this 

model will only provide you with evidence suggesting covariates that may be predicting 

change over time. 

3.3.5 Do Different Respiratory Symptoms Change with Similar Patterns 

Over T ime? 

As discussed in research question three, logistic regression (either fixed effects or in a 

generalized linear mixed model) cannot be used to describe the pattern of change over time 
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in the outcome variable, so it is not possible to determine whether multiple respiratory 

symptoms change with the same pattern using any type of logistic regression. 

A simple descriptive analysis of respiratory symptom change over time to investigate the 

similarities or differences between two or more symptoms could begin with calculating the 

correlation between pairs of symptoms over time. Correlation coefficients could be 

calculated for each visit date to determine whether the correlation between the two symptoms 

was changing over time. This approach is simple and straight forward, but would be limited 

to comparisons between pairs of symptoms. The output would also not provide any insight 

into similarities or differences in the shape of change over time, only the similarity between 

two symptom responses at specific time points. 

With Proc Traj however, there are two ways to determine whether different respiratory 

symptoms change with similar patterns. One is to qualitatively compare the number and 

shape of each subgroup identified for each respiratory symptom, the second is to run a dual 

trajectory model for two respiratory symptoms. 

Qualitatively comparing the shape and probability of the group trajectories for different 

respiratory symptoms is a simple way to determine whether different symptoms appear to be 

changing in the same manner over time. For example, is there the same number of distinct 

subgroups in the population with respect to different symptoms? Do these distinct subgroups 

experience the same pattern of change over time? This approach is simple, and will allow for 

comparisons to be made between multiple respiratory symptoms, however this approach will 

not allow for determining joint group membership probabilities for multiple symptoms, nor 

will it allow for statistical significance to be determined. 

The alternative to a qualitative comparison is to run a Proc Traj model for two symptoms, 

also called a dual trajectory analysis. The results from a dual trajectory analysis include the 

single trajectory results for each of the two included symptoms (parameter estimates and 

membership probabilities), the probabilities of group membership for each symptom group 

conditional on the other symptom, and the joint probabilities for the dual trajectories. 

The main limitation of this approach is that you are limited to modeling only two 

respiratory symptoms (as compared to the qualitative comparisons). However, this approach 

will identify significantly different subgroups of a dual trajectory. 
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3.3.6 How Does a Time-varying Covariate Affect the Pattern of 

Respiratory Symptom Report ing? 

As has been discussed in reference to research questions three and five, it is not possible 

to study the pattern of change in a binary outcome variable using logistic regression. 

Therefore it is not possible to address research question six using either fixed effects logistic 

regression or a generalized linear mixed model. Each of these models could describe the 

effect of a change in a time varying covariate on the probability of reporting a respiratory 

symptom (research question one) by creating a dummy variable to denote the change. A 

dummy variable can be created for each visit date to denote a change since last visit (only in 

a mixed model), or a single dummy variable can be created to denote a change ever. 

However, no information on how the event changes the pattern of change over time can be 

gained. 

Time varying covariates can be incorporated into a Proc Traj model and the effect of a 

change in this covariate on the shape of each group's trajectory can be determined. The 

pattern of change in the time-varying covariate must be specified in the syntax. Proc Traj 

will complete the basic model then the effect of the time varying covariate on the modeled 

trajectories. The result is a graph showing the basic trajectory shape overlaid with the 

trajectory shape taking into account the time varying covariate. If the time varying covariate 

is affecting the symptom trajectory, these two lines will diverge at the point in time where the 

time varying covariate changed. Although this is a useful tool, it is limited to investigating 

the effect of one pattern of change in the covariate at a time. 

3.4 S u m m a r y 

In conclusion, both generalized linear mixed models (Proc Glimmix) and finite mixture 

models (Proc Traj) are potentially very useful for analyzing respiratory symptom data from 

longitudinal studies. Each has strengths and limitations, but both have been underutilized in 

the literature to date. 

Proc Traj is best suited for addressing research questions interested in the pattern or shape 

of change over time, and questions interested in the heterogeneity of this change over time. 

This finite mixture model can determine the number of distinct patterns (trajectories) of 
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change over time and the shape of each. In addition, the predictors of these groups and 

patterns can be explored using time stable and time varying covariates. Results can be 

exported and used in separate analyses or, within Proc Traj, to predict outcomes beyond the 

time studied in the trajectory analysis. Proc Traj is not suited for answering research 

questions that are interested in the population mean or research questions that require the 

inclusion of random effects. Researchers must be careful to remember that the groups 

estimated by Proc Traj are not real entities; they are the estimates of the multiple patterns of 

change within the population. 

Generalized linear mixed models are best suited for research questions where the goal is 

to account, or adjust, for the autocorrelation inherent in repeated measures data and explore 

research questions interested in the overall population mean. In repeated measures data, 

generalized linear mixed models are valuable tools for investigating the subject level 

deviation around the group mean (for the specified random effects). These mixed models are 

able to answer questions relating to whether a change over time is occurring and are more 

useful for determining the predictors of the change, but are not able to model the pattern of 

the change over time. There are also known limitations in the estimation technique 

employed in Proc Glimmix that may result in biased coefficient estimates. Researchers must 

keep this possible bias in mind and consult a statistician for help to ensure that the bias is 

minimized. 

The findings from the previous section are summarized and organized by research 

question in Table 3. Table 3, in addition to Appendix A, is intended to help to guide research 

in the study of respiratory change over time using generalized linear mixed models and finite 

mixture models. 
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Table 3 Summary of findings on the utility of Proc Glimmix and Proc Traj for each outlined research question 
Res. Question Technique Description Output Strengths Limitations 

1. 
What factors 
predict reporting 
a respiratory 
symptom? 

Proc Traj Proc Traj is not the ideal technique for answering this research question. However, the factors predicting membership in a group 
(see Research Question #3) that persistently reports a symptom could partially answer this question. 

1. 
What factors 
predict reporting 
a respiratory 
symptom? 

Proc 
Glimmix 

Use a mixed effects logistic 
regression model with covariates 
of interest to determine which are 
predictive of reporting a symptom 

Regression coefficients for 
each independent variable 
Measure of each individual 
deviation from the group 
mean 

Able to easily incorporate 
covariates into model 
Account for autocorrelation 
between repeated measures 
on individuals 

Unable to identify subgroups 
within the population 

1. 
What factors 
predict reporting 
a respiratory 
symptom? 

Proc 
Logistic 

Use a fixed effects logistic 
regression to model the 
probability of reporting a 
symptom 
Either use only one visits data 
(one measure per subject) or use 
all measures per subject and 
specify a correlation structure 

Regression coefficients 
describe the probability of 
reporting symptom given the 
independent variable 
associated with each 
coefficient 

Can answer what predicts 
reporting a symptom for one 
point in time (i.e. baseline), 
which may be important 

Using one measure per 
subject is a simple cross 
sectional analysis 
Estimated when using all of 
the data you are dependent 
on the correlation structure 

2. 
Do respiratory 
symptoms 
change over 
time? 

Proc Traj Fit basic model to describe 
multiple patterns of symptom 
change over time as well as the 
shape of the change for each 
group 

Number and shape of distinct 
patterns of change over time 
Probability of membership in 
each group 

Models distinct groups 
Model's non-linear as well as 
linear change 

Requires a larger sample size 
than a mixed effects 
regression model 
A priori decision about 
number of groups required 

2. 
Do respiratory 
symptoms 
change over 
time? 

Proc 
Glimmix 

Use mixed effects logistic 
regression model each visit date 
as a covariates in the model, 
compare these coefficients for 
each visit date to determine if risk 
is changing. 

Regression coefficients 
describe probability of 
reporting a symptom at each 
visit date 
Measure of each individual's 
deviation from the modeled 
mean 

Models the probability of 
reporting a symptom 
Accounts for correlation 
between repeated measures 
Models the variability 
around the mean for each 
individual 

No ability to determine the 
pattern of change or the 
presence/absence of multiple 
groups 
Potential for statistical power 
problems when running 
multiple models 

2. 
Do respiratory 
symptoms 
change over 
time? 

Proc 
Logistic 

Use a marginal regression model 
to model the correlation structure 
between the covariates "visits 
date" for each visits 

Modeled correlation structure 
gives estimates of correlation 
(from 0->l) between visits 
dates 

Gives a measure of the 
probability of a change in 
symptom response from one 
visit to another 

Only reasonable to model the 
correlation structure with 
short chains of repeated 
measures (<5 repeats) 
No mixed effect component 
because you are modeling the 
correlation structure 



Table 3 Cont'd 
Res. Question Technique Description Output Strengths Limitations 
3. 
What are the 
patterns of 
symptom change 
over time? 

Proc Traj Fit basic model to describe 
multiple patterns of 
symptom change over time 
as well as the shape of the 
change for each group 

Number and shape of 
distinct patterns of 
change over time 
Probability of 
membership in each 
group 

Describes multiple patterns 
of change within the 
population 
Probability of membership 
provides a measure of the 
size of each group 

No measure of variability around 
the mean of each group 

3. 
What are the 
patterns of 
symptom change 
over time? 

Proc Glimmix 
Proc Logistic 

The pattern of change over time cannot be modeled with a logistic regression model 

4. 
What factors 
predict 
respiratory 
symptom change 
over time? 

Proc Traj Introduce covariates into the 
basic model, determine the 
probability of group 
membership conditional on 
the covariate 

Number of patterns of 
change over time 
Shape of each pattern 
Probability of 
membership in each 
group 

Able to determine which 
independent variables are 
predictive of membership in 
each symptom change group 

No measure of variability around 
the mean of each group 
(individuals assigned to the 
group are assumed to each 
follow an identical pattern of 
change) 

4. 
What factors 
predict 
respiratory 
symptom change 
over time? 

Proc Traj 

Run the basic model 
including only time, then 
export group membership 
data and use this variables as 
the outcome in further 
analyses 

Probability of 
membership in each 
group given the value 
of the included 
covariates 

Able to determine which 
independent variables are 
predictive of membership in 
each symptom change group 

No measure of variability around 
the mean of each group 
(individuals assigned to the 
group are assumed to each 
follow an identical pattern of 
change) 

4. 
What factors 
predict 
respiratory 
symptom change 
over time? 

Proc Glimmix Use a logistic regression 
model to estimate the 
probability of a symptom 
change over time, include 
covariates in the model 
Outcome variable: 
symptom change - yes/no 
new symptom - yes/no 
resolved symptom - yes/no 

Regression coefficients 
for each independent 
variable estimate the 
probability of the 
outcome 
Estimate of each 
individual's deviation 
from mean 

Able to determine the 
magnitude and direction of 
effect for each independent 
variables on the probability 
of the outcome occurring 

Potential for bias is results 
Challenge to interpret results due 
to heterogeneous comparison 
group 

4. 
What factors 
predict 
respiratory 
symptom change 
over time? 

Proc Glimmix 

Used mixed effects model to 
explore the effect of time 
varying risk factors on 
symptom outcome 

Regression coefficients 
Estimated variances 

Simple approach - compare 
the estimated coefficients 
and model fit to determine 
the best model 

Research question is answered 
based on comparison between 
two models 



Table 3 Cont'd 
Res. Question Technique Description Output Strengths Limitations 
5. 
Do different 
respiratory symptoms 
change with similar 
patterns over time? 

Proc Traj Compare output for two 
different symptoms (number of 
groups and shape of trajectory 

For each symptom: 
Number and shape of 
patterns of change over 
time, Probability of 
membership in each 
group 

Can compare multiple 
single trajectories in an 
observational manner 

Observational approach, no 
way to test whether 
trajectories are statistically 
different 

5. 
Do different 
respiratory symptoms 
change with similar 
patterns over time? 

Proc Traj 

Model dual trajectory for two 
symptoms 

Number and shape of 
distinct patterns of 
change over time 
for each symptom alone 
Conditional probabilities 
for group membership 
Joint probabilities of 
group membership 

Able to observe joint 
trajectories for two 
symptoms together 
Determine statistical 
significance of 
trajectories 

Limited to modeling dual 
trajectories (cannot model 
3 or more symptoms 
together) 

5. 
Do different 
respiratory symptoms 
change with similar 
patterns over time? 

Proc Glimmix 
Proc Logistic 

The pattern of change over time cannot be modeled with a logistic regression model, either mixed or fixed effects 

6. 
How does a time-
varying covariate 
affect the pattern of 
respiratory symptom 
reporting over time? 

Proc Traj Run a basic model including 
time and any time stable 
covariates, then incorporate a 
time varying covariate and the 
pattern of the time varying 
covariate you are interested in 

Number and shape of 
distinct patterns of 
change over time 
Probability of 
membership in each 
group 
Probability of trajectory 
change (and shape of 
change) for the time 
varying covariate pattern 
specified in the model 

Able to determine 
whether, and how, a 
time varying covariate 
affects the trajectory of 
change 

Important to include any 
independent variables 
which may have an impact 
on, or be affected by, the 
event occurrence 

6. 
How does a time-
varying covariate 
affect the pattern of 
respiratory symptom 
reporting over time? 

Proc Glimmix The pattern of change over time cannot be modeled with a logistic regression model 

6. 
How does a time-
varying covariate 
affect the pattern of 
respiratory symptom 
reporting over time? 

Proc Logistic However, you could get some information about the influence of a time varying covariate on the probability of 
reporting a respiratory symptom (research question #1). To do this you could include the time varying covariate at 
each time point and use the estimated coefficient for each time point to determine how the occurrence of the event 
affects the probability of reporting a respiratory symptom. 



4 Results II: Case Study 

4.1 In t roduct ion 
As summarized in the literature review (Chapter 2), previous studies have not taken 

full advantage of repeated respiratory symptom data and few published studies have used 

symptoms as an outcome. Those that have studied symptoms as an outcome have 

categorized symptom change over time (30), studied only the onset of new symptoms (7, 

11,28, 29) or used a symptom scale or rate as the outcome (31,34). We are interested in 

the study of the respiratory symptoms as an outcome, particularly in reference to the six 

research questions outlined in Chapter 3. 

Chapter 3 reviewed two methods, Proc Traj and Proc Glimmix, for handling repeated 

binary outcomes and repeated measures of covariates. The current chapter is a Case 

Study of these methods using previously collected data from an occupational surveillance 

program. 

For the Case Study, we will explore the first three research questions from Chapter 3: 

1. What factors predict reporting a respiratory symptom? 

2. Do respiratory symptoms change over time? 

3. What are the patterns of change over time in respiratory symptoms? 

Until this point, this thesis has discussed respiratory symptoms in general. In the 

interest of limiting the analyses to a manageable body of work, this Case Study will focus 

exclusively on the respiratory symptom dyspnea, or breathlessness. 

Dyspnea is most commonly measured as a binary symptom using the ATS 

questionnaire (7, 11, 18-30, 34) but can be measured as a continuous outcome using less 

common clinical tools (31-33). Dyspnea has been shown to be a predictor of mortality 

(48, 49) but the association between dyspnea and lung function has been less conclusive 

(32, 33). Other studies have investigated the relationship between dyspnea and 

occupational exposure in working populations; conclusions regarding these associations 

were mixed (7, 50-52). Overall, there is a need for further study of dyspnea. 
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The Case Study is a key piece in evaluating Proc Traj and Proc Glimmix for use in 

respiratory epidemiology. The results from the different models will be compared, their 

limitations described and conclusions regarding the usefulness of each will be made. 

4.2 S tudy Popu la t i on 

A surveillance study of marine transportation workers in British Columbia was 

initiated in 1987 to monitor workers with a previous asbestos exposure, but soon 

expanded to include workers without exposure. The program was conducted by the 

Occupational and Environmental Lung Diseases Research Unit at the University of 

British Columbia. The surveillance program data currently spans twelve years and five 

visit years: 1987, 1989, 1991, 1994 and 1999. The study continues to date, and a sixth 

testing period is currently underway. 

The marine transportation workers in the study are involved in the maintenance and 

operation of the coastal ferries in British Columbia. This population includes 

maintenance, engineering, catering, cleaning, ticketing and traffic control workers. 

Historically some of these workers have experienced asbestos exposures as part of their 

work activities. Workers may also have current or historical exposures to combustion by

products, car exhaust, solvents from cleaning products and other respiratory hazards. 

These exposures were not quantitatively measured as part of the study protocol, but 

detailed work history was collected from all subjects. 

Initially, contact information for the participants was collected from the employer. A 

letter inviting workers to participate in the study was sent to the home addresses obtained 

from the employer. Participants gave written consent when returning the letter, and also 

at each test date. The study protocol was approved by the U B C Clinical Research Ethics 

Board. 

The data collection has been repeated on five occasions: 1987, 1989, 1991, 1994 and 

1999. Subjects were recruited in both 1987 and 1989, and no subject has recorded visits 

in both 1987 and 1989. The maximum number of repeat visits a participant may have is 

four (either 1987 or 1989, and 1991, 1994 and 1999). For descriptive analysis, the visits 
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in 1987 and 1989 were combined into a 1988 visit year, because no subjects had data at 

both visits. 

The same standardized testing procedures were followed during each test period. At 

each test date subjects provided answers to the ATS respiratory questionnaire, performed 

spirometry, provided a chest radiograph and underwent skin prick testing. 

4.3 M e t h o d s : Data Co l l ec t i on 

4.3.1 ATS Questionnaire 

At each visit trained personnel administered the ATS questionnaire in person. At the 

beginning of the questionnaire subjects were read the following instructions: 

"These are questions mainly about your health. Please answer Yes or No. If in doubt 

about the answer, please answer No." 

This instruction is intended to increase the probability of a true positive response 

(increased sensitivity). Subjects responded to a series of questions relating to cough, 

phlegm, wheeze, dyspnea, chest tightness, history of asthma and allergy, smoking activity 

as well as general health questions. 

4.3.2 Spirometry 

Spirometry included measurement of forced expiratory volume in one second (FEVi) 

and forced vital capacity (FVC). Spirometric measurements were made using a 10 liter 

dry rolling seal spirometer (S&M Instruments, Doylestown PA) according to standard 

techniques recommended by the American Thoracic Society (53). Subjects were tested 

while seated, wearing nose-clips. At least three acceptable forced expiratory blows were 

obtained from each participant and expiration was continued until a visible one-second 

volume plateau was achieved. The best values for F V C and F E V I were used; flow rates 

were taken from best blow. 

4.3.3 Skin Prick Testing 

At each testing visits, subjects completed skin prick testing. Three allergens were 

tested on each subject: cat dander, dust mites and grasses, along with a positive control 
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(histamine) and a negative control (saline). The diameter of each subject's wheel (skin 

response) for each allergen and control was measured in millimeters (mm) and a positive 

allergy result was recorded if any of the allergens resulted in a wheel greater than 3mm in 

diameter. 

4.3.4 Previous Ana lys is 

Workers were categorized into asbestos risk exposure groups based on reported job 

history, specifically jobs that were held for at least two years more than 10 years prior to 

the testing occasion. The time lag for jobs was applied because of the latency period 

associated with asbestos related disease. The risk groups were developed using 

information on the use of asbestos on marine vessels and after consultation with senior 

employees and asbestos inspection personnel. 

Results from this process indicated that workers engaged in ship repair at the 

maintenance dock, workers in the engine room and workers on the live aboard vessels 

were considered to have high historical asbestos exposure. Workers in all other areas 

were assumed to have a low historical asbestos exposure. 

Predicted values for FEV1 were calculated using the prediction equations described by 

Crapo et al (54). Predicted values were adjusted downwards by 15% for subjects who 

neither white nor native Indian, to account for natural differences in lung function. 

At each visit smoking status was assigned based on self-reported use of cigarettes, 

pipes and cigars. Subjects who reported ever using cigarettes, pipes or cigars, but 

reported no current use were categorized as former smokers. Subjects who reported 

never using any of these tobacco products were classified as never smokers, and those 

reporting current use were considered current smokers. 

4.4 M e t h o d s : Cur ren t A n a l y s i s 

4.4.1 Study Populat ion 

The population for the current Case Study is limited to subjects with repeated 

measures of respiratory symptoms. Subjects with only one test visit were excluded 
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(n=776). Demographic information was summarized for the entire population (n=1701) 

and the subset used in analyses (n=925). 

4.4.2 Outcome 

The focus of this analysis is dyspnea, specifically subjects' responses to the first 

dyspnea question in the ATS questionnaire: "Are you troubled by shortness of breath 

when hurrying on the level or walking up a light hill? - yes/no". 

4.4.3 Definitions 

Several potential risk factors for reporting dyspnea were explored: age, atopy, race, 

smoking, number of complete visits, high historical asbestos exposure, current respiratory 

irritant exposure, history of childhood asthma and percent predicted F E V I . Each 

potential risk factor variable is described in Table 4. 

Table 4 Summary of variables considered as risk factors for reporting dyspnea 
Variable Type Time-

varying? 
Effect Description 

Age Continuous Yes Fixed Age reported at each visit 
F E V I , percent 
predicted 

Continuous Yes Fixed F E V I percent of predicted 
based on (54) 

Atopy Categorical, 
yes/no 

Yes Fixed Positive allergic response 
to any of the three 
allergens tested 

Race Categorical, 
white/nonwhite 

No Fixed Self reported racial 
heritage 

Smoking Status Categorical, 
never/former/ 
current 

Yes Fixed Smoking status at each 
visit. 

Number of Visits Categorical, 
two/three/four 

No Fixed Number of complete tests 
for each subject 

High Historical 
Asbestos Exposure 

Categorical, 
yes/no 

No Fixed Asbestos exposure risk 
Er.°up. 

Current Exposure 
to Respiratory 
Irritants 

Categorical, 
yes/no 

Yes Fixed Exposure to respiratory 
irritants in current job at 
each visit 

Childhood Asthma Categorical, 
yes/no 

No Fixed History of doctor 
diagnosed asthma 
resolving before adulthood 
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Subjects who reported doctor diagnosed asthma that resolved before the age of 

nineteen were classified as having childhood asthma. Race was categorized as white and 

nonwhite based on subjects' self reported racial heritage. Age was reported at each visit. 

The variable describing current exposure to respiratory irritants was created using the 

work area and job title data for each visit. Subjects working in the passenger areas, on 

the bridge and anywhere at the terminals were assumed to have little or no exposure to 

respiratory irritants. Workers at the maintenance dock, on the car deck, in the engine 

room and in the kitchen were assumed to have exposure to respiratory irritants. Job titles 

for the exposed subjects were reviewed to permit exclusions of administrative positions 

in each work area. 

4.4.4 Descriptive Ana lys is 

The entire surveillance population and the subset used in analyses (s2 visits) are 

described with respect to dyspnea risk factors. The prevalence of dyspnea at each visit 

date was calculated for men and women, and the trend over time was described for male 

subjects with data at all four visits. 

Using responses to the dyspnea question at each visit date, a variable describing the 

pattern of dyspnea responses was constructed. An extension of the categorization 

described previously in the literature (19-23) was required to accommodate individuals in 

the data with as many as four repeat visits (previous studies have dealt with only two or 

three repeat visits). 

This resulted in sixteen possible patterns of symptom change over time that are shown 

schematically in Figure 1. After determining the pattern of symptom change over time 

for each individual, the patterns were grouped into five categories similar to the 

categories in the published literature except that there was an additional group, which was 

called "Variable". The Variable group includes patterns of symptom change over time 

that did not fit into the four groups previously defined given the number of repeat 

measures in this study. 
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Figure 1 Schematic representation of the patterns of symptom change over time and 
the corresponding categories. 
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Table 5 Summary of the categories describing dyspnea change over time 
Category Definition 
Asymptomatic Never reported any of cough, phlegm, wheeze or dyspnea 
Developed New 
Dyspnea 

Did not report dyspnea at first visit, reported dyspnea at a 
subsequent visit, continued to report dyspnea 

Resolved Dyspnea Reported dyspnea at first visit, stopped reporting dyspnea at 
subsequent visits and continued to not report dyspnea 

Always Reported 
Dyspnea 

Reported dyspnea at every visit 

Variable Reporting 
Pattern 

A pattern of positive and negative responses that does not fit into 
the above categories 

After constructing the variable describing the pattern of dyspnea change over time, the 

new categories were used as grouping variables and were related to smoking, number of 

visits and lung function using simple descriptive statistics. A l l descriptive analyses were 

stratified by sex. 
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Relationships between categorical risk factor variables and dyspnea were investigated 

using chi-square tests. Associations between continuous risk factors and dyspnea were 

explored using Student's t-test. Age was considered as both a categorical and continuous 

variable. Histograms for continuous risk factor variables were created to confirm 

normally distributed values. Chi-square tests between risk factor variables were 

completed to ensure highly correlated variables were not entered into the models together 

(results shown in Appendix B). 

The association between dyspnea and known indicators of respiratory disease (FEVi , 

current asthma and chronic bronchitis) was also completed. 

4.4.5 Traditional Fixed Effects - Proc Logist ic 

SAS® Proc Logistic was used to construct fixed effect logistic regression models. 

Two models were constructed. The first modeled the predictors of reporting dyspnea at 

baseline using every subject's first visit data. The second model was a 'flawed' model 

for the predictors of dyspnea, which used all of the data for every subject and ignored the 

correlation between repeated measures. Both models were repeated including an 

adjustment for percent predicted F E V I . 

Risk factors that resulted in p<0.2 in chi-square tests with dyspnea were considered for 

entry into the fixed logistic model. Once in the model, variables with coefficients p<0.10 

remained in the model. Models were manually constructed in a backwards stepwise 

process. 

4.4.6 Proc Gl immix 

Risk factors that resulted in p<0.2 in chi-square tests with dyspnea were considered for 

entry into the mixed model. Once in the model, variables with coefficients p<0.10 

remained in the model. Models were manually constructed in a backwards stepwise 

process. 

A marginal (fixed) model was run to estimate the correlation structure between 

repeated measures of dyspnea. Subject was identified as the unit on which repeated 

measures were made. The model included dyspnea as the outcome and each visit date as 
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a separate dummy predictor variable. The estimated correlation matrix was used to infer 

information about the correlation between measures of dyspnea at different visit dates. 

Next, a mixed model including risk factors for reporting dyspnea was constructed 

using Proc Glimmix. A random intercept was included. Subject was included as a 

random effect to account for the correlation between repeated measures on subjects. No 

random variables were included. Initial and final models are reported where appropriate 

to demonstrate the modeling process. 

Finally, mixed models (random intercept) using only visit dates as dummy covariates 

ere constructed to estimate the odds ratios for reporting dyspnea at each visit date. A 

model was first run using 1988 as the reference visit, and another saturated model was 

run without an intercept to allow comparison between each visit year. An additional 

model was run using time as a continuous variable to estimate the population change in 

the probability of dyspnea per calendar year. Subject was included as a random effect in 

all models. These results were used to infer on whether the probability of reporting 

dyspnea was changing over time. 

4.4.7 Proc Traj 

Proc Traj models the change in dyspnea over time. Time was input as a two-digit visit 

year variable (i.e. 1988 = '88'). Based on previous literature using two time points, it is 

clear that there are four possible patterns of change over time in the dyspnea outcome 

(Never, New, Resolved, Persistent). With the addition of more data points (as in the 

marine workers cohort) a fifth pattern of change was considered likely. For these reasons 

a five group model was considered the maximum number of groups permitted. A l l 

groups were allowed to follow a quadratic (second order) equation while fitting the 

number of groups as recommended by Nagin (47). 

In previous published studies, the "never reported the symptom" group is generally the 

largest in the population. This knowledge lead to a decision to force one of the group's 

trajectories to a zero order (flat line) equation to represent the subjects who never report 

dyspnea throughout follow-up. This limitation was only enforced on the model after the 

number of groups had been decided. 
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As described in Chapter 3 and Appendix A, the Bayesian Information Criterion (BIC) 

was used to assess model fit and ultimately decide on the number of groups, as well as 

the trajectory shape for each group. 

Proc Traj models were completed for the entire dataset (n=925) as well as a subset of 

men with complete data (n=148) to ensure that the missing data did not influence the 

results of the model. 

4.5 R e s u l t s 

4.5.1 Descript ive Ana lys is 

The entire cohort of marine workers consisted of 1701 individuals with at least one 

complete visit. A visit was considered complete i f the ATS questionnaire was answered 

and the subject recorded acceptable FEVI and F V C measurements. 

For the analysis of symptom change over time only subjects with two or more visits 

were included (n=925), a total of 2472 visits were included in this subset sample. 

The demographics of the entire population (Table 6) and the subset (Table 7) indicate 

that the two groups are similar. Specifically, the subset population is primarily male with 

men and women being approximately the same age at baseline. The percent of predicted 

lung function variable shows that on average, subjects had normal lung function at 

enrollment. 

Among subjects included in the analysis, approximately 30% of men and women 

reported themselves as never smokers at baseline. Among subjects self-reporting as 

current smokers, the reported pack-years of smoking were similar between men and 

women. However, men had higher rates of atopy at baseline than women (34% vs. 25%). 

Men tended to have more history of asbestos exposure and were more likely to 

experience current exposure to respiratory irritants. 
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Table 6 Demographics of the entire marine transportation workers cohort 
Variable Men (n=1473) Women (n=228) 
Age at first visit, mean (SE) 46.97 0.28 46.17 0.81 
FEVI (L) at first visit, mean (SE) 
FEVI % Predicted at first visit, mean (SE) 

3.70 0.02 
95.7 0.39 

2.74 0.04 
97.2 1.07 

Pack Years of Smoking, mean (SE) 24.84 0.64 22.37 1.44 
Asthma at first visit, n (%) 
Atopy at first visit, n (%) 

103 7% 
485 33% 

26 11% 
56 25% 

Smoking, n (%) Never 
Former 
Current 

408 28% 
624 42% 
441 30% 

64 28% 
70 31% 
94 41% 

Race, n (%) White 
Non-white 

1225 83% 
248 18% 

222 97% 
6 2% 

No 
High Historical Asbestos Exposure, n (%) 

581 39% 
892 61% 

209 92% 
19 8% 

Table 7 Demographics of the subset used in respiratory symptom analyses (workers 
with >2 test dates). 
Variable Men (n=824) Women (n=101) 
Age at first visit, mean (SE) 45.84 0.34 46.81 1.09 

FEVI (L) at first visit, mean (SE) 
FEVI % Predicted at first visit, mean (SE) 
FEVI decline (mL/yr), mean (SE) 

3.79 0.03 
96.7 0.48 
49.4 2.11 

2.69 0.05 
96.2 1.43 
25.6 5.32 

Pack Years of Smoking, mean (SE) 23.99 0.85 25.58 2.30 
Asthma at first visit, n (%) 
Atopy at first visit, n (%) 

54 7% 
277 34% 

7 7% 
25 25% 

Smoking, n (%) Never 
Former 
Current 

248 30% 
340 41% 
236 29% 

27 27% 
32 32% 
42 42% 

Race, n (%) White 
Non-white 

709 86% 
115 14% 

99 98% 
2 2% 

Number of Visits, n (%) Two 
Three 
Four 

399 48% 
277 34% 
148 18% 

60 59% 
33 33% 
8 8% 

High Historical Asbestos Exposure, n (%) No 
Yes 

272 33% 
552 66% 

90 89% 
11 11% 

Current Exposure to Respiratory No 
Irritants, n (%) Yes 

242 29% 
582 71% 

92 91% 
9 9% 

Dyspnea prevalence rates for each visits date are shown in Table 8 and Figure 2. In 

general, women reported more dyspnea throughout the study and there was a trend 

55 



towards higher prevalence of dyspnea at the later visits in both sexes. The trend over 

time in dyspnea prevalence is shown for men with complete data (n=148) and this trend 

is similar to the population level trend observed. 

Figure 2 Prevalence of dyspnea for men and women between 1988 and 1999. 
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Table 8 Crude prevalence rate for dyspnea by visits year, stratified by sex 
Percentage of Subjects Reporting Dyspnea 
Men Women p-value* 

1988 15.6% 27.3% 0.006 
1991 14.9% 29.4% <0.001 
1994 18.2% 26.1% 0.2 
1999 28.8% 43.8% 0.08 

* Chi-square for differences between men and women by year 
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The results from chi-square analysis of the relationship between dyspnea and 

indicators of respiratory disease indicated that FEVI and chronic bronchitis were 

associated with dyspnea in men (Table 9). The lack of association in women is likely 

limited by sample size because several cells had less than five subjects. 

Relationships between dyspnea and potential personal risk factors were also 

investigated using chi-square tests (Table 10). A l l risk factors investigated except for 

atopy and race showed at least a weak association with dyspnea in men. Again, the 

analyses involving women only were limited by small sample size. 

Dyspnea was associated (p<0.05 in Student's t-test) with lower F E V I percent 

predicted as well as older age in both women and men (Table 11). 

Both age and percent predicted FEVI were considered as continuous variables in the 

modeling process. Histograms for the age and FEVI percent predicted variables were 

constructed and both variables were approximately normally distributed (results not 

shown). 

Table 9 Association between dyspnea and known indicators of respiratory disease 

% with Dyspnea 
Men (n=824) Women (n=101) 
Yes p* Yes p* 

F E V I , percent predicted >80% 14% O.0001 
<80% 31% 

24% 0.02 
60% 

Current Asthma No 16% 0.3 
Yes 21% 

28% 0.9 
28% 

Current Chronic Bronchitis No 12% O.0001 
Yes 41% 

26% 0.4 
35% 

* Chi-square for differences between respiratory disease categories 
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Table 10 Association between dyspnea and risk factors for reporting dyspnea (based 

% Reporting Dyspnea 
Men (n= =824) Women (n=l 01) 
% p* % P* 

Atopy No 16% 0.6 29% 0.6 
Yes 15% 24% 

Race White 16% 0.4 27% 0.5 
Non-white 13% 50% 

Smoking Status Never 9% 0.002 18% 0.4 
Former 19% 34% 
Current 19% 28% 

Number of Visits Two 18% 0.1 30% 0.5 
Three 12% 21% 
Four 18% 38% 

High Historical Asbestos No 15% 0.8 28% 0.9 
Exposure Yes 16% 27% 
Current Exposure to No 22% 0.002 29% 0.2 
Respiratory Irritants Yes 13% 11% 
Childhood Asthma No 16% 0.09 28% 0.7 

Yes 26% 20% 
*Chi-square for differences between risk factor categories 

Table 11 Means (SD) for continuous risk factors for dyspnea, using measures from 
subjects' first visit. 

Dyspnea - p-value* 
No Yes 

Men Mean Age (years) 48.4 52.9 <0.0001 
Mean F E V I , percent predicted 96.4 86.8 <0.0001 

Women Mean Age (years) 47.0 54.5 <0.0001 
Mean F E V I percent predicted 97.6 91.7 0.005 

* p-value for Student's t-test between subjects with and without dyspnea. 

The categories constructed to describe respiratory symptom change over time for 

dyspnea are represented in the first column of Table 12. Table 12 summarizes the 

distribution of dyspnea change over time by smoking and by number of visits for men 

and women, respectively. Asymptomatic men and women were subjects who never 

reported any symptom (none of cough, phlegm, wheeze or dyspnea) during the study 
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period. Of the groups reporting dyspnea, the New (developed) symptom group was the 

largest for both men and women. 

Of importance is the observation that the more visits a subject completed, the more 

likely they were to report a change in dyspnea during follow-up. Subjects in both the 

asymptomatic and the persistent groups had the same responses throughout follow-up, 

and these groups have high proportion of subjects with only two visits. Subjects who 

have more visits (three or four) tended to belong to the categories that describe a dyspnea 

change over time (New, Resolved, Variable). Table 13 describes the change in FEVI 

over time stratified by the pattern of dyspnea change over time. In women, the presence 

of dyspnea seems to have a greater impact on the rate of lung function change. Whereas 

in men, the effect of reporting dyspnea or a change in dyspnea, is harder to determine 

using this descriptive analysis. 

Table 12 Prevalence of dyspnea change categories by smoking status and number of 
visits 

Frequency Current Former # of Visits, n 
n % n % n % 2 % 3 % 4 % 

Asymptomatic Men 184 22% 21 11% 78 42% 108 59% 56 30% 20 11% 

Dyspnea (Men) 
Persistent 56 7% 17 30% 31 55% 39 70% 11 20% 6 11% 
Variable 46 6% 15 33% 20 43% 0 0% 25 54% 21 46% 
New 104 13% 20 19% 53 51% 44 42% 35 34% 25 24% 
Resolved 54 7% 13 24% 35 65% 30 56% 12 22% 12 22% 

Asymptomatic Women 15 15% - - 6 40% 11 73% 4 27% - -

Dyspnea (Women) 
Persistent 12 12% 3 25% 7 58% 9 75% 2 17% 1 8% 
Variable 3 3% 1 33% 1 33% 0 0% 2 67% 1 33% 
New 20 20% 6 30% 8 40% 10 50% 8 40% 2 10% 
Resolved 14 14% 6 43% 7 50% 9 64% 4 29% 1 7% 
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Table 13 FEVI annual change stratified by dyspnea change over time 
FEVI slope (ml/yr) 

N Mean SE 

Asymptomatic Men 184 -51.00 4.56 

Dyspnea (Men) 
Persistent 56 -67.63 11.16 
Variable 46 -48.20 4.86 
New- 104 -53.63 5.51 
Resolved 54 -39.27 5.91 

Asymptomatic Women 15 -12.11 9.43 

Dyspnea (Women) 
Persistent 12 -8.86 21.69 
Variable 3 -30.83 12.57 
New 20 -35.18 14.20 
Resolved 14 -29.38 15.48 

4.5.2 Traditional Fixed Effects - Proc Logist ic 

Fixed effects models were constructed for comparison purposes. A l l risk factors with 

p<0.20 in descriptive analysis were offered to the model: age, sex, smoking, work area, 

exposure frequency and number of visits. 

First a model predicting dyspnea was run using only data from the first visit. The final 

model results are shown in Table 15 (Table 14 shows the initial model before non

significant variables were removed). The final model indicates that at the first visit 

subjects who are older and female are more likely to report dyspnea. Subjects with 

current respiratory exposure are more likely to report dyspnea. This finding may be a 

result of the healthy worker effect, whereby workers experiencing negative health effects 

are moving out of high exposure work areas. 
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Table 14 Initial model for predictors of dyspnea using only first visit responses 

Estimate SE 
Intercept -3.34 0.54 

OR 95% Wald CL 
Age 1.03 1.01 1.05 
Female 1.54 0.88 2.69 
Childhood asthma 1.63 0.79 3.36 
Never Smoker ref 
Former Smoker 1.92 1.18 3.11 
Current Smoker 2.18 1.32 3.60 
High Historical Asbestos Exposure 1.20 0.80 1.82 
Current Respiratory Irritant Exposure 0.55 0.36 0.82 
Two Visits ref 
Three Visits 0.74 0.49 1.12 
Four Visits 1.25 0.76 2.06 

Model AIC 821 

Table 15 Final model for predictors of dyspnea using only first visit responses 

Estimate SE 
Intercept -3.18 0.50 

OR 95% Wald C L 
Age 1.03 1.01 1.05 
Never Smoker ref 
Former Smoker 1.93 1.20 3.11 
Current Smoker 2.16 1.32 3.54 
Current Respiratory Irritant Exposure 0.53 0.37 0.75 

Model AIC 820 
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Table 16 Final fixed logistic regression model, adjusted for lung function, using only 

Estimate SE 
Intercept 0.34 0.91 

OR 95% Wald C L 
F E V I , percent predicted 0.97 0.96 0.98 
Age 1.02 1.00 1.04 
Never Smoker ref 
Former Smoker 1.81 1.12 2.93 
Current Smoker 1.80 1.08 2.98 
Current Respiratory Irritant Exposure 0.54 0.38 0.77 

Model AIC 854 

After adjusting for FEVI percent predicted (Table 16), there were no changes in the 

risk factors. Lower FEV1 percent predicted was associated with reporting dyspnea. 

Smoking and older age remained risk factors and exposure to respiratory irritants in the 

current job remained a protective factor. 

For comparison purposes only, a fixed effects model of the predictors of dyspnea was 

also run using all the data points and ignoring the correlation between repeated visits. 

The repeated visits on individual subjects were treated as independent observations for 

this model. This model is wrong from a statistical point of view, but the results are 

presented so that we may compare the results to those of the mixed model adjusting for 

the autocorrelation. The initial and final models using all the data (ignoring 

autocorrelation) are shown in Table 17 and Table 18 respectively. The models using all 

of the data indicated that older age, being female, reporting childhood asthma, smoking 

and having more complete visits were all risk factors for reporting dyspnea. Substantially 

more risk factors were identified in this model than in the model using only subjects' first 

visit data. As in the fixed effects model using only baseline data, exposure to respiratory 

irritants in the current job was protective for reporting dyspnea. 
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Table 17 Initial model for predictor of dyspnea using all visits, and all subjects 
(n=2472). Results from fixed effects logistic regression. 

Estimate SE 
Intercept -3.78 0.32 

OR 95% Wald CL 
Age 1.05 1.04 1.06 
F e m a l e 1 . 5 2 1 . 0 8 2 . 1 5 
CJiiidhood a s t h m a 2 . 8 4 2 . 0 1 4 . 0 1 
Never Smoker ref 
Former Smoker 1.10 0.85 1.43 
Current Smoker 1.72 1.29 2.28 
High Historical Asbestos Exposure 1.08 0.84 1.39 
Current Respiratory Irritant Exposure 0.62 0.50 0.79 
Two Visits ref 
Three Visits 0.76 0.60 0.97 
Four Visits 1.11 0.85 1.46 

Model AIC 2273 

Table 18 Final model for predictor of dyspnea using all visits, and all subjects 

Estimate SE 
Intercept -3.76 0.31 

OR 95% Wald C L 
Age 1.05 1.04 1.06 
Female 1.48 1.06 2.05 
Childhood asthma 2.85 2.02 4.02 
Never Smoker ref 
Former Smoker 1.11 0.86 1.44 
Current Smoker 1.72 1.29 2.29 
Current Respiratory Irritant Exposure 0.64 0.51 0.80 
Two Visits ref 
Three Visits 0.76 0.60 0.98 
Four Visits 1.13 0.86 1.47 

Model AIC 2271 



Table 19 Final fixed effects logistic regression, adjusted for lung function, using all 
data 

Estimate SE 
Intercept -0.01 0.56 

OR 95% Wald CL 
F E V I , percent predicted 0.97 0.96 0.98 
Age 1.03 1.02 1.04 
Female 1.63 1.16 2.28 
Childhood asthma 2.16 1.50 3.11 
Never Smoker ref 
Former Smoker 1.01 0.78 1.32 
Current Smoker 1.34 1.00 1.81 
Current Respiratory Irritant Exposure 0.64 0.51 0.81 
Two Visits ref 
Three Visits 0.71 0.56 0.92 
Four Visits 1.06 0.81 1.39 

Model AIC 2427 

Again, the model was adjusted for FEVI percent predicted (Table 19). In the adjusted 

model all included covariates remained significant. Lower FEVI percent predicted was 

again associated with reporting dyspnea. 

4.5.3 Proc Gl immix 

The first mixed effect model using Proc Glimmix was constructed to describe the 

predictors of dyspnea. Subject was included as a random effect as was a random 

intercept variable. Variables offered into the model resulting in estimated coefficients 

that were significant at p<0.10 level were left in the model. The initial and final models 

are shown in Table 20 and Table 21. Older age, being female, smoking and reporting 

childhood asthma were risk factors for reporting dyspnea. Current exposure to 

respiratory irritants is protective for reporting dyspnea and there seems to be a trend 

towards less dyspnea in subjects who have a three complete visits. Recall that the 

random intercept variance (shown in all Proc Glimmix results) is a measure of variance in 

the random intercept between subjects in the model. 
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Table 20 Initial mixed model using all data (n=2472) to determine predictors of 
reporting dyspnea at any point in time 

Estimate SE 
Intercept 
Random Intercept Variance 

Age. 

-4.11 0.40 
1.37 ' 0.18 

OR 95% Wald CL 
1.05 

Female 1.70 
Childhood asthma 2.99 
Never Smoker 
Former Smoker 
Current Smoker 

ref 
1.20 
1.75 

High Historical Asbestos Exposure 1.08 
Current Respiratory Irritant Exposure 0.66 
Two Visits 
Three Visits 
Four Visits 

Model Pseudo-AIC 

ref 
0.73 
1.13 

11792 

1.03 1.07 
0.97 2.98 
1.71 5.23 

0.80 
1.12 

1.81 
2.74 

0.74 1.59 
0.46 0.94 

0.49 
0.72 

1.07 
1.78 

Table 21 Final mixed model using all data (n=2472) to determine 
reporting dyspnea at any point in time 

Estimate SE 
Intercept -4.09 0.40 
Random Intercept Variance 1.37 0.18 

OR 95% Wald C L 
Age 1.05 1.03 1.07 
Female 1.65 0.96 2.82 
Childhood asthma 3.01 1.72 5.25 
Never Smoker ref 
Former Smoker 1.21 0.81 1.81 
Current Smoker 1.76 1.12 2.74 
Current Respiratory Irritant Exposure 0.67 0.47 0.95 
Two Visits ref 
Three Visits 0.73 0.50 1.07 
Four Visits 1.15 0.74 1.80 

Model Pseudo-AIC 11789 
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Table 22 Final mixed model describing predictors of dyspnea, adjusted for lung 
function. 

Estimate SE 
Intercept -0.03 0.71 
Random Intercept Variance 1.32 0.18 

OR 95% Wald C L 
F E V I , percent predicted 0.97 0.96 0.98 
Age 1.04 1.02 1.05 
Female 1.74 1.12 2.72 
Childhood asthma 2.38 1.49 3.79 
Never Smoker ref 
Former Smoker 1.03 0.74 1.45 
Current Smoker 1.32 0.91 1.93 
Current Respiratory Irritant Exposure 0.67 0.50 0.90 
Two Visits ref 
Three Visits 0.67 0.49 0.93 
Four Visits 0.99 0.68 1.42 

Model Pseudo-AIC 11925 

After adjusting for lung function (Table 22) (using percent predicted FEVI) older age, 

being female and history of childhood asthma were risk factors for reporting dyspnea, but 

smoking was not a significant predictor of dyspnea. Again results indicated that working 

in a job with current exposure to respiratory irritants was associated with less dyspnea 

and subjects with three complete visits were also less likely to report dyspnea (as 

compared with having two visits). 

The next Proc Glimmix models were constructed to determine whether the probability 

of reporting dyspnea was changing over time. 

First, a model including visit year as the only covariate was used to estimate the 

correlation between repeated measures of dyspnea. The model did not converge when 

all subjects were included, likely due to the substantial amount of missing data. The 

model did converge when the data was limited to men with complete date (n=148). The 

estimated correlation matrix for the limited dataset is shown in Figure 3. A l l between-

visit year correlation estimates are less than 0.5, implying that none of the dyspnea 
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responses were highly correlated. The variation in the correlation estimates indicates that 

in consecutive visits years, responses to the dyspnea question are more correlated than 

visits further apart (r=0.34 between visitl and visit2, but r=0.28 between visitl and 

visit4). The correlation estimates also suggest that the correlation between later 

consecutive visits is greater than between earlier consecutive visits (r=0.34 between visitl 

and visit2, r=0.47 between visit3 and visit4). This may also be interpreted as an age 

effect, suggesting that as subjects aged their responses were more likely to be correlated 

at consecutive visits. 

Figure 3 Estimated correlation matrix (correlation between repeated measures of 
dyspnea) for men with complete data (n=148) 

88 91 94 99 

88 'l.OO 0.34 0.20 0.28 

91 1.00 0.43 0.38 
94 1.00 0.47 

99 1.00 

Next, a mixed effect model with a random intercept and dummy variables for each 

visit year was constructed. The estimated regression coefficients indicate that for both 

men and women (Table 24 and Table 25 respectively) the probability of reporting 

dyspnea changed over time. 

In the last study year (1999), the probability of reporting dyspnea was greater than at 

baseline. This difference was only statistically significant in men. The estimated 

variance in the random intercept was significantly different from zero in both men and 

women indicating the subjects had different intercept values, but the variance appeared to 

be larger in men than in women. 
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Table 23 Model for the effect of visit year on reporting dyspnea including random 
intercept term, all subjects (n= =2472) 

Estimate SE 
Intercept -1.76 0.11 
Random Intercept Variance 1.50 0.18 

OR 95% Wald CL 
1988 ref 
1991 0.98 0.74 1.30 
1994 1.24 0.90 1.71 
1999 2.23 1.63 3.04 

Table 24 Model for the effect of visit year on reporting dyspnea 
intercept term, Men (n=2221) 

Estimate SE 
Intercept -1.86 0.12 
Random Intercept Variance 1.54 0.19 

OR 95% Wald CL 
1988 ref 
1991 0.96 0.70 1.30 
1994 1.29 0.91 1.83 
1999 2.30 1.65 3.21 

Table 25 Model for the effect of visit year on reporting dyspnea including random 
intercept term, Women (n=251) 

Estimate SE 
Intercept 
Random Intercept Variance 

-1.04 
1.06 

0.27 
0.44 

OR 95% Wald CL 
1988 ref 
1991 1.09 0.54 2.19 
1994 0.98 0.41 2.37 
1999 2.09 0.82 5.32 

This model can also be run as a saturated model with no intercept. When the intercept 

is excluded the coefficients for consecutive visit years can be easily compared. Results 

from the saturated model (Table 26) show that in 1988, 1991 and 1994 the odds ratio for 

reporting dyspnea are similar, but in 1999 the odds ratio is significantly greater as was 

shown in the random intercept model above (Table 23). 
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Table 26 Saturated model demonstrating the effect of each visit year on reporting 

Estimate SE 
Residual Variance 1.00 0.028 

OR 95% Wald CL 
1988 0.20 0.17 0.24 
1991 0.20 0.16 0.24 
1994 0.23 0.19 0.30 
1999 0.43 0.35 0.53 

A final model including the risk factors for dyspnea, an adjustment for FEVI percent 

predicted as well as the visit year covariates (time trends) was constructed to determine 

whether the effect of visit year was actually an age effect. The results from this final 

model (Table 27) indicate that both visit year and the number of complete visits are 

significantly associated with dyspnea even after adjusting for identified risk factors 

(including age) and F E V I percent predicted. 

Table 27 Final mixed model using all data (n=2473), risk factors, time covariates 

Estimate SE 
Intercept 0.88 0.70 
Random Intercept Variance 1.32 0.18 

OR 95% Wald C L 
Age 1.03 1.01 1.04 
Female 1.84 1.18 2.87 
F E V I , percent predicted 0.96 0.95 0.97 
Childhood asthma 2.19 1.38 3.50 
Current Respiratory Irritant Exposure 0.68 0.51 0.91 
Two Visits ref 
Three Visits 0.63 0.46 0.87 
Four Visits 0.86 0.59 1.25 
1988 Visit ref 
1991 Visit 0.82 0.61 1.10 
1994 Visit 1.01 0.72 1.43 
1999 Visit 1.51 1.05 2.17 

Model Pseudo-AIC 11918 
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It is also possible to use time, or visit year, as a continuous variable to determine 

whether the probability of reporting dyspnea is changing over time. A simple analysis of 

the population time trend is shown in Table 28. For each increase of one calendar year, 

the probability of dyspnea increases by seven percent. 

Table 28 Model of the effect of calendar year (continuous) on reporting dyspnea, all 

Estimate SE 
Intercept -2.04 0.12 
Random Intercept Variance 1.48 0.18 

OR 95% Wald CL 
Time, in years 1.07 1.04 1.10 

Model Pseudo-AIC 11574 

4.5.4 Proc Traj 

Results from the Proc Traj model are shown here, beginning with the model fitting 

process. Table 29 outlines the process of selecting the "best" number of groups in the 

mixture model. Five models were fit to the data: a one group model up to a five group 

model. In each model all included groups were assigned a quadratic (second order) 

equation to describe their trajectory. Results are shown for the complete dataset (n=925) 

as well as for a subset of men with complete data (n=148). 

For each model a BIC value was obtained from the output. This BIC value was 

recorded and compared to the null model. For each new model the null model was the 

group with one less group. For example, the two group model was compared to the one 

group model (null model), and the three group model was compared to the two group 

model (null model). 

Results in Table 29 show that Model 2 was an improvement over Model 1 due to the 

smaller BIC and the larger 2* ABIC value. According to the criteria of Jones, Nagin and 

Roeder (5) there is strong evidence against Model 1 when comparing Models 1 and 2. 

But when Model 2 and Model 3 were compared, there was no evidence against Model 2 

suggesting that Model 2 is the better model. 
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Table 29 Model fit statistics for stepwise iterations of Proc Traj model to determine 
number of groups using all subjects' data (n=925 subjects) 

No. of BIC 
Model Groups n=2472 2*ABIC 

Model 
Comparison Evidence 

one 
two 

three 
four 
five 

-1211.02 
-1114.73 

-1129.33 
-1145.09 
D.N.C.* 

192.58 

-29.20 
-31.52 

Model 2 : Model 1 

Model 3 : Model 2 
Model 4 : Model 3 
Model 5 : Model 4 

Very strong evidence against 
Model 1 
No evidence against Model 2 
No evidence against Model 3 

* model did not converge 

Table 30 Model fit statistics for stepwise iterations of Proc Traj model to determine 
number of groups only male subjects with complete data (n=148 subjects) 

No. of BIC 
Model Groups n=592 
1 one -300.17 
2 two 

-279.98 
3 three -287.15 
4 four D.N.C.* 
5 five D.N.C.* 

*model did not converge 

2*ABIC 

40.38 
-14.34 

Model 
Comparison Evidence 

Model 2 : Model 1 

Model 3 : Model 2 
Model 4 : Model 3 
Model 5 : Model 4 

Strong evidence against 
Model 1 
No evidence against Model 2 

Next, the shape of each group's change over time was determined using the output 

BIC. A two group model was fit to the model and the order of each group's trajectory 

was manipulated to determine which had the best fit. One of the groups in the two group 

model was constrained to be a flat trajectory (zero order equation) because descriptive 

analysis of dyspnea indicated that the majority of the population never reported dyspnea 

(67% of men, 51% of women - Table 12) 

Results of fitting the shape of each group's trajectory are shown in Table 31. Again, 

the BIC output was used, this time the difference in BIC between models was assessed 

using Jeffreys's scale of the evidence (47). Values of less than one indicate that the 

alternate (complex) model is favored; a value greater than one indicates that the null 

model is favored. Results from this process suggest that the two group model with a zero 

order and a first order equation is the best fit model. In other words, there are two 

trajectories of change in dyspnea over time, one group with a low (but non-zero) 
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probability of dyspnea and another group with a linearly increasing probability of 

dyspnea. 

After deciding on the number of groups and the shape of each groups' trajectory, the 

final model was run. The estimated coefficients in Table 33 describe two regression 

equations, one for each group. The estimate for the linear effect of year (continuous) on 

dyspnea can be transformed into an odds ratio of 1.15 (95% CL 1.08-1.22). 

Table 31 Model fit statistics for stepwise iterations of Proc Traj model to determine 
trajectory shape over time using all subjects' data (n=925 subjects) 

Order of BIC 
Model equations n=2472 Bij 

Model 
Comparison Evidence for/against 

1 0 0 -1122.32 -
2 0 1 -1111.30 0.00 
3 02 -1114.13 16.95 
4 0 3 -1118.06 50.91 
5 04 -1121.58 33.78 

Model 2 : Model 1 Strong evidence for Model 2 
Model 3 : Model 2 Strong evidence for Model 2 
Model 4 : Model 3 Strong evidence for Model 3 
Model 5 : Model 4 Strong evidence for Model 4 

Table 32 Model fit statistics for stepwise iterations of Proc Traj model to determine 
trajectory shape over time using subjects with complete data (n=148 subjects) 

Order of BIC 
Model equations n=592 Bij 

Model 
Comparison Evidence for/against 

1 0 0 -272.88 -
2 0 1 -269.80 0.05 
3 0 2 -272.71 18.36 
4 0 3 -275.91 24.53 
5 0 4 -278.91 20.09 

Model 2 : Model 1 Strong evidence for Model 2 
Model 3 : Model 2 Strong evidence for Model 2 
Model 4 : Model 3 Strong evidence for Model 3 
Model 5 : Model 4 Strong evidence for Model 4 

Table 33 Final two-group model describing the change in the probability of dyspnea 
over time, using all subjects' data (n=925) 

Group Parameter Estimate SE P 
Membership 
Probability 

1 Intercept -2.92 0.25 <0.001 72.8% 

2 Intercept -12.96 2.78 <0.001 27.2% 
Linear (Year) 0.14 0.03 <0.001 
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Table 34 Final two-group model describing the change in the probability of dyspnea 
over time, using subjects with complete data (n=148) 

Group Parameter Estimate SE P 
Membership 
Probability 

1 Intercept -2.59 0.27 O.001 76.4% 

2 Intercept -17.42 5.78 0.003 23.6% 
Linear (Year) 0.19 0.06 0.003 

The final Proc Traj model for the entire population can be summarized in a system of 

two equations, one for each identified group, where: 

^n= the dyspnea for subject i at time, t and, 

= the probability of ^" given membership in group one. 

Resulting in two equations: 

P\Y„=\) = 
l + e 

pP0+Pl(Yeuri,) 

l + e P0 + P,(Yearil) 

Inputting the parameter estimates from the model gives: 

-2.92 

-12.96+0.14(>W„ ) 

P (?U 1) j -\2S6*0.\A(Year„) 
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A zero order equation, or a horizontal straight line approximates group one. Subjects 

in this group have a stable risk (or probability) of reporting dyspnea. A straight line, or a 

linear first order equation approximates group two. Subjects in group two have an 

increasing risk of reporting dyspnea as follow-up progresses. These patterns of change 

over time can be observed in Figure 4 and Figure 5. In these figures, there are two lines 

visible for each group; the dashed line indicates the predicted trajectory described by the 

estimated regression coefficients and the solid line describes the average probability of 

reporting dyspnea at each measured time point for each group. 

Figure 4 Graphical output from Proc Traj showing final two-group model with 
group membership probability and shape of change over time using all subjects' 
data (n=925) 
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Figure 5 Graphical output from Proc Traj showing final two-group model with 
group membership probability and shape of change over time using men with 
complete data (n=148) 
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Using the posterior group assignments from the output data set descriptive analysis 

can be completed to identify any risk factors associated with group assignment. Risk 

factors from the Fixed Effects and Proc Glimmix models were investigated by group 

assignment and results are shown in Table 35. Factors that may be related to membership 

in Group 2 include being female, older age, lower FEVI percent predicted. Working in a 

job with exposure to respiratory irritants seemed to increase the probability of belonging 

to Group 1 (less dyspnea). These significant predictors are similar to the factors 

identified in the both fixed and mixed effects models. 
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Table 35 Description of subgroups using posterior group assignments from Proc 
Traj output dataset (entire dataset, n-925) 

Group 1 Group 2 
n % n % 

Overall 680 73% 245 27% 

Men Women 
Group 1 Group 2 Group 1 Group 2 
n % n % n % n % 

Frequency 624 76% 200 24% 56 55% 45 45% 
Never Smoker 200 32% 48 24% 15 27% 12 27% 
Former Smoker 258 41% 82 41% 15 27% 17 38% 
Current Smoker 166 27% 70 35% 26 46% 16 36% 
Childhood Asthma, no 600 96% 185 92% 53 95% 43 96% 
Childhood Asthma, yes 24 4% 15 8% 3 5% 2 4% 
Atopy, no 387 62% 125 63% 38 68% 36 80% 
Atopy, yes 213 34% 64 32% 16 29% 9 20% 
2 visits 290 46% 109 55% 32 57% 28 62% 
3 visits 218 35% 59 30% 20 36% 13 29% 
4 visits 116 19% 32 16% 4 7% 4 9% 
Low Asbestos Exposure 207 33% 65 32% 50 89% 40 89% 
High Asbestos Exposure 417 67% 135 68% 6 11% 5 11% 
No Irritant Exposure 163 26% 79 40% 49 88% 43 96% 
Irritant Exposure 461 74% 121 61% 7 12% 2 4% 
Age (mean, SD) 44.8 9.8 49 ?Il 44.4 10.4 49.8 10.9 
FEVI (mean, SD) 3.91 0.76 3.41 0.75 2.79 0.49 2.56 0.52 
FEVI percent predicted (mean, SD) 99.0 12.6 89.6 15.0 97.8 13.6 94.3 15.1 

In addition, the categories of dyspnea change over time are shown stratified by group 

assignment and sex (Table 36). As expected, subjects never reporting dyspnea are 

members of Group 1, while subjects persistently reporting dyspnea are Group 2 members. 

The majority of Group 2 members (men and women) are subjects who developed 

dyspnea. Interestingly, the majority of subjects who resolved dyspnea or reported 

variable dyspnea were also assigned to Group 2, the group with increasing dyspnea over 

time. 
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Table 36 Category of dyspnea change over time stratified by sex and group 
membership 

Men Women 
Group 1 Group 2 Group 1 Group 2 
n % n % n % n % 

Never Report Dyspnea 564 91% 0 0% 52 93% 0 0% 
Always Report Dyspnea 0 0% 56 28% 0 0% 12 27% 
Resolved Dyspnea 24 4% 29 14% 2 4% 12 27% 
Developed New Symptom 11 2% 91 45% 1 2% 19 42% 
Variable Dyspnea 20 3% 26 13% 1 2% 2 4% 

4.6 D i s c u s s i o n 
The use of categories to describe a pattern of change over time is a logical approach 

when there are only two time points because all possible patterns of change can be 

effectively captured. But when more time points are being considered, this crude 

categorization can potentially lead to biased results. 

The results from the descriptive analysis of marine worker population highlight the 

finding that the more visits a subject completes, the more likely they are to report a 

symptom change during follow-up. This may be due to the fact that more visits means 

that the subject has a longer follow-up and that the probability of reporting a change in 

symptoms increases over time. Of more concern would be if the subject was responding 

to the research study itself and the experience of participating was increasing the 

probability of reporting a change in symptoms. 

It is essential to note that when using more than two time points with the classification 

strategy, the fifth category (which was labeled 'Variable' in this analysis) is, by 

definition, limited to subjects who have greater than two visits. A subject with only two 

visits will slot into one of the four categories previously reported in the literature. 

The frequency of symptom change categories in a population could also be affected by 

the baseline symptom prevalence rates. If a population reports very few symptoms at 

baseline there are few subjects "available" to resolve a symptom and thus a lower 

probability of subjects ending up in the 'Resolution' category. Vice versa, if the 
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population has very high symptom prevalence at baseline, there will be few subjects that 

can logically develop a new symptom during follow-up and the frequency of the 'New' 

category will be low. For these reasons, the baseline symptom prevalence should be 

considered when analyzing and comparing studies using a crude categorization method. 

When there are more than two time points not only does the number of possible 

patterns increase, the timing of these changes over time will likely vary between 

individuals (i.e. some individuals may develop a new symptom early in follow-up while 

another may not develop a new symptom till the end of follow-up). As the length of 

follow-up increases the temporal location of respiratory symptom change will become 

variable and perhaps more critical to the research questions; this cannot be captured by a 

crude categorization strategy demonstrated here. 

4.6.1 Traditional Fixed Effects- Proc Logist ic 

Results from the fixed effects models using Proc Logistic indicated that when using 

only baseline data (each subjects' first visit date) older age, smoking and current 

exposure to respiratory irritants are significant predictors of dyspnea. After adjusting for 

FEVI percent predicted all predictors remained significant. 

However, when a 'faulty' model is constructed using all subjects' data from all visits 

(ignoring autocorrelation) more significant predictors of dyspnea are identified. Older 

age, being female, history of childhood asthma smoking current exposure to respiratory 

irritants and the number of complete visits are all significant predictors. When FEVI 

percent predicted is accounted for, only smoking ceases to remain a significant predictor. 

4.6.2 Proc Gl immix 

Results from two Proc Glimmix models suggested that the probability of reporting 

dyspnea did change over time. First, the marginal model provided correlation 

coefficients for each pair of visit dates and results showed correlation coefficients of less 

than 0.5 for all comparisons suggesting that the responses were not highly correlated 

from year to year. Second, mixed models were used to demonstrate the change over time 

in dyspnea reporting. The first mixed model included visit date as a covariate and a 

random intercept resulted in different odds ratios for reporting dyspnea at each visit date 
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and the odds of reporting dyspnea in 1999 (the last visit year) were significantly higher 

than reporting dyspnea in 1988 (the first visit year). The mixed models also showed the 

same results using a saturated model where each visits year was input as a dummy 

variable and no intercept was modeled. This model resulted in similar odds ratios for the 

first three visit years (1988, 1991, 1994) and a significantly larger odds ratio in 1999. 

The saturated model better facilitated comparison between visit years and also 

demonstrated that the probability of reporting dyspnea was low at all visits. The final 

mixed model included time as a continuous variable (calendar year) and a random 

intercept. Again, results indicated that probability of reporting dyspnea increased over 

time, approximately 7% per increase of one calendar year. 

Proc Glimmix also modeled the predictors of reporting dyspnea at any point in time 

including a random intercept term (Table 20). Results from this model showed similar 

results as the fixed effects models that were completed. Older age, being female, 

childhood asthma, smoking and current exposure to respiratory irritants were significant 

predictors of dyspnea. As in the fixed models, after adjusting for F E V I percent 

predicted, smoking was no longer a significant predictor of dyspnea but all other 

covariates remained significant. These results indicate that smoking is a risk factor only 

because it is related to having lower than expected lung function, whereas other risk 

factors, such as being female, are independent risk factors for reporting dyspnea 

irrespective of lung function. 

The estimated variance component of the random intercept included in all the Proc 

Glimmix models was consistent in all models (range 1.33-1.37) and in all cases was 

statistically different from zero. This indicates that there was significant amount of 

variance in the intercept that was not accounted for by the fixed effects parameters. 

Proc Glimmix models failed to converge when modeling the correlation structure 

between repeated measures of dyspnea using all of data (n=925). Despite the ability of 

generalized linear mixed models to handle missing data, the lack of convergence is likely 

due to the missing data in the population. When the dataset was limited to male subjects 

with complete data (n=148) the model converged and provided an estimated correlation 

matrix. 
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With the Proc Glimmix models it is difficult to infer anything about the shape or 

pattern of change over time in the outcome. It is a powerful tool for determining the 

predictors of an outcome by accounting for the autocorrelation in the repeated measures, 

but does not model change in the outcome with ease. 

4.6.3 Proc Traj 

Results from Proc Traj models indicated that there were two distinct patterns of 

change over time in the probability of reporting dyspnea in the study population. One 

group had a constant low level probability of reporting dyspnea and included 73% of the 

population. The second group had a linearly increasing probability of reporting dyspnea 

and represented 27% of the population. 

Using the posterior group assignments, descriptive analysis showed that being female, 

older and lower F E V I were associated with membership in Group 2. Current work in an 

area with exposure to respiratory irritants was associated with membership in Group 1, in 

other words it was associated with less dyspnea. The predictors of group membership 

identified from Proc Traj models were are very similar to the significant predictors 

identified using Proc Glimmix. 

It is important to remember that the groups identified in the Proc Traj models are not 

real groups, they are approximations of patterns of change over time. The post-hoc 

analysis using the posterior group assignments (Table 35) would seem to go against this 

assertion, but as long as there is awareness of this limitation, potential relationships 

between group membership and risk factors can be explored using the group assignments. 

It is also possible to include risk factors in the model fitting stage so that the risk factors 

themselves impact the model selection process. 

The strength of Proc Traj is that it uses all of the data collected on the outcome and 

risk factors (if included). Proc Traj models would allow for the inclusion of time varying 

or time stable covariates. 

Unlike in the Proc Glimmix models, there were no convergence problems when using 

Proc Traj with the complete data set (n=925) that included missing data. However when 

the data set was limited to men with complete data (n=148) the models with larger 
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numbers of groups and higher order equations would not converge. This is most likely 

due to a lack of power, because as the number of groups increased and the order of the 

trajectory shape increased the number of parameters estimated increases and the sample 

size for these models was relatively small (n=148). 

The results from Proc Traj suggested only a two group model of change in dyspnea 

over time. These results are quite different than the four groups identified in previous 

studies using the categorization method. This may be due in part to a smaller then 

necessary sample size, the proportion of missing data in the population or the small 

number of repeated measures. However, it may also be due to that fact that the simple 

categorization of subjects based on two time points ignores aspects of the data. Proc Traj 

included all subjects' visits and placed each visit at the appropriate visit year in the 

model; the categorization method does neither of these. The inclusion of time into the 

model may have complicated the modeling process because subjects were not all starting 

and ending at the same point in time. 

Following the initial analysis, Proc Traj models were run to test whether the number of 

visits or the timing of visits affected the model outcome. When only male subjects with 4 

visits (complete data) were included the same two group model was supported. A model 

excluding subjects with no dyspnea ever supported a one group model, where the 

trajectory was linearly increasing. This one group model was strikingly similar to the 

Group2 trajectory in the reported in the Proc Traj results (Figure 4 and Figure 5). 

Additionally, a Proc Traj model was run using visitl , visit2, visit3 and visit4 as the time 

variable (as opposed to calendar year) to determine whether the timing of subjects' visits 

was affecting the model. Again, the model supported a two group model similar to the 

results reported. Together, these additional models support the robustness of the reported 

Proc Traj model. 

One drawback of Proc Traj is its inability to include random effects in the models. 

The result is that each subject is assumed to follow the estimated trajectory for the group 

they are assigned to. This is clear from the posterior group assignments that slot each 

subject into one of the estimated groups. A random effect would allow for estimation of 

variation around the estimated trajectories so that individuals were not expected to 
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exactly follow the estimated trajectory, but rather to follow a variation on the estimated 

trajectory. 

Despite this drawback, the ability of Proc Traj to model multiple patterns of change 

and to model different shapes of change over time within the same model is beneficial. 

The result allows for the identification of discrete group and also the description of the 

unique patterns of change between these groups. This is in stark contrast to a normal 

regression or growth model where only one population mean is estimated and no 

inference about distinct subgroups can be made. 

4.6.4 Relevance to Previous Literature 

When using the categorization method, the frequencies of patterns of dyspnea change 

over time in the marine workers cohort were similar to previous studies. The never 

reporting dyspnea group was the largest, and was larger for men compared to women. 

The 1993 paper by Sherrill et al (27) is a good example of how a mixed effects model 

can be applied to pulmonary function data. In the case of Sherrill (27), the outcome was 

a continuous lung function variable; no previous literature has applied these models to a 

binary outcome such as dyspnea. 

The papers by Jedrychowski, Jaakkola and Brodkin each used a fixed effects linear 

regression to model the change in lung function parameter (FEVI or FVC) over time (19-

21). Each of these studies is an example of where a mixed effects regression could have 

been applied. The used of mixed effects regression would have removed the requirement 

of running an individual linear regression for each subject. Instead, all the repeated lung 

function measures could have been used as the outcome variable. Then the outcome 

variable would be the exact measures, rather than an estimated coefficient with an 

ignored error. This approach would better account for the correlation between the 

repeated measures than the individual linear regression. 

Studies using the pattern of symptom change over time (18-22) as a predictor, or those 

interested in symptom change as an outcome (7, 11, 28-30) may have benefited from the 

use of Proc Traj to describe the different patterns of change over time in their 
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populations. In addition, the group membership information could have been used as a 

predictor of lung health outcomes. 

4.7 C o n c l u s i o n s 
In contrast with previous published analyses where data was excluded and subjects 

were categorized based on their symptom responses, this case study used dyspnea as an 

outcome in analyses using Proc Traj and Proc Glimmix. Proc Traj and Proc Glimmix 

remove this need to categorize subjects and at the same time use all of the collected data. 

These models also allow for the inclusion of time varying covariates, again removing the 

need for categorization or exclusion of covariate data. 

When interpreting these results it is important to remember that the models are 

investigating a respiratory symptom that was self-reported by subjects. Compared to 

other binary data, respiratory symptoms may be more subjective and have more random 

variability. This may result in more random error and less systematic change over time. 

Both Proc Traj and Proc Glimmix were able to provide information on whether 

dyspnea was changing over time in the study population as well as the predictors of 

dyspnea. However, Proc Traj is best suited for describing multiple patterns of change 

over time while Proc Glimmix is best suited for answering questions about the predictors 

of the outcome at a population level. These techniques provide valuable information 

about respiratory symptoms and how they change over time. 

83 



5 Perspectives 
The work presented in this thesis has demonstrated that previous literature did not take 

full advantage of collected data, particularly in reference to respiratory symptom data 

resulting from the ATS questionnaire. Few studies have considered symptoms as an 

outcome in analyses. Some have incorporated symptoms as a predictor of lung function 

using a categorical variable based on two time points, ignoring significant amounts of 

data. 

Two alternative methods for exploring respiratory symptoms as an outcome and using 

all of the data collected in longitudinal studies were reviewed in Chapter 3: Proc Traj and 

Proc Glimmix, also called discrete mixture models and a generalized linear mixed 

models. These models both handle longitudinal repeated measures data and permit the 

inclusion of time varying covariates so that the repeated nature of all of the data is 

considered. Proc Traj and Proc Glimmix both construct regression modes to describe the 

data, however they permit inferences about different research questions. 

Proc Traj is a special case of a mixture model. Proc Traj identifies multiple distinct 

subgroups within the population and models the change over time (in the outcome) 

within each subgroup. The result is information about multiple groups within the same 

population. Proc Traj provides information on the number of groups, the shape of their 

change over time (with respect to the outcome variable), what risk factors are associated 

with membership in different groups and the role of covariates in the pattern of change 

over time. 

Proc Glimmix is a mixed regression model procedure that fits a single regression 

equation to the data. Proc Glimmix allows for the inclusion of random effects. The 

results from a mixed model (which include random effects by definition) allow inferences 

about the population trends with respect to change over time, and inferences about the 

predictors of the outcome variable. In addition, the deviation around the group mean is 

estimated for each included random variable. These results describe subject level 

variation in the effect of the random variable on the outcome. 
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Results from the case study of marine transportation workers indicated that the 

prevalence of dyspnea change over time categories was similar to those in previously 

published literature. But further analysis of the relationships between these categories 

and covariates suggested that the categories might be introducing bias into the results; 

within dyspnea change over time categories, subjects were not distributed equally based 

on of their number of visits. Also, the bias resulting from using only two data points was 

highlighted. When subjects' data from intermediate visits is ignored, observed symptom 

changes might be missed resulting in misclassification. 

Results from both Proc Traj and Proc Glimmix models indicated that dyspnea changed 

over time. Proc Traj identified two patterns of dyspnea change over time; one group with 

a consistently low risk of reporting of dyspnea; and another group with a linearly 

increasing risk of reporting dyspnea. Proc Glimmix confirmed that dyspnea was 

changing over time in four separate models. The first model estimated the correlation 

between visits year and results suggested that the responses at each visit were not highly 

correlated. The second model a produced odds ratio estimates that indicated the 

probability of reporting dyspnea increased over time, and was significantly higher at the 

final visit compared with the first visit. The third model compared odds ratios between 

visit years (rather than to a reference group) and again showed that the odds of reporting 

dyspnea in 1999 were greater than in all other years. The final model used year as a 

continuous variable and indicated that for each increase of one calendar year, the 

probability of reporting dyspnea increased by seven percent. 

Proc Glimmix models also provided evidence of several personal risk factors for 

reporting dyspnea: older age, being female and a history of childhood asthma were all 

associated with reporting dyspnea. Working in a current job where there was exposure to 

respiratory irritants was associated with less dyspnea, perhaps suggesting a healthy 

worker effect. The most notable result was that being female was an independent risk 

factor for dyspnea irrespective of lung function. Exploration of potential risk factors 

using the posterior group assignments from the final Proc Traj model identified the same 

risk factors as the Proc Glimmix model, but without any measure of statistical 

significance. 
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Proc Glimmix is ideally used when the researcher is interested in the group mean and 

the subject level variation around the single group mean. There are many situations 

where this may be appropriate, such as studies of childhood growth where individuals are 

all expected to increase in height over time. But, when thinking of respiratory symptoms, 

it is hard to assume that there is a single group mean that could adequately describe the 

trend in change over time. Proc Glimmix models are also useful when the researcher is 

interested in the predictors of a particular outcome in a population, for example, the 

predictors of reporting dyspnea. 

When knowledge indicates that there are multiple patterns of change over time in the 

outcome, Proc Traj is a technique worth investigating. Proc Traj identifies and models 

multiple distinct pattern of change over time in the population. In the case of respiratory 

symptoms Proc Traj was a logical choice because previous literature had shown that 

individuals experience changes in symptom in different directions (gaining a symptom, or 

resolving a symptom). Proc Traj also incorporates covariates into the model and the 

impact of each covariate on the pattern of change over time can be determined. 

Both Proc Traj and Proc Glimmix are suitable for research questions relating to 

longitudinal respiratory symptom data. Proc Glimmix is best for modeling the predictors 

of reporting a symptom at the population level, while Proc Traj is suited for modeling 

multiple subgroups in the population and their patterns of change over time. Proc 

Glimmix models an overall population mean, but the inclusion of random effects permits 

further inference about individual level differences. Proc Traj is limited to modeling the 

mean of each identified subgroups, with no subject level inference possible. A simple 

guide for applying Proc Traj and Proc Glimmix in studies of respiratory symptoms has 

been compiled and is located in Appendix A. 

5.1 S t reng ths 

One of the main strengths of this thesis is that it highlighted issues with how 

respiratory epidemiologists currently handle symptom data. This thesis outlined the 

problems with categorizing subjects based on responses and the problems with ignoring 

collected data. Going further, this thesis reviewed and evaluated two potential methods 

for improving the way we handle longitudinal respiratory symptom data. Neither of these 
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two methods appears to have been used to analyze respiratory symptom data as an 

outcome in the peer-reviewed literature. 

The exploratory results from these two methods, Proc Traj and Proc Glimmix, provide 

a beginning for future research. The results emphasize the strengths and limitations of 

each technique and, in combination with Appendix A, will help to guide other researchers 

in future studies of respiratory symptom data. 

The analysis presented in this thesis was strengthened by the data available for 

exploring the research questions of interest. The size of the study population, the 

presence of multiple repeated measures of respiratory symptoms and the detailed 

information on personal risk factors and lung health measures were crucial for the case 

study analysis. 

Overall, the results from this thesis contributed to the hypothesis that patterns of 

respiratory symptom change over time are important. Results demonstrated that there 

were risk factors for reporting dyspnea (independent of lung function) and that there were 

two distinct patterns of dyspnea change over time in the study population. 

5.2 L im i ta t ions 

One limitation of this thesis is that it was not a theory based statistical evaluation. The 

statistical concepts and theories behind each of the methods investigated were not 

reviewed. Had a statistician undertaken this thesis, the evaluation of the methods may 

have been more thorough with regard to statistical theory, but the relevance to respiratory 

symptom data may have suffered. It is hoped that the additional relevance to our research 

area will make it easier for further research to flow from this work. 

Missing data in the case study data may have resulted in some bias in the results. The 

data set employed for the exploratory analysis was from a large longitudinal occupational 

surveillance study. This provided a rich data source, but there was a significant amount 

of missing data resulting from subjects missing visit dates. 

There are also limitations inherent to each of the statistical techniques evaluated. Proc 

Glimmix may produce biased coefficient estimates under some circumstances. This bias 
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can be determined with the assistance of a statistician, but this does limit the applicability 

of the procedure for respiratory epidemiologists. 

Proc Traj provides estimates of the group mean for multiple groups that are identified 

within the population but these groups can be misleading. The estimated groups are not 

actual entities and should not be treated as absolute; they are estimations of multiple 

patterns of change. The fact that Proc Traj does not include random effects limits the 

ability of the procedure to make inferences about individual level change over time. 

5.3 Future R e s e a r c h 

Future research should begin by constructing more complex models using Proc Traj 

and Proc Glimmix to further explore the patterns of change over time and the relevant 

personal risk factors. Researchers interested in this area should begin to formulate 

research questions specific to longitudinal respiratory symptoms and to design studies 

with these questions in mind. Appendix A should serve as a valuable reference to 

researchers for this purpose. 

Now that two methods have been identified as useful tools for studying respiratory 

symptoms, perhaps other existing (maybe more complex) statistical methods can be 

identified to better study patterns of change over time. Respiratory epidemiologists 

should continue to work with statisticians to explore better approaches to analyzing 

complex data. 

As with any research findings, it would be ideal to repeat the models presented in this 

thesis on another data set to determine whether the findings regarding dyspnea are 

consistent between populations. Other data sets may also have more complete data or 

contain information on risk factors that were not included in the marine workers study 

population (i.e. exposure measurements, physician visit data). The use of a data set with 

fewer missing data points and more information on potential risk factors will only further 

our understanding of respiratory symptoms, how they change over time and their 

relationship with lung health outcomes. 
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Appendix A . How to use SAS® Proc Traj and SAS® 

Proc Glimmix in Respiratory Epidemiology 

A.1 Int roduct ion 

This document outlines the use of two procedures capable of modeling repeated 

respiratory symptom data in the software package SAS®: Proc Traj and Proc Glimmix. 

SAS® Proc Traj is a discrete mixture model which models the patterns of change over 

time in multiple subgroups within the population. SAS® Proc Glimmix is a procedure 

that fits a generalized linear model to non-linear outcome data either with or without 

random effects. 

A .2 G o a l 

The goal of this document is to provide a concise user's guide for applying discrete 

mixture models (Proc Traj) and generalized linear mixed models (Proc Glimmix) in the 

analysis of longitudinal respiratory symptom data using SAS® software. This document 

does not attempt to describe the statistical theory behind either of these techniques. 

A.3 H o w to use th is d o c u m e n t 

This document presents an outline for setting up models in both Proc Traj and Proc 

Glimmix for analyzing repeated respiratory symptom outcomes. Data organization is 

explained, the modeling procedure is outlined, the basic syntax (appropriate for binary 

respiratory symptom outcomes) is described and the relevant modeling possibilities are 

discussed. 

This document should be a starting point for modeling using Proc Traj and Proc 

Glimmix. Readers are advised to refer to the SAS® documentation as well as the noted 

reference texts for further explanations and for confirmation that the models are 

appropriate for the data in use. 
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A.4 SAS® Tra jec tory P r o c e d u r e 

A.4.1 Overview 

The SAS® Trajectory Procedure (Proc Traj) is a user-friendly finite mixture model 

procedure designed to run easily on the SAS® platform. Proc Traj is capable of fitting a 

discrete mixture model to the data so that multiple distinct subgroups within the 

population can be identified. 

The focus of the Proc Traj model is on group membership and identifying distinct 

subgroups within the population. Proc Traj does not provide any individual level 

information on the pattern of change over time; subjects are grouped and it is assumed 

that every subject in the group follows the same trajectory. There is no random effect 

capability within the Proc Traj model. 

The documentation for SAS® Proc Traj is a peer-reviewed publication by Jones, 

Nagin and Roeder (5) and is available only on B. Jones' website5. A follow-up article to 

the documentation has been submitted for publication and is also available in draft format 

on B. Jones' website. A recent text authored by D. Nagin (47) is a valuable reference for 

users of Proc Traj and should be reviewed by those interested in the statistical theory 

behind Proc Traj. 

A.4.2 Requirements 

To apply Proc Traj to your data, you need (at a minimum) multiple measures of the 

outcome of interest and information on the timing of the repeated measures. It would 

also be helpful to have multiple measures on a number of covariates you are also 

interested in. 

You must also download the Proc Traj application from B. Jones' website5 and have 

copied the files to the folders as directed on the website. 

5 http://www. andrew. emu. edu/user/bjones/ 
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A.4.3 Data Organization 

In order to use Proc Traj you must organize your data in a multivariate, or "wide" 

format, where there is only one row of data for each subject and multiple observations 

included in one line of data. A n example of data ready for use with Proc Traj is shown in 

Table 37, a description of each variable is provided in Table 38. You can see in Table 37 

that the outcome variable "wheeze" is denoted by the variables Wezl , Wez2 and Wez3. 

These three variables correspond to three repeated measurements taken at three different 

times. The time at which each of these measurements was collected is represented by the 

variables Yearl , Year2 and Year3. If a subject did not complete a visits, all variables 

corresponding to that visits are blank, in this case a "." is used to indicate missing data. 

Table 37 Mock data set up for analysis with Proc Traj 
ID Sex Byr CsmkOl Csmk02 Csmk03 WezOl Wez02 Wez03 YrOl Yr02 Yr03 
001 0 1947 0 0 0 0 0 0 1992 1994 1999 
002 1 1953 1 0 0 1 1992 1994 1999 
003 0 1951 0 1 1 1 0 1 1992 1994 1999 
004 0 1946 0 0 1 1 1992 1994 1999 
005 1 1950 1 0 1 1 1 1 1992 1994 1999 

Table 38 Description of variables in mock data (Table 37) 
Variable Description Values 
Name 
ID Subject ID as assigned 
Sex Sex of subject 0= male 

1= female 
Byr Year of birth continuous, in years 
CsmkOl Current smoker at visit 1 0= never or former smoker 
Csmk02 Current smoker at visit 2 1= current smoker 
Csmk03 Current smoker at visit 3 
WezOl Response to wheeze question at visit 1 0= no wheeze 
Wez02 Response to wheeze question at visit 2 1= wheeze 
Wez03 Response to wheeze question at visit 3 
YrOl Date of visit 1 values corresponding to data 
Yr02 Date of visit 2 
Yr03 Date of visit 3 

The variables that describe repeated measures of the same outcome must be numbered 

consecutively (i.e. csmkl, csmk2, csmk3 etc.) before Proc Traj will accept them; this will 
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usually require some recoding. SAS® will not accept the data if the variables are labeled 

alternatively (i.e. smkl992, smkl994, smkl999) even if this is logical given your data 

set. By identifying the variables that contain information on the date of each repeat 

measure (i.e. Y r l , Yr2, Yr3) you are specifying the space between repeated measures. 

Time varying covariates (i.e. Csmkl, Csmk2, Csmk3 for smoking information at each 

visit) must also be named with consecutive numbers corresponding to the visit. 

A.4.4 Dummy Variables 

It is advisable to create dummy variables for each of your covariates that you plan to 

input into a Proc Traj model, as was done for Current Smoking in Table 37. Covariates 

can be input in a binary (dummy) form or a continuous form but Proc Traj does not 

handle categorical covariates. 

A.4.5 Miss ing Data 

Proc Traj is able to handle data that is missing completely at random (MCAR), but is 

unable to handle data that is missing for more complex reasons (47). Missing data can be 

entered in the dataset as shown in Table 37. 

A.4.6 Types of Research Quest ions 

In terms of respiratory symptom data, Proc Traj should be used when your research 

question is similar to one of the following: 

• Are there multiple patterns of change in the outcome? 

• How many patterns of change are there in the outcome? 

• What is the shape of the change over time? 

• What predicts membership in each of these groups? 

• What are the characteristics that differ (or are similar) between the different 
groups? 

A.4.7 Syntax 

The entire Proc Traj syntax is outlined on B. Jones' website5 and should be referenced 

for any further questions regarding syntax. 
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A simple Proc Traj syntax for a two group model of the respiratory symptom wheeze 

is presented here: 

p r o c t r a j data=a.mockdata out=out o u t s t a t = o s o u t p l o t = o p ; 
v a r wez01-wez03; 
i n d e p y e a r 0 1 - y e a r 0 3 ; 
model l o g i t ; 
ngroups 2; 
o r d e r 0 1; 
i d ID; 
ru n ; 
% t r a j p l o t . (OP, OS, " T i t l e o f graph", " S u b t i t l e " , " Y - a x i s 
l a b e l " , " X - a x i s l a b e l " ) ; 

As in all SAS® procedures, the Proc Traj statement outlines that data set to be used 

and in this case also defines the output from the procedure. 

The 'var' statement defines the binary symptom outcome of interest. Tndep' defines 

the time variables that you are modeling the outcome over. The 'model' statement 

identifies the outcome as binary and the 'ngroups' states how many groups you want to 

model. 'Order' assigns the order of each equation that will describe the change over time 

in each group. ' ID' identifies the subjects in your population and also denotes which 

variable you want to use to uniquely assign subjects to a specific group in the output data 

set (in this case, "out"). 

The '%trajplot' is a macro statement that results in the graphical output from Proc 

Traj. This macro includes references to the outplot and outstat statements in the 'Proc 

Traj' statement. If you make any changes in the 'Proc Traj' statement be sure to adjust 

the trajplot macro accordingly. 

When including time independent covariates into a Proc Traj model the 'risk' or 'tcov' 

statements will also be added to the syntax. For example, a time stable covariate for sex 

could be added: 

p r o c t r a j data=a.mockdata out=out o u t s t a t = o s o u t p l o t = o p ; 
v a r wez01-wez03; 
i n d e p y e a r O l - y e a r 0 3 ; 
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model l o g i t ; 
ngroups 2; 
o r d e r 0 1; 
r i s k f e m a l e ; 
i d ID; 
ru n ; 
% t r a j p l o t (OP, OS, " T i t l e o f graph", " S u b t i t l e " , " Y - a x i s 
l a b e l " , " X - a x i s l a b e l " ) ; 

Or, a time varying covariate for current smoking could be added: 

p r o c t r a j data=a.mockdata out=out o u t s t a t = o s o u t p l o t = o p ; 
v a r wez01-wez03; 
i n d e p y e a r 0 1 - y e a r 0 3 ; 
model l o g i t ; 
ngroups 2; 
o r d e r 0 1; 
t c o v csmk01-csmk03; 
i d ID; 
ru n ; 
% t r a j p l o t (OP, OS, " T i t l e o f graph", " S u b t i t l e " , " Y - a x i s 
l a b e l " , " X - a x i s l a b e l " ) ; 

A.4.8 Select ing the Best Model 

The model fitting procedure with Proc Traj is iterative and requires a priori decisions 

based on substantive knowledge. In the most basic process, the following steps should be 

followed: 

1. Decide on the maximum number of groups using a priori knowledge 

2. Fit number of groups to data (start by fitting a one group model, and then fit up 

to the maximum logical number of groups in a step wise manner) 

3. Fit the shape of the trajectory for each group 

4. Perform further modeling i f required (addition of covariates, inclusion of 

second outcome etc.) 
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To decide on the optimum number of groups for your data you must begin by fitting a 

basic one group model with all groups set to a second order (quadratic) equation. Then 

fit a two group, then three group model etc. until you have fit the maximum number of 

groups based on you're a priori decision. Nagin suggests setting all group orders to 

second order during this process (47). 

For each model you fit in this first step you will be given two Bayesian Information 

Criterion (BIC) values in the output, one relates to the overall sample size (total number 

of observations) and the other relates to the subject sample size (number of subjects). 

The true BIC for the model lies between these values (47). The BIC is the log-likelihood 

adjusted for the number of parameters and the sample size (5). In the Proc Traj 

procedure the BIC values given in the output are negative; the best fit model is the one 

with the smallest negative number. 

Model selection in Proc Traj uses the BIC to select the best fitting model via two 

different methods. The first, described by Jones, Roeder and Nagin (5) uses the change 

in the BIC between two models to measure the weight of evidence against the null model. 

For each increasingly complex model that is tested, the BIC of the more complex (larger 

number of groups, or higher order equation) less the BIC of the less complex model is 

used to select the model that better fits the data. 

ABIC = BIC(complex) - BIC(null) 

The difference in BIC between the two models is a measure of the evidence against 

the null model. Jones, Nagin and Roeder (5) suggest criteria for strength of evidence 

against the null model (Table 39). Using the difference in the logged Bayes factor 

between successive models, the difference between the alternate and the null model can 

be qualified. The null model is always the simpler model (i.e. less groups, or lower order 

equations). The interpretation of the logged Bayes factor (2 ABIC) in terms of model 

preference is shown in Table 39. 
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Table 39 Interpretation of logged Bayes factor (2*ABIC) for model selection 
(Adapted from Table 2 in (5)) 
2*ABIC Evidence against Ho 
0to2 Not worth mentioning 
2 to 6 Positive 
6 to 10 Strong 
> 10 Very Strong 

The second method is called Jeffreys's scale of the evidence and is described by Nagin 

(47). Jeffreys's scale of the evidence uses the exponentiated difference between the BIC 

values of models, i and j : 

Bayes Factor ~ e

B I C i - B 1 C j 

In this case is does not matter which model is the null model; only that the researcher 

remembers which model is which. The interpretation of Jeffreys's scale of the evidence 

is outlined in Table 40. Further description and explanation can be found in Chapter 4 of 

Nagin (2005) (47). 

Table 40 Interpretation of Bayes Factor (eB I C l B I C j) for model selection (Adapted 
from Table 4.2 in (47)) 
Bayes Factor (Bij) Interpretation 
Bij < 1/10 Strong evidence for model j 
1/10 < Bij <l/3 Moderate evidence for model j 
1/3 < Bij < 1 Weak evidence for model j 
K B i j < 3 Weak evidence for model i 
3< Bij < 10 Moderate evidence for model i 
Bij > 10 Strong evidence for model i 

When selecting the 'best' model it is important to base decisions on substantive 

knowledge about the research area, and remember the rule of parsimony to select the 

simplest model that best describes the data. 

Again, in reference to the example with respiratory symptoms, i f we tested five 

models (one group up to five groups) we would have five BIC values to review. The 

comparisons are completed in a step-wise manner so that the two-group model is 
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compared to the one-group model, and the three-group model to the two-group model and 

so on. In each case, the model with the smaller number of groups is the null model. 

The next step in fitting a model using Proc Traj is selecting the shape of each group's 

trajectory over time. Proc Traj can model up to a fourth order polynomial and can model 

both linear and non-linear trajectories within the same model. This can be done using 

substantive knowledge (i.e. we expect one group to never report symptoms so this 

group's trajectory will be a zero-order equation, or a straight line) or it can be done using 

the ABIC. It seems ideal to use a combination of substantive knowledge and statistical 

inference to make the decision regarding the shape of each group's trajectory. 

A.4.9 Output 

The output from Proc Traj includes the parameter estimates for each group (with 

standard errors), group membership probabilities (population level) and model fit 

statistics. The output data set (out= in 'Proc Traj' statement) includes all the variables 

included in the analysis (not all the variables in the original dataset), the variable 

identified in the ' id ' statement, posterior subject specific group membership probabilities 

and a group assignment for each individual. 

The parameter estimates can be used to construct regression equations for each group 

and a system of equations to describe the population. The relative differences between 

the estimates for the same covariate between groups can be used to make inferences 

about differences between the groups. 

The posterior group membership probabilities and the group assignment variables in 

the output data set can be used to explore between group differences in covariates not 

included in the model and potentially as predictor variables in separate analyses. The 

posterior group probabilities are calculated for each individual based on the estimated 

parameters, and the individual is assigned to a group based on their highest posterior 

group probability (47). 

The output from a basic model (no covariates) is shown in Figure 6. The intercept 

parameters represent the estimated intercept for each group. For Group 2 the linear 

parameter represents the estimated coefficients for the linear time component of the 
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regression equation. The group membership probabilities indicate what proportion of the 

population is estimated to belong to each group. And, the BIC values are the final 

portion of the output. Note the BIC values are shown for two sample sizes; first for all 

the data points and second for the number of subjects. 

Figure 6 Output from basic Proc Traj model with no covariates. 
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A.4.10 User Information 

Base SAS® is required to run Proc Traj. You can download the procedure from the B. 

Jones' Proc Traj Home Page and copy the downloaded files into the appropriate folders 

on your hard drive (instructions provided on web page). Proc Traj will then be installed 

and functional in the SAS® platform. 

Because Proc Traj is an add-on to SAS®, there is no formal SAS® documentation in 

the traditional SAS® format. Users are advised to thoroughly review the reference texts 

listed below. 

A.4.11 Caut ions 

Researchers using Proc Traj are advised to remember that the multiple groups 

estimated are not reified groups. The identified groups are estimations of multiple 
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patterns of change within the population, and we must be careful not to think of group 

membership and trajectory shape as absolute certainties. 

A.4.12 Reference Texts 

Nagin, Daniel S. Group-based Modeling of Development. Harvard University Press: 
Massachusetts (2005). 

Jones, B., Nagin, D., & Roeder, K. A SAS Procedure Based on Mixture Models for 
Estimating Developmental Trajectories. Sociological Methods & Research (2001) 29: 
374-393. 

SAS® Proc Traj Home, http://www.andrew.emu.edu/user/biones. 
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A . 5 SAS® G l i m m i x P r o c e d u r e 

A.5.1 Overview 

Generalized linear mixed models are a way to apply mixed models procedures to non

linear outcomes (i.e. binary, Poisson). Mixed models are models that incorporate both 

fixed effects and random effects in the model. Fixed effects are effects that are expected 

to have the same direction and magnitude of effect on each subject in a repeated 

measures study. Random variables are variables where the effect on the outcome is 

allowed to vary between subjects in the data set. 

Mixed models are particularly useful in the modeling of longitudinal data because 

repeated measurements are collected over time on subjects and are inevitably correlated. 

A fixed effects model requires all of the measurements to be independent; in a 

longitudinal repeated measures data set this assumption is violated. 

Within the SAS® program there are several procedure for constructing mixed models. 

The most common procedure is Proc Mixed, which models continuous outcomes. When 

the outcome is binary or count data, Proc Glimmix (general linear mixed models) should 

be employed. Proc Nlmixed (non-linear mixed models) can also be used to model binary, 

count or continuous outcomes but is primarily for use with advanced non-linear modeling 

and requires more programming. Both Proc Mixed and Proc Glimmix can be run using 

SAS® syntax. 

This guide is focused on modeling binary respiratory symptom data using Proc 

Glimmix. Further information on Proc Glimmix (as well as Proc Mixed) can be found in 

the reference texts. 

A.5.2 When to Use Mixed Effects 

In reference to longitudinal study designs, random effects should be introduced into a 

regression model when there are correlated outcome measures (repeated measures on 

individuals) and when you want to allow the effect of a particular covariate on the 

outcome to vary randomly among your subjects. 
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A.5.3 Requirements 

For a mixed model you should have outcome measures that you expect are correlated; 

this occurs when you have collected repeated measures on individuals. To use Proc 

Glimmix, you should also have a non-linear outcome variable, in this case binary 

symptom data. If you are using a continuous measure of a respiratory symptom, you 

should consult SAS® Proc Mixed. 

A.5.4 Data Organization 

For Proc Glimmix models, data must be organized in a univariate, or "long", format 

where there is one observation per line of data and multiple lines of data per subject. An 

example of data organized this way is shown in Table 41. 

Table 41 Mock data set up for analysis with Proc Glimmix 
ID Age Vyr Vis2 Vis3 Sex Fsmk Csmk Wez 
001 53 1992 0 0 0 0 0 0 
001 55 1994 1 0 0 0 0 0 
001 60 1999 0 1 0 0 0 0 
002 49 1992 0 0 1 0 1 0 
002 56 1999 1 0 1 1 0 1 
003 40 1992 0 0 0 1 0 1 
003 42 1994 1 0 0 0 1 
003 47 1999 0 1 0 0 1 1 
004 60 1992 0 0 0 0 0 1 
004 62 1994 1 0 0 0 0 1 
005 36 1992 0 0 1 0 1 1 
005 38 1994 1 0 1 1 0 1 
005 43 1999 0 1 1 0 1 1 
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Table 42 Description of variables in mock data (Table 41) 
Variable Name Description Values 
ID Subject ID as assigned 
Age Subject's Age age in years 
Vyr Year of Visit date in years 
Vis2 Complete Visit 2 yes/no 
Vis3 Complete Visit 3 yes/no 
Sex Sex of subject 0= male 

1 = female 
Fsmk Former Smoker yes/no 
Csmk Current Smoker yes/no 
Wez Response to wheeze question 0= no wheeze 

1= wheeze 

The data setup is quite straightforward, but note that the data includes dummy 

variables for otherwise categorical variables (smoking, visit number). It is easier to deal 

with dummy variables, rather than categorical variables, in Proc Glimmix. 

A.5.5 Dummy Variables 

Proc Glimmix does have a 'class' statement in the syntax, and therefore theoretically 

you can input categorical variables without any recoding. However, it is not easy to 

adjust the reference groups using the class statement. Instead, researchers are advised to 

create dummy variables for each categorical variable. 

A.5.6 Miss ing Data 

Proc Glimmix does handle missing data. Observations are not excluded if variable 

values are missing within the observation. However, if the amount of missing data is 

substantial the specified models may not converge. In this case, you can limit your 

dataset to subjects with less missing data in an attempt to run the models successfully, but 

this will result in a smaller sample size and a loss of power. 

A.5.7 Types of Research Quest ions 

In terms of longitudinal respiratory symptom data, Proc Glimmix should be used when 

your research question is similar to one of the following: 
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• Considering the repeated measures on individuals, what are the risk factors that 
predict the outcome? 

• How much variation exists between individuals for a given main effect? 

• How are the repeated measures on individuals correlated? 

• Does the probability of the outcome change over time? 

A.5.8 Syntax 

The syntax for a basic Proc Glimmix model is outlined here. For further discussion of 

the Proc Glimmix syntax, including the specification of a marginal model for estimating 

correlation structures, readers should refer to the official SAS® documentation (4). 

The first model presented is a mixed model estimating the risk factors for wheeze: 

p r o c g l i m m i x data=a.mockdata ; 
model wez ( e v e n t = ' l ' ) = age sex v i s 2 v i s 3 fsmk csmk / 
s d i s t = b i n a r y l i n k = l o g i t o r ; 
random i n t e r c e p t / s u b j e c t = c a s e ; 
ods o u t p u t o d d s r a t i o s = a . o d d r a t i o ; 
r u n ; 

Again, the procedure statement specifies the dataset to be used. The model statement 

indicates that the outcome is 'wez' and that Proc Glimmix is modeling the probability of 

'wez=l'. Beyond that, the model statement lists the covariates to include in the model (in 

this case they are all dummy variables except age) and the model options. The included 

model options in this example are 's' (can also be written as 'solution') to provide the 

fixed effects parameter estimates, 'dist' to specify the distribution of the outcome, 'link' 

to specify the link function and 'or' to provide the odds ratios for the fixed effects. An 

explanation of the 'dist' and 'link' options as well as a table of possible values is 

provided in the Proc Glimmix documentation (4). When the outcome is a binary 

respiratory symptom, the 'dist' option will be binary and the 'link' will always be logit. 

The random statement specifies the random variables. In this case only a random 

intercept was specified, but any other random variables would be listed before the 

forward slash. The random statement options used here are 'subject', which identifies the 
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variable for which there are repeated measurements. The entry here will always be the 

subject or case identification variable when the repeated measures are on individuals. 

The odds ratio option in the model statement gives a very long output table that is 

difficult to interpret from the SAS® window. For this reason it is advisable to use the 

'ods output' statement to specify that the odds ratio table be output as a dataset. Once the 

odds ratio table is seen as a dataset file it is much easier to interpret. For more 

information on ODS output and how to limit the output to specific portions (using the 

'ods select' statement) or output specific tables to a new dataset, refer to the 

SAS/STAT® documentation (55). 

A.5.9 Select ing the Best Model 

Unfortunately there is no easy way to select the best fitting model using Proc 

Glimmix. Proc Glimmix does not provide a likelihood value for the estimated models, 

instead pseudo-likelihood is calculated and this value cannot be used in a likelihood ratio 

test. 

Instead, users are advised to construct their model in a stepwise manner using 

substantive knowledge. A priori hypotheses should drive decision making while 

constructing the model. Once the model is assembled, the significance of individual 

estimates and prior knowledge should guide what remains in the model. 

Additional fit statistics can be requested in the Proc Glimmix statement by including 

the following the command: 

IC = PQ 

When this command is included, pseudo-AIC and pseudo-BIC values will be included 

in the output fit statistic table. In the case of both pseudo-AIC and pseudo-BIC values, a 

smaller value indicates a better model fit. 

More information on the complexities of fitting models in Proc Glimmix can be found 

in the documentation (4). There is also an on-going discussion of this and other pertinent 

SAS® issues on the SAS® user's list serve (56). 
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A.5.10 Output 

Proc Glimmix provides extensive text output in SAS®. A sample of Proc Glimmix 

output, limited to the key pieces of output, is shown in Figure 7. The fit statistics are 

shown, including the pseudo-likelihood mentioned previously. Covariance parameter 

estimates are the estimates of variance in each of the specified random effects, in this 

case only a random intercept was included in the random statement. The covariance 

parameter estimates provide a measure of the between subject variability in the random 

variable. 

The next table shown is the estimates of the fixed effects included in the model 

statement. These are the regression coefficients describing the effect of each independent 

variable on the probability of reporting the symptom outcome. 

If odds ratios had been requested in the output they would follow after the fixed 

effects parameter estimates. 

The complete Proc Glimmix output is extensive, including information on the model 

optimization, iterative process of model fitting and the convergence criteria. Specific 

portions of the default output can be selected for viewing in the output window using the 

'ods select' statement (55) as was done in Figure 7. 

A.5.11 User Information 

Proc Glimmix does not ship with SAS®, instead the procedure and documentation can 

be downloaded from the SAS® Support website. The files are self-extracting and will 

copy all necessary files to the correct location (unlike Proc Traj, where you have to 

manually move the downloaded files into the correct folders). 

The Glimmix procedure is supported by SAS® and has traditional SAS® 

documentation (4). In addition, the book SAS® for Mixed Models contains an intensive 

chapter (with examples) on generalized linear mixed models that should be reviewed. 
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Figure 7 Sample output from mixed model using Proc Glimmix. 

The SftS Syateitt 

The GUnniX Procedure 

Number of Observations Read 
Number of Observations Used 

F i t S t a t i s t i c s 

-2 Res LOQ Pseudo-L ike l ihood 
Genera l i zed Chi-Square 
Gener. Chi-Square / DF 

1 
10:25 Wednesday, October 13, 2006 18 

2472 
2472 

11820,21 
1483.84 

0.60 

Parameter Estimates 

Cov Parttt Subject Eat mate Error 

Intercept CnSE 1 3567 0.1763 

So lu t ions for Fixet E f f e c t s 

Standar d 
E f f e c t E s t intate E r ro r DF Value Pr > It! 

in tercept -4.3395 0.4093 921 -10.60 < 0001 
AGE 2 0.0S232 0.006807 1539 7.69 < 0001 
FEMALE 0.4411 0.2342 1539 1 .88 0 0593 
threev is -0.3112 0.1622 1539 -1 .92 0 0552 
fourv i s 0.1189 0.1903 1539 0.62 0 5321 
FSM0KE 0.1215 0.1709 1539 0.71 0 4773 
CSMOKE 0.5036 0.1877 1539 2.68 0 0074 
wkarterm 0.7309 0.2056 1539 3.85 0 0001 
wkardeas -0.2562 0.2365 1539 -1 .08 0 2789 
asinachck 1.1135 0.2320 1539 4.80 < 0001 
ukexsome -0.1777 0.1890 1539 -0.94 0 3473 
wkexoft -0.3564 0.2051 1539 -1 .74 0 0825 

A.5.12 Caut ions 

Researchers using Proc Glimmix should be aware that there are acknowledged issues 

with the estimation technique used in Proc Glimmix and that the procedure may result in 

biased coefficient estimates. A statistician can assess the magnitude of this problem 

using simulation techniques. Researchers should consult a statistician to ensure that their 

results are not biased. 

A.5.13 Reference Texts 

Diggle PJ HP, Liang K , Zeger SL. Analysis of Longitudinal Data. 2nd ed. New York: 
Oxford University Press; 2003. 

Fitzmaurice G M L N , Ware JH. Applied Longitudinal Analysis. New Jersey: John 
Wiley & Sons; 2004. 

Littell R, Milliken G, Stroup W, Wolfinger R, Schabenberger O. SAS for Mixed 
Models. 2nd ed. Cary N C : SAS Institute Inc.; 2006. 

SAS Institute. SAS/STAT 9.1 User's Guide: SAS Publishing; 2004. 

SAS Institute. The Glimmix Procedure: SAS Publishing; 2006. 
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Appendix B. Cross-tabulations of Personal Risk 

Factors for Dyspnea 



Table 43 Cross-tabulations and Chi-square p-values for personal risk factors in Men (frequencies in percentages) 

Atopy 
Child 
Asthma Age Race 

Number of 
Visits Asbestos 

Resp. 
Irritants 

No Yes No Yes <40 
40-
50 

50-
60 >60 White Non 2 3 4 No Yes No Yes 

Childhood No 65 30 
Asthma Yes 1 3 

pO.0001 
Age <40 19 13 31 1 

40-50 22 9 30 2 
50-60 20 9 28 1 
>60 5 3 7 1 

p=0.03 p=0.09 
Race White 58 8 82 4 29 27 23 7 

Non-white 28 6 13 1 3 4 6 1 
p=0.07 p=0.8 p=0.0005 

Number of Two 31 17 46 2 14 14 15 6 41 8 
Visits Three 23 11 33 1 11 11 10 1 29 5 

Four 
p=0.7 p=0.05 pO.0001 p=0.2 

History of No 23 10 32 1 10 11 10 2 26 7 19 11 3 
Asbestos Yes 43 24 64 3 22 21 19 6 60 7 29 23 15 
Exposure p=0.2 p=0.8 p=0.9 p<0.0001 p- 0.0001 
Curr. Exposure No 21 9 28 2 7 9 10 3 26 3 16 9 4 16 13 
Respiratory Yes 46 25 68 3 25 22 19 5 60 11 32 25 14 17 54 
Irritants p=0.1 p=0.4 p=0.< 306 p=0.2 p=0.02 pO.0001 
Smoking Status Never 19 11 29 2 13 9 7 1 24 7 12 11 7 10 20 8 22 

Former 28 14 39 2 10 13 13 5 38 3 21 12 8 12 29 13 28 
Current 20 9 28 1 9 9 8 2 25 4 15 10 3 11 18 8 20 

1 p=0.5 p=0.5 pO.0001 pO.001 p=0.002 p=0.1 p=0.4 



Table 44 Cross-tabulations and Chi-square p-values for personal risk factors in Women (frequencies in percentages) 

Atot ? y 
Childhood 
Asthma Age Race 

Number of 
Visits Asbestos 

Resp. 
Irritants 

No Yes No Yes <40 
40-
50 

50-
60 >60 White Non 2 3 4 No Yes No Yes 

Childhood No 71 24 
Asthma Yes 4 1 

p=0.8 
Age <40 25 15 38 : 

40-50 13 4 15 2 
50-60 26 3 28 l 
>60 12 3 15 0 

p=0.07 p=0.4 
Race White 73 25 93 5 40 17 27 15 

Non-white 2 0 2 0 0 0 2 0 
p=0.4 p=0.7 p=0.2 

Number of Two 48 12 59 0 20 11 19 10 58 1 
Visits Three 22 11 29 4 15 5 9 4 32 1 

Four 6 2 7 1 5 1 1 1 8 0 
p=0.4 p=0.0 2 p=0.8 p=0.09 

History of No 68 21 86 3 34 15 28 13 87 2 55 30 4 
lfi^Sliiiiit» Asbestos Yes 7 4 9 2 6 2 1 2 11 0 4 3 4 lfi^Sliiiiit» 

Exposure p=0.3 p=0.03 p=0.5 p=0.6 p 0.001 
lfi^Sliiiiit» 

Curr. Exposure No 70 21 87 4 33 16 29 14 89 2 55 31 5 84 8 
Respiratory Yes 5 4 8 1 7 1 0 1 9 0 4 2 3 6 3 
Irritants p=0 2 p=0.4 p=0.08 p=0.7 p=0.01 p=0.02 
Smoking Status Never 22 5 25 2 11 3 10 3 25 2 13 12 2 25 2 24 3 

Former 24 8 32 0 7 6 8 11 35 0 20 10 2 29 3 29 3 
Current 30 12 39 3 22 8 11 1 42 0 27 11 4 36 6 39 3 

p=0.6 p=0.3 p=0.005 p=0.06 p=0.6 p=0.6 p=0.9 


