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Abstract

TETRIS is a popular video game in which you try to fill rows in a rectangular well using

a sequence of tetrominoes chosen by the machine. Each time you succeed in filling a row,

it is deleted from the well. Your game ends when you have stacked pieces up to the top

of the well. I build a model of TETRIS and analyze the worst-case scenario, in which

the machine is treated as an adversary. I say you have a winning strategy when you

can make your game last indefinitely. I construct winning strategies for some subsets of

the TETRIS pieces, and prove that none exists for some others. Finally, I compare these

analytic results to some empirical average-case data that I obtain from a passive survey

of TETRIS players.
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Chapter 1

Introduction

If I tell you I'm doing "applied math", you might ask, with raised eyebrows, "applied to

what?". If I respond with "plants", "people", or the name of any other complicated part

of the real world, your interest might well turn into suspicion. To avoid this, I've chosen

to study a simple object, one whose reflection in the Platonic world of mathematical

existence is clear enough that you will find no cause for alarm in the analysis I perform

on it.

1.1 The Real Game

TETRIS is a video game invented by Russian mathematician Alexey Pazhitnov and first

programmed by Vadim Gerasimov. I'll describe first the arcade version (©1988 by Atari

Corporation, TM and ©1987 by AcademySoft-Elorg) and then the generic version which

I actually analyze. Figure 1.1 shows what you'll see if you venture into an arcade for a

game. After absolving yourself of a quarter and selecting single player mode, you must

choose whether to begin at the Easy, Medium, or Hard level.

Figure 1.2 is a sample of what appears on the screen in a typical TETRIS game. The

large rectangular region is the well, and the shaded squares in it are coloured tiles. (On

Easy level, you begin the game with an empty well.) The well has space for 20 rows of

ten tiles each. At the top of the well, you can see the current piece, which is made up

of four tiles. The lookahead piece is shown just outside the well. If you don't touch

the controls, the current piece will drop straight down the well until it hits a tile, or the

1



Chapter 1. Introduction^ 2

joystick

Figure 1.1: A schematic diagram of the TETRIS machine. The quarter slot is not shown.

bottom of the well, and stops. The lookahead piece then becomes the current piece at

the top of the well, and a new lookabead piece is displayed outside. The game ends when

tiles have accumulated to such a height that the machine can't place a new piece at the

top of the well.

Most TETRIS players are not content merely to watch this (expensive) stacking, and

instead, grab the controls. Hitting the rotate button rotates the current piece 900 clock-

wise as it falls (see Figure 1.3). Pushing the joystick left or right moves the current piece

in that direction, again while it falls. (Pulling the joystick toward you causes the piece to

fall more rapidly, and is a sign of impatience.) The point of all this is to place pieces so

as to create full rows of tiles. After a piece stops falling, and before the next piece enters

play, TETRIS deletes every full row of tiles from the well (you are said to have cleared

these rows), and each tile in the well drops down one position for every row deleted below

it. Clearing rows delays the end of your game, since it moves tiles away from the top of

the well. Moreover, depending on how many rows (1, 2, 3, or 4) you clear with a piece,

points (50, 150, 450, or 900) are added to your score, which is shown to the right of the

well in Figure 1.2.

A game of TETRIS is divided into rounds on the basis of how many rows you've
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Figure 1.2: The typical TETRIS screen on the left can lead to the one on the right if you
don't touch the controls. The tee has fallen straight down, filling and clearing the second
row from the bottom. As a result, you are awarded 50 points, and have one less row left
to clear.

L..,^1^1  ^1

Left Kink
^

Right Kink^Square

Figure 1.3: The seven TETRIS pieces are shown in all of their orientations. Hitting the
rotate button gives the next orientation (in cyclic order from left to right) of a given
piece.
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cleared. The number still to be cleared in the current round is displayed outside the

well (it's 5 in Figure 1.2). At the end of each round, you're awarded a number of bonus

points that depends on the maximum height of tiles in the well at that time (the lower

the tiles, the more points earned). The next round begins with a new well (which may

already contain some tiles) and a new goal of rows to clear. The speed at which pieces fall

generally increases from one round to the next, leaving you less and less time to decide

where to place them. Moreover, some rounds include extra complications: the machine

adds tiles to the well at random locations and times, or it inserts extra rows of tiles at

the bottom of the well, pushing up any tiles already in the well.

In most implementations of TETRIS for microcomputers and home video game units,

these complications don't exist. Rather, the entire game is just like the first round of the

Easy level of arcade TETRIS: you begin with an empty well, and the game ends when

you have filled cells up to its top. It's this generic version that I'll call "TETRIS" from

now on.

1.2 TETRIS meets Plato

In constructing a mathematical model of the game, I'll make several simplifications and

idealizations. You should recognize TETRIS behind this axiomatic facade, but I postpone

a full discussion of its validity until Chapter 6, where the opinions of other TETRIS players

are included. My abstraction of TETRIS, namely tetris, follows.

First, the well is a rectangular array of cells, each of which is either full or empty

(so I've removed colour). Rows of cells are numbered from the bottom of the well, and

columns from its left, both starting at 1. The well has no fixed depth, so the rows of

empty cells extend to the heavens, but pieces enter into play just above the highest full

cells. The pattern of empty and full cells in the well is called its state, and changes as
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the game proceeds.

Next, the rules of movement are just as in TETRIS: you can move a piece down, left,

and right, as well as rotate it in 90° increments, until you decide to let it drop. (Disputes

over the validity of rotations in the vicinity of full cells can be resolved by a Euclidean

referee: the well and the piece are copied to the plane, and a rotation in the original well

is allowed only if it can be performed in the plane without ever having the piece intersect

a full cell.) The piece then falls straight down, without further rotation, until its descent

is stopped by either a full cell or the well floor. The status of the four cells it occupies

then changes from empty to full, and if this fills any rows, they are deleted and the well

compressed, just as in TETRIS. I let you move pieces left and right as far as you wish,

but notice that gravity still acts once you drop them. More importantly, I've eliminated

time as a factor: you can take as long as you want to play a piece.

Finally, the game ends when you fill a cell above row 20; this is essentially the same as

in TETRIS. To summarize, a game of tetris is a sequence of plays, each of which proceeds

as follows:

• the machine hands you a piece, while displaying the next piece you'll be given

• you put the piece into the well above all full cells, then slide and rotate it into any

position, never moving it through a full cell

• you let go of the piece, and it falls straight down as far as possible

• the machine deletes each full row, moving all rows above it down one position

• if there is a full cell above row 20, the game ends

You'll notice that I've said nothing about tetris scores. This is because there won't

be any! The reasons why not lead to the central concept of my thesis, and you'll find

them in the next chapter.



Chapter 2

Strategies

Let me introduce you to the main concept of this thesis, but first, some motivation.

2.1 Doing well at tetris and TETRIS

Your high score is one measure of your TETRIS-playing ability, but perhaps you're so

talented that you can actually beat the game: you can make your score as high as you

like. But is this really possible? Can TETRIS be beaten? This is almost the question I'll

answer, but first, a matter of equity.

With all due respect, is it fair that you must compete against a machine? Your reflexes

are no doubt spectacular, but can they hold out indefinitely against an unwavering silicon

opponent when you are forced to play faster and faster using a sluggish joystick? Surely

not. For there to be any hope of beating TETRIS, its pieces cannot be allowed to fall

so quickly that you lose track of the game: there must be a speed limit. But since a

reasonable speed limit for you might be still too fast for other players, I'm going to set

it so low that, effectively, all players can take whatever time they need in positioning a

piece. That's what I've done in tetris: the speed and timing factors of TETRIS have been

eliminated. So, the fairer question I ask is "Can tetris be beaten?"

"Wait a minute", you implore, "how can I beat tetris when I don't even get any

points?" The answer is to use the length of your game, rather than a score, as the

measure of your ability: if the game ends, you have lost, otherwise, you have beaten

tetris. This might seem strange, but think about what you need to beat TETRIS: making

6
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your score very high requires playing for a long time. If you can score as high as you

want, you really must be able to make your game last indefinitely. Therefore, if you can

beat TETRIS, you can also beat tetris. Conversely, suppose you can beat tetris. Each

piece adds four new full cells to the well. If you don't keep clearing rows, then eventually,

some of these full cells will be above row 20, and your game will end. Therefore, as long

as you continue the game, you must clear, on average, four rows every ten plays, so that

the number of full cells doesn't increase past a certain point. But if you can do this in

tetris, then you can do it (with good reflexes) in TETRIS.

I could end here simply by stating "Yes, I (or someone else) can beat tetris", but you'd

probably be less than convinced (especially if you had seen me play). Alternatively, I

could state "No one can beat tetris", but you would doubt this even more: had I actually

investigated every claim to the contrary ever made, and found each to be false? Surely

what you demand is either a way of beating tetris, or a proof that it can't be done.

2.2 Telling you how to play

If there's a way to beat tetris, then I can describe it in pictures. Figure 2.4 shows what

such pictures are composed of, namely state diagrams with arrows between them. In a

state diagram, the well is a simple outline which I draw only as tall as I need to show

you all the state's (shaded) full cells. If I need to refer to a state, I will label it with

a letter just below its diagram. Between some states I draw arrows to represent a play

that takes the well from the state at the arrow's tall to the one at its head. Each arrow

is labelled with pieces: the current piece is the large one with a number below it, and

any small ones are lookahead pieces. The best way to understand how to interpret these

labels is to study Figure 2.4.
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Figure 2.4: Four examples of arrows, and what their labels tell you to do. A: When the
(big) current and (small) lookahead pieces are both right elbows, rotate the elbow into
the same orientation as the big piece, and place it so that its leftmost cell goes in column
3. B: when the current piece is a square, and the lookahead piece is anything, play the
square so that its leftmost cell goes in column 1. C: when the current piece is a bar and
the lookahead piece is one of the elbows, play the bar horizontally, with its leftmost cell
in column 7 D: when the current piece is a left kink and the lookahead piece is any
piece other than a square, play the kink horizontally, starting in column 5.

2.3 Strategies for tetris

The pictures in Figure 2.4 are only fragments of instructions: if you try to use them,

you will get stuck in the first state unless the machine gives you the same current and

lookahead pieces as appear on the arrow. Even if it does, you'll be stuck after the first

play, since there are no arrows leading from the second state. You can see that for a

complete set of instructions, every state must have enough links leading from it that you

won't get stuck, no matter what pieces the machine gives you. Such a complete set of

states and links, whether or not it actually beats tetris, is what I call a strategy. My

quest is to seek a winning strategy for tetris.

Any strategy must be able to deal with whatever sequence of pieces the machine

sends you. I'll test my strategy building and your arrow interpretation by considering

the simplest sequences, those in which all pieces are the same. Figure 2.5 shows a simple
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way of playing such a sequence of squares. Notice that the highest row in which a full

cell is found is 2. I'll call this number the height of the strategy. If the square were the

only piece in tetris, this would be a winning strategy, since its never fills a cell higher

than row 2, let alone row 20.
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Figure 2.5: A strategy for playing only squares. You clear two rows when you play the
square in column 9, and this leads you back to the empty well.

The square is not alone: if the machine sends you a sequence consisting entirely of

any one of the pieces, you can make your game last indefinitely by using one of the

single-piece strategies shown in Figures 2.6 to 2.9. For kinks and elbows, I've only shown

a strategy for the left version of the piece. You can obtain a strategy for the right version

by reversing the picture with a mirror, left to right. It's important that these strategies

exist, for otherwise, the machine could quickly end your game by simply handing you the

same piece over and over again.

2.4 Meaningless numbers

The size of the well in arcade TETRIS happens to be 10 by 20, but there's no obvious

reason why it couldn't be different. In some versions of TETRIS, the well is wider, and

so I might as well try to find winning strategies for all widths. Similarly, there seems

to be nothing magical about 20: other well depths are possible (and likely). I will note
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Figure 2.6: A strategy for bars with a height of 4 and 10 states.
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Figure 2.7: A strategy for left elbows with a height of 3 and 10 states.
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[I]

Figure 2.8: A strategy for left kinks with a height of 4 and 10 states.
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the height of each strategy I find so that you will know the depth of well you require in

order to use it. (It might be the case that I can find a winning strategy for seven-piece

tetris in a well of depth 21, but that none exists for the real well of depth 20.) For single

pieces, you'll see that the width of the well usually doesn't matter.

I begin by showing you that the single-piece strategies of Figures 2.5 to 2.9 easily lead

to strategies for all wells of even width. You can think of the well as being partitioned

into five pairs of adjacent columns which I'll call lanes, and will number from left to

right, starting at 1. Thus lane 1 consists of columns 1 and 2, lane 2 consists of columns

3 and 4, and so on. Notice that in each strategy, pieces are placed entirely within lanes:

no piece adds full cells to two different lanes. Moreover, in each strategy, the pattern of

playing pieces is identical for every lane. This pattern can be repeated for any number of

lanes, giving strategies for wells with any even number of columns The height of these

strategies doesn't depend on the width of the well, except for the simple case of width 2.

There, the square has a zero-height strategy (it disappears upon being played), the bar

has a height four strategy, and the other pieces all have strategies of height two. (Also,

you might have noticed that there is a zero-height strategy for the bar in a well of width

4, and a height one strategy for the bar in wells of widths 8, 12, 16, and so on.)

What about wells of odd width? Squares immediately present a problem, since they

are two cells wide, and so you can't even fill a single row with them. This settles the

question: there can be no winning strategy for tetris in an odd width well, since the

machine can simply send you a sequence of squares, and you'll never clear a row. (Perhaps

that's why every version of TETRIS that I've ever seen has a well of even width.)

Are squares the only pieces which prevent you from winning in an odd well? The

pattern of Figure 2.6 gives a strategy for bars in odd wells: just play each one vertically.

Elbows and tees are more interesting, and in Figures 2.10 and 2.11, I've shown strategies

for the left elbow and for the tee in wells of width 3 and 5 (as before, you get a strategy
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for right elbows by reflecting the left elbow strategy in a mirror). The figure captions

tell you how to construct strategies for these pieces in wells of any other odd width. On

the other hand, Figure 2.12 explains why there is no winning strategy for either of the

kinks in a well of odd width.

The winning strategies I've found for single pieces are summarized in Table 2.1. They

let you beat tetris in wells of various widths only if the machine sends just one type of

piece and the well is at least as deep as the height of the strategy.

Table 2.1: A summary of winning single-piece strategies.

Well Width=2 Well Width=2n, n > 1 Well Width=2n + 3, n > 0
Piece Height No. of States Height No. of States Height^No. of States

Square 0 1 2 n (no winning strategy)
Kink 2 2 4 2n (no winning strategy)
Bar 4 2 4 2n 4^2n + 3

Elbow 2 2 3 2n 8^4n + 6
Tee 2 3 4 3n 7^5n + 5
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Figure 2.10: Strategies for left elbows in wells of widths 3 (below the heavy gray line)
and 5 (above it). The first four plays in the width 5 strategy fill in the two rightmost
columns of the well. This leaves three empty columns which can be treated just like a
well of width 3. In fact, the next six plays in the width 5 strategy are exactly the same
as the plays in the width 3 strategy, and to emphasize this, I've drawn them on top of
each another, separated by the gray line (the dashed vertical lines inside the states of
width 5 are to help you see this correspondence). For wells of greater odd width, you
perform the same trick: fill pairs of columns just like you filled in columns 4 and 5 here,
then use the width 3 strategy in the remaining three empty columns.
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Figure 2.11: Strategies for tees in wells of widths 3 (below the heavy gray line) and 5
(above it). Just as for left elbows, the first part of the width 5 strategy serves to fill
(almost) the rightmost two columns, leaving three empty columns which can be treated
(almost) like a well of width 3. After the first three plays of the width 5 strategy, the
next five mimic those in the width 3 strategy, and I've drawn them above each other,
separated by the gray line. To construct strategies for wells of greater odd width, repeat
the first three plays of the width 5 strategy in every additional pair of columns. You will
then be left with three empty columns in which you can perform the width 3 strategy
for the next five plays. Then, you must refill columns 4 and 5, 6 and 7, and so on, just
as in the width 5 strategy.
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Figure 2.12: The proof that no winning strategy exists for a kink in wells of odd width
is easy. Notice that no matter how you play either kink, you create the same number
of full cells in even columns ("even cells" — labelled e) as in odd columns ("odd cells" —
shaded but unlabelled). I call the number of even cells minus the number of odd cells
the skew. The picture shows that when you play a kink, you don't change the skew. A
full row has one more odd cell than even cell, so when you clear a row (i.e. when you
remove a row of full cells from the well), you increase the skew by one. As you make
more plays, the only way to prevent the skew from increasing is to stop clearing rows,
but this will soon end your game. If, on the other hand, you keep increasing the skew,
then the number of even cells keeps increasing too, and that will eventually end your
game — either way, you lose.



Chapter 3

Two at a time

In the last chapter, I gave you winning strategies for tetris played with only one piece.

The logical next step is to show you how to play tetris with two pieces.

3.1 Squares with bars or elbows

Figure 3.13: A winning strategy for bars and squares in a well of width 4.

In Figure 3.13, I've drawn a winning strategy for bars and squares in a well of width

4. A similar winning strategy for right elbows and squares appears in Figure 3.14 (for left

17
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Figure 3.14: A winning strategy for right elbows and squares in a well of width 4.
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elbows and squares, use a mirror). Neither strategy uses lookahead information. Similar

strategies exist for wells of any even width:

Lemma 1 If you play tetris using only the square and one of left elbow, right elbow, or

bar, then for a well of any even width, you have a winning strategy whose height doesn't

depend on the width of the well.

Proof: You can probably discover the proof yourself, by staring at the diagrams I'll

call the elbow or bar the non-square piece. Just as for states and columns, the height

of a lane is the height of the highest full cell in that lane. Notice that in every state

shown in Figures 3.13 and 3.14, each lane, except possibly one, is smooth, consisting of

a 2 column wide rectangle of full cells (of zero height, if the lane is empty). The possible

exception is a bumpy lane which, in at least one row, has only a single full cell. You

create a bumpy lane when you play the non-square piece in a smooth lane. You can

restore that lane to smoothness by playing the same piece in it again — see Figure 3.15.

Figure 3.15: How to make a bumpy lane and how to smooth it. By playing a single elbow
(left) or bar (right) in a smooth lane, you make it bumpy. By playing the same piece in
a bumpy lane, you smooth it. (These plays don't necessarily occur one right after the
other.)

For any even width of well, I describe the strategy by telling you how to play each

piece:
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Square: If there is a bumpy lane and if its height is at least two less than that of any

other lane, then play the square in the bumpy lane. Otherwise, play the square in

a lowest smooth lane.

Non-Square: If there is a bumpy lane, then play this piece to make it smooth. Other-

wise, play this piece in a lowest smooth lane, making it bumpy.

Notice that if every lane in a state is smooth, then at least one lane is actually empty.

Otherwise, the bottom row in the state would be full, which is impossible. Therefore,

when you play the non-square piece in a lowest smooth lane, you are actually playing it

in an empty lane. Also, notice that there is never more than one bumpy lane.

I claim that the strategy above will never result in a state whose height is more than

7. To see this, consider the following three statements:

Statement Si: There is at most one bumpy lane in the well.

Statement S2: If there is a bumpy lane, its height is at most 4.

Statement S3: The height of every smooth lane is at most 7.

Notice that if both S2 and S3 are true for some state of the well, then the height of that

state is at most 7. Each of Si, S2, and S3 is certainly true of the empty inital well. I

will show that the strategy has a height of at most 7 by showing that every type of play

in the strategy preserves the truth of these three statements. That is, if Si , S2, and S3

are all true for a state, then playing either piece leads to another state for which they

are also true. There are four cases:

• If you play a square in a lowest smooth lane, then either that lane is empty (if

there is no bumpy lane in the well), or that lane is less than two rows higher than

the bumpy lane. In the first case, the new height of the lane will be 2, and in the
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second case, the new height will be at most 3 plus the height of the bumpy lane,

which is at most 7, since S2 was true of the state you played on. In both cases,

the new height of the lane you played in is at most 7, and so S3 is still true. S2 is

still true since the bumpy lane is unaffected. Also, S1 is true since playing a square

never makes a lane bumpy.

• If you play a square in the bumpy lane, it disappears, clearing two rows (see Fig-

ure 3.16). The height of the smooth lanes decreases by 2, and the height of the

bumpy lane doesn't change. Therefore, S2 and S3 are both still true. Again, S1

remains true since you're playing a square.

ME MEMO
OM OMEN
MEN OMEN MEM MEMO
MINIII SWIMSWIM ENE MOON

MEN MEMO
us OMEN III NENE

Figure 3.16: Playing a square in the bumpy lane clears two rows.

• If you play the non-square piece in a lowest smooth lane, then there is no bumpy

lane and so any lowest smooth lane is actually empty. Thus, you create a bumpy

lane whose height is at most 4, and you don't affect the heights of the other smooth

lanes. This means S2 and S3 remain true. S1 is still true since you've just created

the only bumpy lane in the well.

• Finally, if you play the non-square piece in the bumpy lane, then you make it

smooth, but its height will still be at most 4, since a pair of bars or elbows form a

2 by 4 rectangle. The heights of the other smooth lanes only changes if this play
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decreases them by clearing rows. Again, S2 and S3 will still be true. Moreover, Si

remains true since you've just smoothed the only bumpy lane.

More careful accounting can actually show that the smooth lanes never reach a height

of more than 6 when you play with the bar, and 5 when you play with an elbow, but this

is a minor improvement. •

In this lemma, the description of the strategy was incomplete: I told you to play

pieces in a lowest smooth lane, giving you the freedom to choose which one. This really

means there are several strategies which satisfy the description. Using any of them, you

can win at two-piece tetris in an even well if the two pieces are the square and either the

bar or one of the elbows.

3.2 Elbow couples, single elbows, and the bar

If you play tetris with the two elbows, or with one elbow and the bar, you have winning

strategies which are very similar to those in the previous section. I won't give proofs, but

will just describe how these strategies differ from the previous ones. The idea is again

to have as few bumpy lanes as possible, but now you might need two of them, one for

each type of piece. If there is a bumpy lane of each type in the well, then whatever the

current piece is, you can use it to smooth one of those lanes. There is a new problem

you might run into, which I'll illustrate using bars and left elbows. Suppose that at some

point, the well has a bumpy lane, say 1, which requires a left elbow to smooth it. I'll call

/ an elbow-deficient lane. What happens if the machine sends a long sequence of bars?

As before, you can play these bars in lanes other than /, taking them to quite a height.

Eventually, these lanes will all be smooth, and at least four rows higher than lane /. At

this point, you must make a decision (see Figure 3.17). If the current piece is an elbow,

you can just play it to smooth lane /, clearing three rows. However, if the current piece
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is a bar, playing it in lane / to clear rows would make lane / into an elbow-deficient lane,

but of the opposite type. That is, lane / would now require a right elbow to smooth it.

To avoid this problem, you examine the lookahead piece. If it's an elbow, you play the

current bar on top of a smooth lane, and use the elbow to smooth lane /, thus clearing

three rows. On the other hand, if the lookahead piece is a bar, then play the current and

next pieces (both bars) in lane /, thus clearing four rows and leaving / left-elbow-deficient.

Figure 3.17: Where lookahead is used in playing bars and elbows. Above: if there is an
elbow-deficient lane, and you get a long sequence of bars, play them as shown until you
get to the second state. There, depending on the lookahead piece, you will either play
the bar on a smooth lane, or play two bars in the elbow-deficient lane. Either way, you
end up in a state with only one bumpy lane, and with lower smooth lanes.

The trick in the last paragraph also works when the well has a bar-deficient lane and

the machine sends you a long sequence of elbows (see Figure 3.18), or when the well

has an elbow-deficient lane of one type (left or right), and the machine sends you a long

sequence of elbows of the opposite type. Notice that there are never more than two

bumpy lanes, and the bumpy portion of those lanes (i.e. the rows in which those lanes

are not completely full) each consist of at most four rows. Moreover, no pair of lanes will
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Figure 3.18: If there is a bar-deficient lane, and you get a long sequence of elbows, play
them as shown until you get to the second state. There, you use lookahead to determine
how to proceed. You end up in a state with only one bumpy lane, and with lower smooth
lanes.

ever differ in height by more than a fixed amount. This is enough to show that these

are winning strategies, at least for deep enough wells. In fact, careful counting can show

that the heights of these strategies are 10 for the pair of elbows, and 11 for one elbow

and the bar.

I've summarized the two-piece strategies in this chapter in Table 3.2. You might find

it amusing to discover two-piece strategies for other pairs of pieces, say in a well of width

4. In that setting, I quickly and easily found strategies for the pairs of pieces listed in

the table. However, for some other pairs of pieces, I didn't find strategies even though

I spent a long time trying. There is a good reason for this, but I'll need the next two

chapters to give it to you.
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Table 3.2: A summary of winning two-piece strategies for wells of even width.

Pieces Height of Strategy Uses Lookahead?
Square, Bar 6 No

Square, Elbow 5 No
Elbow, Bar 11 Yes

Both Elbows 10 Yes



Chapter 4

Organic tetris and the cycle-band

I now examine what goes on in the tetris well from a different perspective. The ideas in

this chapter will help settle the question of whether there exists a winning strategy for

tetris. Moreover, they demonstrate how well-known concepts from biology can be used,

as analogies, to discover and explain proofs in mathematics.

4.1 Life history of fiats

Flats are multi-celled creatures that live in the bottom of the tetris well (see Figure 4.19).

When a game of tetris begins, there are no flats in the empty well. New flats are born

whenever you play a piece that fills cells in a previously empty row of the well. Flats

grow when your plays add full cells to them, and die and disappear when they've grown

to fill an entire row of the well. Flats are territorial (each non-empty row of the well is

occupied by just one) but gregarious (there are never any empty rows between them —

think about why not). Because they are diffuse (not all of their full cells are necessarily

adjacent), you can often drop a piece right through a flat. Although they are not motile,

flats do sink deeper in the well whenever a flat below them dies, and so they can occupy

several different rows over the course of their lives. As you might expect, if new flats are

born faster than existing fiats die, then eventually, the well is overrun and your game

ends. Therefore, if you want to win at tetris, you must keep killing flats.

In order to keep track of flats, I give them unique tags which they bear throughout

their lives. These are simply numbers, and I assign them to flats on the play in which

26
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Figure 4.19: Specimens of flats. On the left, three flats taken from a well of width 10.
On the right, three flats taken from a well of width 6. The thick-walled gray shell is not
visible when flats are in their well.

they are born: the first flat born will be tagged "1", the second, "2", and so on. If several

flats are born on the same play, I will tag them in order by position, starting with the

lowest one. When a flat dies, its tag goes with it, never to be reused. If you look at the

flats in a single state of the well, their tag numbers increase from the bottom of the well

to its top. I will say that one flat is older(younger) than another when its tag is smaller

(larger). This means that an older flat has been in the well for at least as many plays as

a younger one. Don't confuse a fiat's age with the number of full cells it has — they are

not necessarily related. Figure 4.20 shows a few plays in the life of a population of flats.

4.2 Killing flats with squares

To demonstrate that my organic view of tetris is helpful, I will use it in proving that no

winning strategy exists for a variant of the game in which no lookahead is provided and

in which you use only two pieces: the usual two by two square, which I'll denote 02, and

one new piece, a three by three square that I'll call 03. To keep the argument concrete,

I'll fix the width of the well at 6. Although it says nothing about standard tetris, I'm

including this proof because it lets me introduce some concepts more easily than I can

using only standard pieces.

Squares are simple pieces to analyze because they have only one orientation: hitting

the rotate button does nothing. When you play a square, any flats you affect all grow
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Figure 4.20: A changing population of flats in a well of width 6. For emphasis, dashed
lines have been drawn between flats. Their tags are shown to their right, just outside the
well. (As always, the number under a piece tells you in what column to play its leftmost
cell.) Play by play: (i) flats 1, 2, and 3 are born. (ii) flats 1, 2, and 3 grow. (iii) flat 4 is
born and flats 1, 2, and 3 grow. (iv) flats 1, 2, and 3 grow. (v) flat 5 is born, flat 3 dies,
and flat 4 grows and sinks. (vi) flats 2 and 4 die, and flat 5 sinks (vii) flats 6 and 7 are
born, flat 1 dies, and flat 5 grows and sinks.
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by the same number of cells. For example, ^ 3 always adds three cells to the flats you

play it into. Therefore, if you want to fill and kill a flat using a single ^ 2 (or ^3 ), that

flat must have exactly two (or three) adjacent empty cells. I call these flats ^2-targets

(or ^3-targets), and have drawn some in Figure 4.21. So, ^2-targets are the only flats

which you can kill with a single ^ 2 , and ^3-targets are the only ones you can kill with a

single ^ 3 .

Figure 4.21: Left: ^2 with some ^2-targets and ^3 with some ^3-targets. Right: ^2

can't kill a ^3-target and ^3 can't move through a ^2-target. A bar through an arrow
indicates an impossible play.

Because its empty space is only two cells wide, a ^ 2-target won't let a ^3 through

it. Therefore, a ^2-target protects all the ^3-targets below it. If you make a ^ 3-target

grow by using a ^2 , it will no longer be a ^3-target, but you still won't be able to kill

it with ^2 , since it will have only one empty cell. Therefore, once a flat has been a

^3-target, it can never become a ^2-target (see Figure 4.21 again).

How can I show that you have no winning strategy for (variant) tetris using only ^ 2

and ^3 in a well of width 6? One way is for me to play machine's advocate: each time

you make a play, I'll look at the well and help the machine to select the next piece to

give you (you aren't getting lookahead information, so we can wait until the end of your

play before deciding what piece to send next). Since you must keep killing flats in order



Chapter 4. Organic tetris and the cycle-band^ 30

to win, we will try to defeat you by handing you harmless pieces.

4.3 A recipe for your defeat

You start with the empty well, and we hand you a 03. You might play it in columns 1,

2, and 3 (or 4, 5, and 6), thereby creating three 03-targets. If so, it would be stupid for

us to hand you another 03 right away, since you could just use it to kill those 03-targets.

On the other hand, if you played the 03 without creating any 03-targets, then we may

as well give you another 03 since you can't kill any fiats with it. Thus, we'll keep giving

you 03 to play until you create some 03-targets. You must eventually do this, otherwise

you'll never kill a single flat, they will overrun the well, and your game will end.

At this point, there is at least one 03-target, which I'll call f , in the well, so we'll start

sending you 02, with which you can never kill it. (In fact, you'll soon see that you will

never be able to kill it with 03 either — f is immortal!) In playing these 02, you must

eventually create some 02-targets, or (again) you'll never kill another flat. We won't

stop sending you 02 just yet, though. Instead, we'll wait until you create a 02-target

somewhere above flat f . (We know you'll do this because eventually, the 02-targets

which you are creating and killing must be younger than f , and so live higher than f

in the well.) Notice that this 02-target protects f , and any present or past 03-targets

below f , from 03. SO next, we'll hand you these harmless 03 until you create another

03-target. Then we'll hand you 02 until that 03-target is in turn protected by a higher

02-target, and so on (see Figure 4.22).

As the machine and I continue this process indefinitely, the population of immortal

03-targets will increase beyond any bound and overrun the well, no matter how deep it

was to start with. This ends your game in defeat. We didn't have to start with the empty

well: any initial population of flats would have led to the same outcome. Moreover, the
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Figure 4.22: A sequence of plays you might make. You create flat f, a 03-target, in the
first play, so we then give you 02 until you create the 02-target g above f (notice that g
protects f from the subsequent 03). Next, we send 03 until you create more 03-targets,
one of which I've labelled h. In the subsequent sequence of 02, you manage to kill several
flats, but f and h still live.
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choice of 2 and 3 for square sizes, and the choice of 6 for the well width are not essential

to the proof. If we use squares with sizes a and b (with a < b), then we can defeat you

as long as b is not a multiple of a.

"That's not fair", you complain, "you're helping the machine!" True, but the help

I've given can easily be mechanized to make what I'll call a defeating algorithm: a

recipe for your defeat at tetris (or one of its variants) which the machine can follow. The

defeat I described above is summarized as:

Algorithm 1 If you play (variant) tetris using only 0 2 and 03 as pieces and with no

lookahead information, the machine can defeat you by following this recipe:

1. Send 0 3 until there is an unprotected 0 3-target in the well.

2. Send 0 2 until a 02-target protects all 0 3-targets in the well.

3. Go to step 1.

To summarize the previous discussion, this algorithm leads to your defeat because all

the 03-targets detected in step 1 are immortal: they can't be killed by 0 2 , and while

you play 03 , they are protected from above by a 0 2-target. Notice that the machine can

easily determine whether or not there are unprotected 03-targets in the well: in order,

starting with the highest flat in the well, it examines one flat at a time until it finds

either a 0 3-target or a flat (such as a 0 2-target) whose largest hole is less than 3 cells

wide. If the former, it has found an unprotected 0 3-target, otherwise, any 0 3-targets in

the well are protected by the latter.

You might still complain that in real TETRIS, the machine seems to send pieces at

random, and so this idea of a recipe is irrelevant. Your objection is a strong one, but

for now, my answer to it is simply that even if the machine does send pieces at random,

there is a chance that this random sequence will be exactly the same (finite) one that
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the machine would have generated by following the recipe. I'll return to this matter in

Chapter 6.

4.4 Published recipes and two minor fallacies

I can think of two ways in which you might (and in which I did) misinterpret the result of

the last section. Both of them are based on the following observation: "I know the recipe

the machine will use to defeat me, so I can work out in advance exactly what sequence

of pieces I will be given." You might then conclude:

Fallacy 1 Since I know what sequence of pieces I will get, I actually do have lookahead

information, whereas your proof of my defeat assumed I had none. Therefore, you haven't

proven that I will be defeated once I know the recipe.

Or

Fallacy 2 Since I can always predict what piece I'll get next, you've actually proven

that the machine can defeat me even if it gives me lookahead information, since that

information doesn't tell me anything I don't already know.

Both of these false conclusions result from a subtle misunderstanding of lookahead. To

say that you have one piece lookahead (as you do in TETRIS) means not only that the

machine must tell you in advance what piece you're getting next; it also means that the

machine must decide what piece that will be before it sees how you play the current one.

Lookahead is a promise on the part of the machine to hand you a certain piece next,

regardless of how you play the current one. Since the defeating algorithm above doesn't

decide what piece it will send you next until after you've played the current one, it doesn't

actually provide lookahead and neither do your predictions — the pre-commitment just

isn't there.
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4.5 The cycle-band

When you use a winning strategy, you'll eventually find that you're seeing the same

well states over and over. This is because there is only a finite number of well states

with no full cells above row 20. Since each of the 10 x 20 = 200 cells in or below row

20 is either full or empty, there can be at most 2 x 2 x x 2 = 2200 different states

in a winning strategy. (This is a slight over-estimate, since no full rows and no empty

rows below non-empty rows are allowed.) For each of these possible states, the machine

can be displaying as lookahead any of the seven pieces. Therefore, there is still only

a finite number of different situations (i.e. combinations of well state and lookahead

piece) which you can encounter when using a winning strategy. (The same is true for a

non-winning strategy, but simply because your game ends after a finite number of plays).

If you continue your game indefinitely, you will eventually have made more plays than

there are situations in the strategy, and so some of those plays must have been made in

the same situation. A cycle is a sequence of plays which starts and ends with the same

situation. For example, all of the single-piece strategies in Chapter 2 eventually end up

in a cycle. Notice that if a sequence of pieces induces a cycle, and if the machine repeats

that sequence of pieces, you will, if you are following a strategy, be forced to repeat the

cycle.

In a single pass through a cycle, some flats are born, some grow, some sink, and some

die. I call this collection of flats the cycle-band corresponding to that cycle. Some fiats

are born into the cycle-band, others are there from the start of the cycle, and some die

before the cycle ends, as I've shown in Figure 4.23. If a sequence of pieces leads you

through a cycle, then the machine can force you to pass through that cycle endlessly,

simply by repeating the sequence of pieces over and over again. Each of these passes has a

cycle-band associated with it, and I call the collection of all the flats in these cycle-bands
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the infinite cycle-band. In other words, the infinite cycle-band is the set of all flats

which are born, grow, sink, or die when a cycle is repeated ad infinitum. I now prove

some useful facts about these objects.
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Figure 4.23: A cycle induced by left kinks. One pass through the cycle consists of three
plays, and restores the well to its initial state. Even so, the identity of the flats changes:
for example, flat f is the oldest flat in the cycle-band, and dies on the first play of the
cycle. On the same play, the flat g grows and sinks into the row formerly occupied by
f . On the last play of the cycle, g grows again so that its structure is the same as f's
was in the initial state. In each state, the flats in the cycle-band are those between the
dashed lines.

Proposition 1 If f is a flat in the cycle-band which doesn't sink in the cycle, then it

must die there. Moreover, the oldest flat in the cycle-band dies during the cycle.

Proof: Since f doesn't sink, it must occupy the same row (call it r) throughout the

cycle, or until it dies. Suppose f is born or grows during the cycle (if neither, then f

must die during the cycle in order to satisfy the criterion for membership in the cycle-

band). On a play in which this happens, the number of full cells in row r increases. But

this number must decrease before the end of the cycle so that the well can return to the

cycle's initial state, in which r had fewer full cells. The only way this can happen is for

f to die (and to be replaced by a flat with fewer full cells, or by an empty row). The

oldest flat in the cycle-band is also the lowest there, and so it can't sink. (Otherwise, it
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would have to sink into a row just vacated by another fiat, and the latter would thus be

in the cycle-band, and lower than the oldest such flat. This is a contradiction.) •

Proposition 2 If f is a fiat in the infinite cycle-band, then f eventually dies.

Proof: The last time f sinks, it moves into a row just vacated by another flat. (If f

never sinks, then it must die.) That other flat must have died, rather than sunk, since

otherwise f would sink again when this play was repeated in the next pass through the

cycle. Thus, f itself will die on the next pass through the cycle. •
Proposition 3 If g is a flat which lives in a state of the cycle, and g is younger than

the oldest flat in the cycle-band, then g is also in the cycle-hand.

Proof: Let f be the oldest flat in the cycle-band. If g is in the well when f dies, then

g sinks (it's younger and so lives above f), and thus is in the cycle-band. On the other

hand, if g is born in the cycle only after f dies, or if g dies during the cycle before f

does, then, by definition, g is in the cycle-band. a

You might wonder why I chose the term "cycle-band". This is explained by:

Proposition 4 In any state of the cycle, those flats which are in the cycle-band form a

contiguous band at the top of the state.

Proof: Let g and h be flats in a state of the cycle. Suppose that g is in the cycle-band

and that h lives above g. Since g is no older than f (the oldest flat in the cycle-band),

and since h is younger than g, therefore h is younger than f , and so, by the previous

proposition, h is in the cycle-band. a

In summary, if you are using a winning strategy, you will eventually pass through a

cycle. The flats which participate in that cycle will form a band at the top of each state

of the cycle. You'll soon see why this matters.
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Kinky Sets

Now that I've told you what cycle-bands and defeating algorithms are, I'm ready to show

you why there is no winning strategy for standard tetris. In fact, I'll prove that as long

as you are playing with a set of pieces that includes both kinks, you have no winning

strategy in any well. Before giving a recipe for your defeat, I'll use the next two sections

to establish facts which I need in order to prove that the recipe actually works.

5.1 Playing in the cycle-band

You might recall that the well can be divided into pairs of adjacent columns that I call

lanes. In each lane, a flat can have zero, one, or two full cells, and I'll use segment to

refer to the portion of a flat that occupies one lane. Moreover, I'll use the symbols FT1

 

I• 1^I and ININ Ito represent the four possible configurations of empty and full cells■CI

   

in a segment.

If a flat has an 1 la 1 as its leftmost segment, then you can't kill that flat with a left

kink (see Figure 5.24). I'll call such a flat left-immune. Similarly, a flat with a IC I
as its rightmost segment is right - immune. I now show that if the machine gives you a

long enough sequence of left kinks, and you play them without ending your game, then

the well will develop a certain kind of structure.

Lemma 2 While following a strategy, if you pass through a cycle in which every piece is

a left kink, then you must have played each one entirely within a single lane. Moreover,

37
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Figure 5.24: Arrows indicate left- and right-immune flats. The plays shown are impossible
since they require the pieces to be moved upward. Even if I allow you upward moves,
the E cells will have to be empty for you to slide the pieces into place, and gravity will
then pull the kinks down into these empty cells. You still can't kill the immune flats.

for every lane in every state of the cycle, the portion of that lane within the cycle-band

will consist of a stack of zero or more segments, topped with a single I • I I

Proof: To begin, I will define a sequence of statements which might describe your plays

during the cycle. Each of these statements tells how your plays affected one lane, and

can be either true or false. The statements are called P(1), P(2), and so on, where the

numbers represent which lane the statement is about. The statements have the following

meaning:

For a lane x, P(x) says that whenever you played a left kink so as to fill

at least one cell to the left of lane x, you played that kink entirely within a

single lane. This means, among other things, that during the cycle, you never

played a left kink so that it filled cells in both lane x in the lane to the left

of x (see Figure 5.25).

I repeat: each of P(1), P(2), and so on could be either a true or a false statement about

how you played the kinks during the cycle. I want to show that, in fact, all of them are

true.

What does P(1) really mean? It means that during the cycle, any kink you played

which filled some cells to the left of lane 1 was played entirely within a single lane. This
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is true, in a trivial way, simply because there are no cells to the left of lane 1, and so

you couldn't have filled any. More importantly, this means that you never played a kink

which stuck partly into lane 1 from the left (again, this just isn't possible).

   

cycle band

       

Figure 5.25: P(x) is true if and only if plays of the type illustrated don't occur: lane
boundaries to the left of lane x, including x's own left boundary, are not crossed by pieces
played in the cycle. P(1) is true simply because no piece can cross the left wall of the
well.

Now that you know P(1) is true, I will use that fact to prove that P(2) is true. Even

better, I will prove that if for some lane n, P(n) is true, then P(n + 1) (i.e. the statement

for the next lane to the right) is also true. This will mean P(2) is true, and thus that

P(3) is true, and so on, all the way across the well.

Let n be a lane for which P(n) is true. I first prove that no flat in the cycle-band can

have an ( ■i segment in lane n. Suppose, to the contrary, that f is the oldest flat (in the

cycle-band) that has an 1.1in lane n. If you fill the empty cell of that segment during

the cycle, it can only be by making the play shown in Figure 5.26, because P(n) implies

no left kink can be played to fill the cell from the left. However, this play creates another

I 1E1 in lane n, but in a flat, say g, which is lower (and hence older) than f. Moreover,

since this play changes g, it is also in the cycle-band, contradicting my choice of f (see



Chapter 5. Kinky Sets^ 40

Figure 5.26). Therefore, you can't fill the empty cell in that segment of f, and so even if

the cycle is endlessly repeated, you won't kill f . But this contradicts the fact that f is

in the infinite cycle-band, since every flat therein must eventually die. Therefore, neither

f nor any other flat in the cycle-band can have a I I NI segment in lane n.

A
cycle band

Figure 5.26: The only way you can fill the empty cell of an I I• I segment in lane n of
flat f , if P(n) is true. Doing so requires that the E: cell be empty: think of where the
kink could have been just before ending up as drawn. Thus, if you play the kink this
way, you create a new I_ I a I segment in a fiat g that's below f.

Figure 5.27: When P(n) is true, there are at most four ways you can play a left kink so
as to fill a cell in lane n. In each case, the * cells must be full or else you will create an

in lane n.

In Figure 5.27 I've shown the four possible ways you could fill a cell in lane n (when

P(n) is true, as I've assumed). In order not to create the forbidden I lal in lane n, the
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F41 cells must already have been full when you played the kink. But that means the

segment containing that cell must have been al • I (consisting of the full ,E, cell and its

empty right neighbour) before you played the kink. Therefore, if you filled a cell in lane

n, there must already have been a INI I there. But notice that the last three ways of

playing a left kink change at least one I•1 1 into a ININI and so decrease the number of

      

III I in lane n by at least one. In contrast, suppose you played the left kink in the first

way I've shown (i.e. entirely within lane n). You would have destroyed one is I I segment

(the one with the ri 1 ) , but created another (the one at the top of the piece; its right

cell is empty since otherwise, that segment would have been the forbidden I INI before

you played the piece). Thus the number of Is I I segments in lane n of the cycle-band

could only have declined or remained constant each time you played a left kink In fact,

it must have remained constant since the initial and final states of the cycle are identical.

Therefore, during the cycle, you could have used only the first method to play a left kink

when filling a cell in lane n. Hence, during the cycle, you never played a left kink that

filled cells in both lane n and lane n + 1. Together with P(n) being true, this is enough

to imply that P(n + 1) is true. Therefore, all of the statements P(1), P(2), and so on

are true: during the cycle, you played every left kink entirely within a single lane.

The second part of the lemma is a consequence of the first. Notice that during the

cycle, you must have played each left kink at the top of a lane: playing it below the

top would have required an I I I segment below the non-empty top segment of the lane.

But how could this empty segment have arisen? During the cycle, gravity would prevent

you from leaving any empty segments in a lane, and so in infinite repetition of the cycle,

all such empty segments would eventually disappear. But then the play which required

the empty segment could never be repeated. Therefore, such a play doesn't occur in the

cycle.
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Playing left kinks within and at the top of lanes can give rise to lane structures only

of the type shown in Figure 5.28. •

V

Figure 5.28: During a left kink cycle, the lanes in the cycle band all have a simple
structure: a Isi segment on top of a (possibly empty) stack of

5.2 The shield in the cycle-band

The importance of this kind of cycle-band structure is that it contains a collection of

flats which together protect underlying flats from right kinks, and which no number of

right kinks can kill. This is what I call a shield against right kinks.

Lemma 3 In a cycle induced by a sequence of left kinks, the cycle-band contains a shield

against right-kinks.

Proof: Look at any state in the cycle. Let f be the highest flat in that state whose

rightmost segment is not an M. The previous lemma shows that this segment must

be a Isi J, and so f is right-immune. This is the highest flat in the shield, and you can

find the other ones by this procedure:

-,A
^a ^ segment

---- 0 or more^segments

A
cycle band
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1. f is a flat in the cycle-band which can't be deleted by right kinks, and whose

rightmost segment is not an ^

2. If none of f's segments is an I I I (for example, if f is the lowest fiat in the cycle-

band for this state) then each of f's segments is either a NI I or a DO But then

f has no pair of consecutive empty cells at all, and so it prevents right kinks from

reaching any rows below (kinks need a space of two empty cells to pass through a

row). This flat is the lowest one in the shield, so you can stop.

3. Otherwise one of f's segments is an mi. Let / be the lane with the rightmost

such segment, and notice that f has a full cell in the left column of lane / +1 — see

Figure 5.29. (Notice that / is not the rightmost lane in the well, since f's rightmost

segment isn't an III

4. Put your hand on this full cell and descend lane 1, dragging your hand down along

the "wall" of full cells to your immediate right, until you reach a flat, say g, whose

segment in lane 1 is not an I I I Flat g is still in the cycle-band since the bottom

flat of the cycle band, having no I I I segments (by the previous lemma), would

have stopped your descent. Thus, g must have a 101 I segment in lane / (previous

lemma again). Notice that the empty cell of this segment can't be filled by a right

kink until all the full cells you touched are gone (Figure 5.29 again). That is, flat

g can't be killed (using only right kinks) until you've killed all of the flats above g,

up to and including f. Since f can't be killed by right kinks, neither can g.

5. Reuse the labels so that "f" now refers to this flat g.

6. Go to step 1.

Since you descend at least one row each time you perform step 4, following this procedure

will eventually lead you to stop, successfully, in step 3. At that point, the set of all flats
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Figure 5.29: The flat f is right-immune, but has anl I in lane 1. The cells you touch
while dropping down empty portions of lanes are shown notched. In this example, the
shield you eventually find consists of flats f , g, and h.

you ever called f forms a shield against right kinks, since you can't kill any of these flats

with right kinks, and since the lowest one actually prevents you from playing right kinks

anywhere below.

5.3 Defeating you with kinks

When the machine performs the defeating algorithm for 0 2 and 0 3 which I gave in Chap-

ter 4, it does not provide you with lookahead information. However, when it performs

the following algorithm, it does. You can verify this by making sure that in every step,

the piece being handed to you is the one displayed (as lookahead piece) in the previous

step.

Algorithm 2 The following procedure generates a sequence of kinks which defeats any

strategy for tetris:

I. Send left kink and display left kink until a cycle is detected.
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2. Send one left kink and display right kink.

3. Send right kink and display right kink until a cycle is detected.

4. Send one right kink and display left kink.

5. Go to step 1.

Proof: For reasons I've already mentioned, if your game doesn't end in step 1 or 3,

you must eventually pass through a cycle. The machine will detect this when you revisit

a state within step 1 or 3. Lemmas 2 and 3 show that when a cycle is detected in step 1,

the cycle-band will contain a shield against right kinks. Can you disable this shield when

you play the left kink sent in step 2? No: the shield consists of flats having structures

of the type illustrated in Figure 5.30. The only way you can fill the empty cell in one of

those structures (and hence the only possible way you can disable the shield) with the

single left kink of step 2 is to play that kink within a lane. But doing so preserves the

structural form of the cycle-band: it will contain a (possibly new) shield against right

kinks.

Figure 5.30: Every flat, say f , in the shield must have an empty cell, shown as a E,

with a full cell in the position one up and one to the right. The only way you can fill this
empty cell using a single left kink is shown. (In both cases, the lane boundary indicated
with an arrow might actually be the right wall of the well.)

So, even after step 2, the well still has a shield against right kinks Therefore, nothing

you do with the right kinks you get in steps 3 and 4 will kill any of the flats in that shield.
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Also, notice that the cycle-band of the cycle detected in step 3 must lie entirely above

the shield from steps 1 and 2. This is simply because the top flat of that shield can't be

killed by right kinks, and so isn't in the infinite cycle-band corresponding to repetition

of the right-kink cycle. (Remember, every fiat in the infinite cycle-band must die.) But

now the mirror images of Lemmas 2 and 3 show that the cycle-band induced by right

kinks will contain a shield against left kinks. Since this new cycle-band is above the old

shield, so is the new shield. Thus, the second time the machine follows step 1, you will

be playing left kinks above this new shield, without killing any of the flats in it. As the

machine repeats steps 1 to 4, you will be forced to create a stack of shields of alternating

type until eventually, one of the flats in those shields is above row 20, and your game

ends. Obviously, you could have chosen any other maximum well depth and the machine

would still have (eventually) defeated you.

When following Algorithm 2, how can the machine detect a cycle? One way (popular

with the American recreational vehicle crowd) is for it to create a list of states visited.

Each time you enter step 1 or 2, the machine empties the list. Every time you reach

a state within that step, it checks to see if it's already in the list. If so, you have just

passed through a cycle. If not, it adds the state to its list. It's quite possible for this

list to get arbitrarily large, even if a cycle is always (eventually) detected, so a better

method is for the machine to wait for the cycle-band structure itself. This structure can

arise even if you haven't yet completed a cycle. Moreover, the machine requires no list

for this, but only needs to scan each state you visit to see if it has the required structure.

"Now that I know how the machine is defeating me, can't I choose to avoid creating

the shields?" No. Remember that with my concept of "strategy", the way you play

a piece can depend only on the current state of the well and on which piece is shown

as lookahead. Therefore, if you revisit a situation, you have no choice but to play the

current piece in the same way you did when you first encountered that situation. This is
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enough to guarantee that if you are given a long enough sequence of left kinks, you must

eventually pass through a cycle (or end your game). Once you've done this, Lemma 3

guarantees that there will be a shield in the corresponding cycle-band.

I repeat: no matter what the width of the well, no matter how great you set its depth,

no matter what state the well is initially in, and even if you are allowed to move pieces

up before dropping them, you can't beat tetris. The machine can defeat you by using

just the two kinks. You can't win at tetris, and so you can't win at TETRIS.
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Conclusion

I now return to the real world to see what, if anything, the analysis of the previous

chapters has to say about it.

6.1 Pessimism vs. Realism

If I had given you a winning strategy for tetris, you could have used it to make a real

game of TETRIS last as long as you wished, provided the game didn't get too fast for you.

You would have been able to beat TETRIS no matter how cleverly it was programmed to

defeat you. In fact, I've shown that you don't have a winning strategy for tetris, because

if it were programmed to do so, the machine could send you a sequence of kinks which

would quickly end your game. But what does this say about TETRIS?

I have no evidence to contradict the hypothesis that the TETRIS machine simply

flips a seven-faced coin to decide which piece it will hand you — TETRIS doesn't appear

programmed to act as an opponent. In a typical game, the random sequence of pieces you

receive will probably allow you to play for much longer than you could if the pieces were

carefully chosen. If I call this the average case scenario, then my concept of strategy

assumes a worst case scenario: the machine tries its best to defeat you, turning the

game into a contest between two players. (You can actually play tetris against a human

opponent using a pencil and a piece of paper; delete rows by folding them out of existence.

If the player sending the pieces has read this thesis, the game won't last long!)

I suspect it would be more difficult to come up with any exact results in the average

48
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case scenario. However, I'd still like some indication of how my worst-case results relate

to reality. One question I find interesting is whether the seven pieces can be ranked

according to how difficult, on average, they are to play. Instead of analyzing the average

case mathematically, I've decided to bring in some expert opinion.

6.2 The player survey

For two weeks in February, 1992, I conducted a passive survey of TETRIS players. I put a

total of 100 survey forms (see Figure 6.31) into envelopes stuck to three TETRIS machines

on the UBC campus (one in each of Gage and Vanier residences, and one in the SUB

video arcade). Players were informed about the survey by the instruction sheet shown

in Figure 6.32. Twenty-four forms were returned, and I have summarized the results in

Table 6.4.

Table 6.3: The average rank of TETRIS pieces, where smaller means harder. The sample
size is 24, and the standard error equals the standard deviation divided by -■/R

Right Kink^Left Kink Right Elbow Left Elbow Tee Square Bar
Avg. Rank 0.75 0.96 2.13 2.54 3.92 3.96 4.67
Std. Dev. 1.01 1.40 1.13 1.22 2.02 1.65 1.95
Std. Err. 0.21 0.29 0.23 0.25 0.41 0.34 0.40

In Table 6.3, I've listed the "average" rank for each piece. Each player was asked to

rank the pieces, with 1 for the hardest, higher numbers for easier pieces, and with equally

difficult pieces getting the same rank. I counted, for each piece and player, how many

pieces that player ranked as being less difficult to play than that piece. The averages and

standard deviations in the table are for this transformed rank For example, the average

rank of 2.54 for left elbows indicates that, on average, players ranked 2.54 other pieces

as being more difficult to play than left elbows.
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The fact that the two kinks had the lowest average rank indicates they were generally

perceived to be the hardest pieces to play. This is reminiscent of the results in Chapter 5.

The square was ranked easier than all other pieces except the bar. This might remind

you of the two-piece strategies in Chapter 3: if one of the pieces you are playing with is a

square, then your winning strategy (if you have one) doesn't require lookaheakl. Elbows

received an intermediate rank. This might reflect the fact that winning strategies for sets

of pieces with an elbow require lookahead, unless the other piece is a square. I know of

no strategy for the two elbows which doesn't use lookahead. That makes elbows "more

difficult" to play than the square, but "less difficult" than the kinks. These comparisons

are vague, but I find them interesting nonetheless.

I posed questions 8 and 9 of the survey to see what factors players found most im-

portant in ending their games. One of the assumptions I made in formulating tetris was

that you could take as long as you wanted to play the pieces. This affects the relevance

of tetris to TETRIS: the more important are time factors, the less relevant is this thesis.

For the game just played, 14 out of 24 players chose a time-related factor (i.e. "b", "c",

or "h") as most important in ending their game, while only 6 chose a piece-related factor

(i.e. "a" or "g"). (Other responses deal with factors incidental to the game.) As for what

usually ended their games, 18 of 24 players indicated a time-dependent factor, while only

6 chose a piece-related factor. It probably doesn't surprise you that speed and timing

play a major role in influencing the length of a game of TETRIS, and thus the score

obtained therein.

The answers to the lookahead questions indicate that most players make use of this

information at least often (19 of 24 players), with a slight trend towards greater usage

among players with higher scores. Of the 19 frequent lookahead users, 5 thought two

piece looka head would not be helpful, 8 thought it would be somewhat helpful, and 5

thought it would be very helpful. In Chapter 3, I gave you winning strategies for some
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pairs of pieces in which you had to use lookahead, but not very often. I know of no set

of pieces for which there is a winning strategy with two- (or more) piece lookahead, but

none for one-piece lookahead.

The most common piece of advice selected was "Try not to leave any holes" (8 of

24 players). Players' own advice included "Stay calm", "Leave a space by the wall for a

tetris [i.e. a simultaneous clearing of four rows]" , "Don't wait for that perfect piece", and

"Pretend you are having sex" (the latter profferred by player 3, who, judging by his/her

score, is adept at following this advice).

Unfortunately, when I posed question 10, I was thinking in terms of tetris. In TETRIS,

the best way to play a piece seems usually to depend on how many rows you have left to

clear in the current round. I didn't indicate this number in the six situations, and so it's

not clear that I can conclude anything from the responses. Moreover, I had intended each

situation to pose a simple tradeoff (clearing a row vs. not leaving a hole, for example),

but, for example, players indicated five different plays in the first situation, and six in

the second.

6.3 Personal Conclusion

Even with knowledge of the results in this thesis, I can't get a TETRIS score higher than

about 100000. However, 6 of the 24 people in the survey can obtain much higher scores,

and the typical high score on TETRIS machines at UBC is roughly 900000. Therefore, I

have no choice but to conclude that, at least for TETRIS,

We do not learn from inference and deduction and the application of math-

ematics, but by direct intercourse and sympathy. [2]



Tetris Player Survey (to be completed right after a game)
1. What was your 600f* (roughly)?  ^2. At what level did you *an this game? Easy Medium Hard

3. At what level do you usually begin? Easy Medium Hard

4. Rank the Tetra pieces according to how difficult you usually find it b play them. Use 1 to indicate the hardest piece(s) to play, and use 2, 3, and so
on to intimate easier pieces. if you find two or more pieces roughly aqua,* difficult to May, give them the same number. Please assign a nuntber
am), piece

Rea:

Your ranking:
(1-hardest)

(El E3^e-r-77,4

  

5. While you are playing a piece, Teats shows you the next piece youl have to play. How often do you uas this information?

a) Never^b) Seldom^ci) Often^d) Usually

6. At low gams speeds, how helpful would it be to see the next two pieces, rather than just the next on.?

a) Not helpful^b) Somewhat helpful a) Very helpful

7. If you wanted to help a beginning Teats player, and could cave only one dna* piece of advice to that player, what would k be? (If you have
advice you prefer to the ones listed, please circle f and write it hi the spaoe provided.)

a) May pieces as low as possible.^b) Try not to Nave say hobs.^a) If you can alms • row, do It.

d) Winch to cm which piece wiN come next.^is) Pies piece* of the same type doers to one another.

f) (your own): ^

For questions 8 and 9, choose the factor that you feel contributed most to ending this game of Istria, end the one which usually does so when you play.
If you think a factor not listed here was more Important, please rind* I and vain it in the space provided,

8. This game:^9. Usually:^(Please circle only one leiter In each column.)

a) a)^I was wafting for. certain piece, and the machine didn't send IL

please circle which one:

b) b)^I was trying to play a plea* in a certain spot, but it was dropping so fast I didn't have time M move It
sone* to that spot.

c) I accidently played • piece where I didn't mean to.

d) The Joystick or Intel* button enalfunodoned.

fs) •)^I got distracted by something outside of the game.

I)^1 ddn't feel Nke playing soy longer.

g)^The machine was minding too num of a certain type of piece.

please alit* which OM

h)^h)^The gem* got so fast I couldn't keep track of what was happening.

(your own): ^

Thanks for your help. If you have commentalmmadons about Tetra or this surrey, pleat* put them on the back of this sheet.

10. Here are 6 situations you might face. Please draw the piece where you would pleat It. (The next piece Is shown In small.)

czm

••

9

   

0

      

• IIIII

11.10^•

       

cS3
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Figure 6.31: The TETRIS player survey form.



Chapter 6. Conclusion^ 53

The Tetris Player Survey: Why and How?
Why:

The purpose of this survey is to discover commonly held beliefs about
Tetris. In particular, I'm interested in strategies people are using and in
how different aspects of the game affect their scores.

This data is being collected as part of the research for my Master's
thesis. (I'm a graduate student in the Institute of Applied Mathematics,
here at UBC.) Survey results will appear in copies of the thesis at both
Main and Math libraries.

The aim of the thesis is to investigate, mathematically, common
knowledge about Tetris. The survey data will tell me both what beliefs
(if any) people hold about the game, and what aspects of the game are
essential and must be included in reasonable mathematical models of
it. Such models will be used to explore questions about strategy like
those on the other sign.

How
* Play a game of Tetris
* Fill out a survey form:

- give the answers you feel are best
- don't peek at other people's forms
- if you're really unsure about what a question is asking for, leave
it blank.
- write any comments or questions you have about this survey,
or Tetris, on the back of the page

* Leave the completed form in the envelope provided.
* Feel good about yourself for contributing to interesting research and for
helping another student to graduate.

Thank-you for your help!

Figure 6.32: Instructions for TETR IS player survey participants.



Chapter 6. Conclusion^ 54

Table 6.4: Results of the TETRIS player survey. Each row corresponds to answers pro-
vided by one player, in the same order as questions appear on the survey. Levels: easy,
medium, hard. Ranks: Tee, Right Elbow, Left Kink, Square, Bar, Left Elbow, Right
Kink. Lookahead: 1 is use of current lookahead, 2 is potential use of 2-piece lookahead.
Reasons why game ends: Now is this game, Most is usually. The letters correspond to
the choices on the survey form.

Player
No. Score Levels Ranks

Look
Advice

Game End
1 2 Now Most

9 e,e 3,2,1,4,5,2,1 c a a d b
14 m,e 3,2,1,5,4,2,1 c b b b a
10 e,e 6,3,1,5,7,4,2 d c d a f
7 e,e 1,2,2,3,3,2,2 d c f ah ach
6 7,3,5,6,1,2,4 b b f ac
2 16000 e,e 3,4,2,6,7,5,1 b a b c c
12 20000 e,e 3,1,2,4,5,1,2 d b b b b
22 20000 e,e 4,3,1,2,5,3,1 d a a c b
16 30171 e,e 6,4,1,3,7,5,2 b b c eg abcdfh
8 50000 e,e 7,5,2,6,3,4,1 c b c be bcdh
4 59289 e,e 2,3,1,4,5,3,1 d b b c b

21 60000 6,2,1,4,5,3,2 cd b cf c c
18 75000 e,m 6,3,1,5,7,4,2 c c b a b
11 80978 e,e 5,2,1,3,4,2,1 c a d b b
13 93000 h,h 7,5,1,3,4,6,2 b b b a f
17 103979 h,h 4,3,2,1,5,3,2 d b c c cg
20 110000 e,e 7,2,5,6,3,4,1 b c a h h
24 122246 m,m 5,3,1,6,7,4,2 d c f h f
23 235000 e,e 3,4,2,6,7,5,1 d a b c c
1 287635 e,e 6,4,2,5,3,4,1 c b c e d

19 350000 e,e 1,1,1,1,1,1,1 d c f d h
5 400000 h,h 3,3,2,4,4,3,1 d a f c c
3 847088 e,e 1,3,2,4,5,3,2 d b f a gi
15 987000 4,1,6,3,7,2,5 c b b e c
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