A SEMI-AUTOMATIC APPROACH TO PROTOCOL IMPLEMENTATION -
THE ISO CLASS 2 TRANSPORT PROTOCOL AS AN EXAMPLE
By
ALLEN CHAKMING LAU

B.Sc, Simon Fraser University, 1983

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in
THE FACULTY OF GRADUATE STUDIES

(DEPARTMENT OF COMPUTER SCIENCE)

We accept this thesis as conforming

to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA
July 1986

© Allen Chakming Lau, 1986

In presenting this thesis in partial fulfilment of the
requirements for an advanced degree at the University

of British Columbia, I agree that the Library shall make
it freely available for reference and study. I further
agree that permission for extensive copying of this thesis
for scholarly purposes may be granted by the head of my
department or by his or her representatives. It is
understood that copying or publication of this thesis

for financial gain shall not be allowed without my written

permission.

Department of - (ij;ﬁ9@%7gff Qgg;&ﬂCE;

The University of British Columbia
1956 Main Mall

Vancouver, Canada

V6T 1Y3

Date (ZV/% /L, //ﬁ’fz{ |

DJE-6 (3/81)

Abstract

Formal Description Techniques (FDTs) for specifying communication protocols, and the
adopted FDT standards such as Estelle have opened a new door for the possibility of automating
the implementation of a complex communication protocol directly from its specification. After
a brief overview of Estelle FDT, we present the basic ideas and the encountered problems in
developing a C-written Estelle co.mpiler, which accepts an FEstelle specification of protocols and
produces a protocol implementation in C. The practicality of this tool — the Estelle compiler —
has been examined via a semi-automatic implementation of the ISO class 2 Transport Protocol
using the tool. A manual implementation in C/UNIX 4.2bsd of this protocol is also performed
and compared with the semi-automatic implementation. We find the semi-automatic approach
to protocol implementation offers several advantages over the conventional manual one. These
advantages include correctness and modularity in protocol implementation code and reduction
in implementation devellopment time. In this thesis, we discuss our experience on using the

semi-automatic approach in implementing the ISO class 2 Transport Protocol.

ii

Contents

Abstract
Contents
List of Figures

List of Tables

Acknowledgement

1 Introduction
1.1 Motivations i i e
1.2 Scopeand Contributions L L o e
1.3 Thesis Outline e e e e e e e e e e e e

2 Estelle
2.1 Channel and Interaction Primitive
2.2 Module and Interaction Point
2.3 Refinementand Process e e e
2.4 Extended Finite State Machine

3 The Implementation Strategy

3.1 Data Structures e e e e e e e e e e e e
3.2 Interactions o v v i e
3.3 Transitions o L e e e e e e e e e e
3.4 SystemInterfaces L L Lo

4 The C-Estelle Compiler

4.1 The Structure o e e e e e e e e e e e e e
4.2 TranslationIssues. e e e e e e e e e
421 PascaltoCProblems
4.2.2 Estelle to C Considerations e e e

1ii

i

iii

vi

vii

14
14
17
17
18

5 Implementation Example - The ISO Transport Protocol
5.1 Overview of The ISO Class 2 Transport Protocol
5.2 Design of the Implementation
5.2.1 Structure
5.2.2 Implementation Issues
5.2.3 Scheduler Design o
5.3 Semi-Automatic Implementationo oo
531 The Generated Code
5.3.2 Integration Process
5.4 Manual Implementation e e e e e
5.5 Results. e

6 Conclusions
6.1 Thesis Summary e e e e
6.2 Future Work e e

Bibliography

A The ISO Class 2 Transport Protocol — State Diagram

B The ISO Class 2 Transport Protocol — Estelle Specification

C vS“ystfem Initialization and Scheduler — For Semi-Automatic Implementation

D System Initialization and Scheduler — For Manual Implementation

v

26
26

2
[

30
30
31
32
32
34
35
36

40
40
41

43

45

47

66

72

List of Figures

2.1 An Example of Channel Specification. 5
2.2 An Example of Module Specificationo 0oL, 6
2.3 Typical Refinement of a Transport System 8
2.4 An Example of Refinement Specification 9
2.5 An Example of Process Specification 11
2.6 An Example of Transition Specification 13
3.1 Procedure of the Semi-Automatic Implementation 15
3.2 Data Structure of an Interaction 15
3.3 Data Structure of a Module Instance 16
3.4 Data Structure of an Interaction Point, 17
4.1 The Structure of the C-Estelle Compiler 22
5.1 Transport Service — Primitive Sequence 28
5.2 Transport Protocol Data Unit Fixed Header Formats 29
A.1 Transport Protocol State Diagram 46

List of Tables

5.1 Sizes of Different Parts of Implementations

vi

Acknowledgement

I would like to thank my supervisor, Dr. Son Vuong, for his guidance throughout the course
of this thesis and Dr. Harvey Abramson for his comments and careful reading of the thesis.

Many thanks are due to Susan Chan and Helen See for their helpful comments and their
fine editing skills.

Finally, I wish to thank Frances Liu for her patience and love.

vil

Chapter 1

Introduction

1.1 Motivations

Formal Description Techniques (FDTs) [Boch80] for specifying protocols and services have
opened a new door for the possibility of automating the implementation of a complex com-
munication protocol directly from its specification. These FDTs are advance enough that
they are becoming stahdards such as [CCITT85], [Estelle85] and [Lotos84] and their compil-
ers, [Ansart83], [Bria86), [Ford85], [Gerber83] and [Hans84], are .a]so being developed to make
themselves usable in the design and implementation of real-life protocols.

This new approach to protocol implementation is superior than the traditional approach
in that communication protocols are implemented semi-automatically in a systematic manner
rather than manually in an ad hoc manner. It avoids different interpretation of the specification
and various implementation errors, hence, provides confidence in conformance to the specifi- -
cation. As a large portion of the protocol implementation is generated by the compiler in a
standard target language, the implementation is highly portable. Furthermore, the generated
code is well-constructed, and systein—dependent features can be easily located in a few routines.

Thus, the implementation is easier to maintain.

CHAPTER 1. INTRODUCTION 2

The motivation of this thesis is to verify the usefulness of the semi-automatic approach to
protocol implementation. An Estelle compiler is chosen to implement a fairly complex ISO
class 2 Transport Protocol [CCITT85,ISO82b). A manual implementation of this protocol is

also performed and compared with the semi-automatic implementation.

1.2 Scope and Contributions

The chosen compiler is developed by Daniel Ford in the language C on a VAX 11/750!
running UNIX 4.2bsd%?. The compiler accepts an Estelle specification for communication pro-
tocols and produces C code. The generated code is then incorporated with pre-written generic
and implementation-dependent routines to implement the specified protocol.

The original C-written Estelle c<_)mpiler3 is erroneous and insufficiently tested. Its per-
formance has been greatly enhanced by transforming BNF grammars into LALR grammars
which best fit the YACC compiler [John75] for generating the parser of the C-Estelle compiler.
The grammar rules were also rewritten so that the compiler supports complex data structures
such as variant record and pointer which are commonly used in complex protocol specifications.
Furthermore, the translation routines were modified to produce optimized and better-organized
code.

The enhanced compiler was examined by using it to implement protocols such as hot
potato, alternating bit, and ISO class 2 Transport Protocol. It was also ported to several
SUN Workstations* and the protocol implementations are successfully running among the

VAX 11/750 and SUN Workstations.

!VAX is a trademark of Digital Equipment Corporation
?UNIX is a trademark of AT&T Bell Laboratories.
3For brevity we shall often use the terms C-Estelle compiler in place of C-written Estelle compiler

4SUN Workstation is a trademark of Sun Microsystems.

CHAPTER 1. INTRODUCTION 3

1.3 Thesis Outline

After an overview of Estelle in Chapter 2, the development of the automatic tool, C-
Estelle compiler is described. Chapter 3 explains the implementation strategy used in the tool,
and Chapter 4 discusses the problems encountered. An extensive application of the tool is
described in Chapter 5. The real-life ISO class 2 Transport protocol is implemented both semi-
automatically by using the tool and manually in an ad hoc manner. After a presentation of
their designs and implementations, experience learned from the implementations is discussed.
The last chapter summarizes the thesis and offers suggestions for future work.

Since the implementations of the C-Estelle compiler and the protocol were written in the
language C, all coding examples presented are C-like. In addition, implementations run on the
UNIX 4.2bsd operating system. Thus, reader are assumed to have a basic understanding of the

language C and the UNIX 4.2bsd operating system.

Chapter 2

stelle

Estelle (Extended State Transitioﬁ Language) is a formal description technique developed
by the International Standard Organization (ISO) TC 97/SC 16/WG 1 — FDT, Subgroup B
[Estelle85,ISO84]. Based upon an extended finite state transition model and the Pascal pro-
gramming language, Estelle is used for the speciﬁcat;xon of communication protocols and ser-
‘Vices.

The framework of an Estelle specification is a set of co-operating entities, each described as
a module, interacting with each other by exchanging information through channels. The actual
behaviour of a module is specified as either an integrated behaviour of a set of interacting

submodules or at the innermost level, an extended finite state automaton.

2.1 Channel and Interaction Primitive

A channel is a two-way simultaneous pipe which transmits information between two con-
nected modules. A channel-type definition specifies a set of interaction primitives which is
grouped under two different roles. These roles are used to distinguish the two sides of the
channel, and hence, the two connected modules. Primitives grouped under one role can only

be initiated by the module instance which plays that role in respect to the channel; and they

CHAPTER 2. ESTELLE 5

are received by the module instance which plays the other role. Information is transmitted
between module instances via the parameters of interaction primitives. As an example, fig-

ure 2.1 shows a definition of a channel-type TS _primitives. There are ten possible Transport

CHANNEL TS _primitives (TS_user, TS_provider);

BY TS user :
T_CONNECT _request : (From_transport_addr : ADDR_TYPE;
To_transport_addr : ADDR_TYPE;
Qual _of _service : QOS_TYPE;
TS user_data : DATA.TYPE);
T_CONNECT _response (Qual_of service : QOS_TYPE;
TS _user_data : DATA_TYPE);
T_DATA _request (TS_user_data : DATA_TYPE);
T_XPD _request (TS_user_data : DATA_TYPE);
T _DISCONNECT _request (TS_user_data : DATA_TYPE);
BY TS _provider :
T_CONNECT indication (From_transport_addr : ADDR_TYPE;
To_transport_addr : ADDR_TYPE;
Qual _of_service : QOS_TYPE;
TS_user_data : DATA_TYPE);
T_CONNECT _confirm (Qual_of service : QOS_TYPE,;
TS _user_data : DATA_TYPE);
T_DATA [indication (TS_user_data : DATA_TYPE);
T XPD_indication (TS_user_data : DATA_TYPE);
T_DISCONNECT _indication (Reason : REASON_TYPE;
TS _user_data : DATA_TYPE);

END TS _primitives;
Figure 2.1: An Example of Channel Specification

service interaction primitives which can be used by a Transport service user to interact with
the service provider. Five of them, namely T_CONNECT request, T_.CONNECT response,

T_DATA request, T_XPD request and T_DISCONNECT _request, can be initiated by a module

CHAPTER 2. ESTELLE 6

instance which plays a role of TS user in respect to the channel. The parameters of the inter-
action primitives, such as TS_user_data, carry the given information from a TS _user module

instance to a receiving TS _provider module instance.
2.2 Module and Interaction Point

A module is the basic component of an Estelle specification and represents an entity of
the specification. A module-type definition is a list of interaction points at which the module
interacts with its environment. Each interaction point, (also called port), is an abstract interface
of a module used to interact with the connected modules. For each interaction point, a role
of its associated channel-type is specified. An interaction is then identified by the name of the
interaction point at which it occurs and the name of the interaction. In addition, the interaction
has to be one of the defined interaction primitives in the corresponding channel-type definition.

The actual behaviour of a module is defined as either an integrated behaviour of a set of
interacting submodules or an extended finite state automaton. For a given module-type, one
or many module instances (i.é. protocol instances) can be obtained. An example of a module

specification is given in Figure 2.2. All possible interactions of a Transport service user with a

MODULE TS._user_module;
TSAP : TS_primitives (TS_user);
END TS_user_module;

Figure 2.2: An Example of Module Specification

Transport service provider is then through an interaction point TSAP. The interaction point
is associated with a TS_primitives channel, and the module plays a role of TS_user. Thus, at

this interaction point, the module can initiate the interaction primitives T_CONNECT _request,

CHAPTER 2. FESTELLE 7

T_CONNECT _response, T_DATA request, T_XPD_request and T_DISCONNECT _request. It

is also allowed to receive other interaction primitives defined only for the TS _primitives channel.
2.3 Refinement and Process

In Estelle, the actual behaviour of a module is specified either indirectly as a Refinement
or directly as a Process. If a module is not a complete self-contained entity, it is decomposed
into a set of co-operating submodules, each of which may be further decomposed. The behaviour
of the module is the integrated behaviour of the submodules and hence it is called a refinement.
A module can also be specified as a process which describes the corresponding finite state
transition model of the module.

An Estelle refinement specification includes definitions of internal channel-types, submodule-
types, and specifications of the corresponding processes and refinements. After the definition of
the internal structures, module instances are created and connected accordingly. If necessary,
interaction points of internal module-types may be replaced by those of their parent module-
type.

A typical refinement of a Transport system is depicted in Figure 2.3. According to this
refinement, a Transport_system module is refined as a Transport_ref refinement, which is de-
composed into two TS_user modules, one ATP module, two RS modules, and four System
modules. The corresponding Estelle specification is shown in Figure 2.4. After defining the
internal structures, module instances are declared. Module instances are then connected pro-
vided that they play the different role of a channel through which they interact with each other.
There are no replacement because Transporf_system module 1s a closed system.

An Estelle process definition specifies the queueing discipline associated with each interac-

CHAPTER 2. . ESTELLE

Transport_system

Transport Service users

ul

u?

S

/SZ
~—~——

Network Service Providers

ATP
(Abstract Transport Protocal } o3
sS4
RSt RS2
System
Service
Providers

Figure 2.3: Typical Refinement of a Transport System

fra"nsport_ref

CHAPTER 2. ESTELLE

REFINEMENT Transport_ref FOR Transport_system,;

(* Constant and Type Definitions *)

(* Module Instances *)

Ul : TS_user.module WITH TS_user_process(1);
U2 : TS_user_module WITH TS _user_process(2);

ATP : ATP _module WITH ATP _process;

S1: System_module WITH System_process(1);
S2 : System_module WITH System_process(2);
S3: System_module WITH System_process(3);
S4: System_module WITH System._process(4);

RS1 : RS_module WITH RS _process(1);
RS1: RS_module WITH RS _process(2);

(* Connection Establishments *)
CONNECT

ULTSAP TO ATP.TCEP[1];
U2.TSAP TO ATP.TCEP[2];

ATP.NSAP[1] TO RS1.NCEP;
ATP.NSAP[2] TO RS2.NCEP;

ATP.SAPT[1] TO S1.SEP;
ATP.SAPT[2] TO S2.SEP;
ATP.SAPNJ1] TO S3.SEP;
ATP.SAPN[2] TO S4.SEP;

EN D Transport_ref;

Figure 2.4: An Example of Refinement Specification

CHAPTER 2. ESTELLE 10

tion point, the initial condition and all possible transitions of the corresponding extended finite
state machine. For each interaction point of a module, an individual queue is reserved for the
queueing of incoming interactions from the peer module before these interactions are considered
as input by the module. These queues are on a first-come-first-serve basis and their lengths
are either infinite or zero. If the queue length is zero, an output interaction is not queued but
consumed immediately as an input by the rendezvous recipient module.

A process specification of a TS_user module is presented in Figure 2.5. The queueing
discipline of its interaction point TSAP, local variables, primitive functions and procedures are
first declared. The local variables are then initialized as the initial state of the corresponding

extended finite state machine. The remaining specification is a list of transition definitions.
2.4 Extended Finite State Machine

The operation of a process 1s modeled as an extended finite state machine which is a
finite state automaton extended with the addition of variables to the states, parameters to the
interactions, time constraints and priorities to the transitions. The state space of a module
is specified by a set of variables. One distinct variable, state, if defined, is used to represent
the state of a finite state machine upon which the module is based. This major state variable,
together with other context variables, determines a state of the module.

The general idea to express a transition, is that WHEN an interaction arrives, a transition
has to be performed, FROM the current major state TO a new major state PROVIDED a
condition is satisfied, through an action. The associated action of a transition is specified in
terms of Pascal statements, and may include the initiation of output interactions with its peer

modules.

CHAPTER 2. ESTELLE

PROCESS TS _user_process (TS_index : integer) FOR TS_user_module;

QUEUED TSAP;
(* Type and Variables Declarations *)

INITIALIZE

BEGIN
user_id := TS_index;
state := IDLE;

for gkind := Q_NO_EXPEDITED DATA to Q EXTENDED_FORMAT do
qual_of service.misc|[qkind] := FALSE;

qual_of service.class := CLASS_TWO;
sndcent := 0; xsndent := O;
rcvent := O; xrcvent := 0

END;

(* Transition Definitions *)

END TS _user_process;

Figure 2.5: An Example of Process Specification

CHAPTER 2. ESTELLE 12

Transitions are classified into input and spontaneous transitions, depending on the pres-
ence of an input interaction (i.e. WHEN clause). An input transition occurs whenever there
1s an input interaction at a specified interaction point. A spontaneous transition lacks such a
WHEN clause and may be executed regardless of any input interactions.

The Estelle state machine is non-deterministic in the sense that in a given major state
and at a given time, several different transitions may occur. As mentioned in the ISO FDT
document, an Estelle specification must not depend on non-deterministic choices. In order to
handle the non-deterministic situation, an ANY clause is used to select a random value of the
specified enumerated-type variable(s). Such an ANY clause can only be used in spontaneous
transitions.

Figure 2.6 lists some transition types, which occur in a TS_user module. Transition one is
an input interaction which is initiated by the Transport data arrival. The data arrival causes a
cyclic transition from the major state Alive to itself, and an execution of procedure Store_data
to store the data in a buffer pool. Transition two inherits the WHEN clause of transition one.
When data arrives and the current major state is Receiving, counter revcnt is incremented
and procedure TS output is executed to notify the Transport service user the data arrival.
The current major state is also changed into Alive as a result of the transition. Transition
three is a spontaneous transition that is performed whenever the Transport service user has a
request. Whenever the user wants to initiate a Transport connection and the present major
state is Idle, it first sets up the parameters of the interaction primitive T_CONNECT _request.
The request is then sent over the TS_primitives channel at interaction point TSAP and the

major state of the module is changed to Waiting.

CHAPTER 2. ESTELLE

TRANS
WHEN TSAP.T_DATA _indication
FROM Alive TO Same (* Transition One *)
BEGIN
Store_data (pool, TS user_data)
END;
FROM Receiving TO Alive (* Transition Two *)
BEGIN
rcvent = rcvent + 1;
TS _output (user.d, response);
END:
TRANS
PROVIDED TS_input (user_id, request) (* Transition Three *)
BEGIN
case request.kind of
T_CONNECT :
if state = Idle then begin

state := Waiting;

OUT TSAP.T_.CONNECT request { local_addr,
remote_addr,
qual_of_service,
request.data)

end;
END:

Figure 2.6: An Example of Transition Specification

13

Chapter 3

The Implementation Strategy

In automatic implementation of protocols, a generic structure and organization of the imple-
mentation must be adopted. The implementation strategy adopted for our C-Estelle compiler
is similar to the one used by G. Gerber in his Pascal-written Estelle compiler [Gerber83]. This
approach makes use of data structures to represent module instances, interaction points, and
interactions among module instances. A set of pre-written generic functions is used to allo-
cate, initialize, and link data structures according to an Estelle specification. The pre-written
functions also dispatch an output interaction to a recipient module, select the next available
interaction, and make non-deterministic choice. Since different systems have different global
environments and scheduling schemes, two special functions, namely system_init and sched-
ule have to be tailored according to each specification. Figure 3.1 depicts the procedure of the

semi-automatic implementation.
3.1 Data Structures

There are three major data structures which represent module instances, interaction points
and interactions between module instances. When linked appropriately, these data structures

can represent an arbitrarily complex Estelle specification in a simple manner.

14

CHAPTER 3. THE IMPLEMENTATION STRATEGY 15

Primitives
Estelle + Generic Executable
— > . —» .
Specification Generated T Functions Code

Code
C-Estelle C

Compiler Compiler

Figure 3.1: Procedure of the Semi-Automatic Implementation

In Figure 3.2, data structure signal block represents an interaction (l.e a signal) and is

struct signal_block {

it signal_id;
struct signal_block *next;
union {

} lvars;

b
Figure 3.2: Data Structure of an Interaction

comprised of three attributes, namely signal_id, next, and Ivars. For convenience, interaction
primitives, specified in channel-type definitions, are numbered. These numbers are used in
signal_id to identify an interaction. The attribute next links data structures to implement the
queueing of incoming interactions at an interaction point. The values of the parameters of
an interaction are stored as a single attribute Ivars in the data structure. A simple scheme is
applied to avoid the name conflict of having identical parameter names in different interaction

primitives and identical interaction names in different channel-types. Interaction primitives

CHAPTER 3. THE IMPLEMENTATION STRATEGY 16

under the same channel-type are grouped in a dummy structure which then appears as the only
attribute of a variant of lvars. Similarly, parameters of an interaction primitive are grouped in
a dummy structure which works as the only attribute of a variant of the interaction primitive.

Representing a module instance, data structure process_block (Figure 3.3) consists of

struct process_block {
struct process_block *next;

char pident{MAX IDENT _LENGTH+1];

struct channel_block *chan list;
struct process_block *refinement;

int (*proc_ptr)();

J&

Figure 3.3: Data Structure of a Module Instance

six attributes, namely next, p_ident, chan list, refinement, proc_ptr, and Ivars. Similar to
signal_block structure, a variant is added to attribute Ivars of the structure in each module
type definition. Local variables are grouped in a dummy structure as a single attribute in each
variant. The attribute proc_ptr is an entry point to a transition function which implements the
transition process of the corresponding protocol machine. The remaining attributes are used
to identify the corresponding transition function, and to build and link various data structures
modeling the specified system.

Representing an interaction point, data structure channel_block (Figure 3.4) contains the
following attributes : target_proc, and target_channel are entry points to data structures which
represent peer module instance and its corresponding interaction point; signal_list points to a list

of incoming interaction; queued is a boolean flag that indicates the queueing discipline (queued

CHAPTER 3. THE IMPLEMENTATION STRATEGY 17

struct channel.block {
struct channel_block *next;

int *signal list;

int *target_proc;
struct channel_block *target_channel;
int queued;

nt c.id;

int index_num,;

b

Figure 3.4: Data Structure of an Interaction Point
or rendezvous) of the interaction point; c_id identifies the interaction point and additional

index_num is used in case of multiplexing channel; finally next links all interaction points of a

module-type.
3.2 Interactions

As mentioned in Chapter 2, interactions can be classified into queued and rendezvous
types. Output queued interactions from a module are queued in the recipient module. They
are considered by the global scheduler as input interactions to the recipient module in due time.
On the other hand, output rendezvous interactions are sent to and consumed by the recipient
module immediately. If the recipient module is not in a state which the incoming interaction
can initiate a transition, the interaction is added to the awaiting incoming interaction queue

and will be considered immediately for execution in due time by the global scheduler.
3.3 Transitions

In a given global system state, a number of different transitions belonging to different

module instances is possible. The selection of the next available transition to be performed

CHAPTER 3. THE IMPLEMENTATION STRATEGY 18

is made by a global scheduler, which is not part of the Estelle specification but part of the
run-time support for the implementation. A simple round-robin scheduler is applied to choose
the next available transition.

For a given input interaction and a given major state of a module instance, several different
input transitions may occur. Similarly, several spontaneous transitions can exist for a given
major state of a module instance. For simplicity, the first possible transition in the same order
as defined in the specification is selected to be performed. Hence, for each cycle, in addition
to which module instance, the global scheduler selects the next Input transition only based
on the interaction point and the input interaction, or just determines whether a spontaneous

transition to be taken next.
3.4 System Interfaces

For each implementation, the protocol implementors will have to manually look after the -
system-dependent portion of the implementation, i.e. interactions between the specified proto-
col machine and its working environment. For instance, interactions with the operating system
usually cause an undesirable blocking of the protocol machine and the solution to avoid such
blocking varies largely on different machines and different operating systems. However, working
environment such as the operating system is always known and its interfaces with the specified
system can be well defined. This apriori knowledge can be used to simplify the system interac-
tions. In our implementations, UNIX 4.2 socket primitive select is used to preview the socket
so that the blocking is avoided when reading a socket. Thus, output to the environment can
be implemented by invoking a set of system-dependent routines, while input from the environ-

ment by including spontaneous transitions which invoke the same set of routines. The global

CHAPTER 3. THE IMPLEMENTATION STRATEGY

scheduler is fully aware of when and which spontaneous transition should be performed.

19

Chapter 4

The C-Estelle Compiler

In order to support the implementation strategy described in Chapter 3, a C-Estelle com-
piler was developed by D. Ford [Ford85] who rewrote G. Gerber’s [Gerber83] Pascal-written
Estelle compiler in the language C on a VAX 11/750 running UNIX 4.2bsd. The compiler was
then modified by K. Chan, adding the capability of recognizing the additional scope of tran-
sition group. The previous version of the C-Estelle compiler was erroneous and insufficiently
tested. In order to make it useful, the per-fbrmancé of the compiler has been greatly enhanced
by transforming the BNF grammars into LALR grammars which best fit the YACC compiler
for generating the parser of the C-Estelle compiler. The grammar rules were also rewritten so
that the compiler supports complex data structures such as variant record and pointer which
are commonly used in real-life protocol specifications. Furthermore, the translation routines
were modified to produce optimized and better-organized code. During the test period, many
minor problems, such as incorrect translation of Pascal for statement, have also been fixed.
The enhanced compiler was later ported to several SUN Workstations and protocol implemen-
tations such as hot potato, alternating bit and ISO class 2 Transport Protocol are successfully

running among the VAX 11/750 and SUN Workstations.

20

CHAPTER 4. THE C-ESTELLE COMPILER 21

The enhanced C-Estelle compiler reads Estelle protocol specifications and produces C code.
The generated C code is then incorporated with sets of system-dependent and pre-written
generic routines into a C program which implements the specified communication protocol. This
semi-automatic construction of protocol implementation is the main purpose of the development

of the C-Estelle compiler.
4.1 The Structure

Similar to many other compilers {Aho78}, the C-Estelle compiler is partitioned into several
phases as shown in Figure 4.1. Both lexical analyzer and parser were generated by the UNIX
standard utilities LEX [Lesk75] and YACC [John75] respectively. Error handling, table man-
agement and code generation were embedded in the YACC grammar input file. Currently, the
compiler does not optimize the generated C code. It completes the translation in a single pass
of the source specification.

A large number of semantic analysis is left untouched to the C compiler which compiles
the generated C code into executable machine code. The C-Estelle compiler only verifies the
semantic conditions that would not be detected by the subsequent C compilation. For instance,
the C-Estelle compiler ensures, for each connection, that the two connected module instances
play the different roles of the same channel-type. On the other hand, the C-Estelle compiler

does not verify that arguments are of types which are legal for an application of an assignment.

4.2 Translation Issues

4.2.1 Pascal to C Problems

Since Estelle is a Pascal-based language, translating Pascal code into C code is a primary

issue addressed during the implementation of the C-Estelle compiler. Although both Pascal and

CHAPTER 4.

THE C-ESTELLE COMPILER

INPUT

Y

Lexical Analysis

4

Parser

v

Table
Management

Intermediate

22

Code generation

Y

 Code Optimization

v

'dee Generation

{
v

OouTPUT

Figure 4.1: The Structure of the C-Estelle Compiler

Error
Handling

CHAPTER 4. THE C-ESTELLE COMPILER 23

C are high-level programming languages which have similar control flow constructions and basic
data types, they have enough differences which makes the direct translation a very diflicult task.
The following discussion has a great impact on the performance and the use of the C-Estelle
compiler.

First of all, both languages have very different approaches in deﬁAning the scope of objects. In
Pascal, procedures and functions can be nested, and identifiers have no storage class attributes.
The scope of an identifier is the block in which it is declared and every sub-block in which the
identifier is not declared again. Whereas in C, only external functions are supported; function
nesting 1s not allowed, and identifiers have a special storage class attribute. The scope of an
identifier within a source file 1s basically the same as the one in Pascal. In addition, identifier
which is not declared in any block, can be accessed within any blocks that is lexically after its
declaration. Furthermore, the scope of externals, identifiers whose storage class are extern,
may be defined in another source file. Two proposed solutions are to use multiple output files
and to make all identifiers distinct and external. Both solutions are not straight-forward and
very cumbersome to implement. For simplicity, the use of Pascal’s scoping rules and nested
routines is disallowed. Thus, when using the C-Estelle compiler, both global variables and
nested routines are not allowed.

Secondly, self-referential data structures are declared in different sequences. Due to the
syntax of Pascal type Qeclaration, self-referential data structure is defined in a way that a self-
referential pointer to an object can be exceptionally defined before the object is defined. C
does not have this syntax problem and an object must be defined before its reference pointer
is defined. Hence, direct translation is not possible. The solution employed in the C-Estelle

compiler is to define all objects first and then pointers.

CHAPTER 4. THE C-ESTELLE COMPILER 24

Thirdly, the formats of input/output statements are very different. Directly translation
1s so difficult that only Pascal’s output statements, i.e. write and writeln statements, are
supported and translated into equivalent C printf statements. Other forms of input/output
statements can be embedded in primitive routines.

Furthermore, Pascal’s unique WITH statements and SET operations cannot be translated
directly into any equivalent C statements. Additional statements and pre-written functions are

required to make the translation. These Pascal features are currently not supported.

4.2.2 Estelle to C Considerations

In addition to the above-mentioned difficulties of translating Pascal into C, there are certain
aspects of Estelle which are very hard to handle. These are the additional Estelle scoping rules
introduced by the enabling conditions of a transition type and the additional variables used by
the run-time supporting routines. Some restrictions have been imposed in order to overcome
these problems.

First of all, the parameters of an input interaction, which are declared in the corresponding
channel-type deﬁnition, are accessible within the scope of a WHEN clause. To avoid the name
conflict, the parameter names cannot be used for local variables for any module-types which the
interaction may occur. Secondly, if the interaction point identifier in a WHEN clause is indexed,
the index identifier(s) must be declared as local variable(s) of the corresponding module-type.
Thirdly, since an ANY clause introduces additional variable(s) within the scope of the clause,
a block is used to hide the new variable(s) from other transitions. The value of the variable
is randomly selected from its specified domain by a pre-written function. Furthermore, addi-
tional identifiers are generated by the C-Estelle compiler and used by the run-time supporting

functions. These identifiers should never be in conflict with other identifiers of the specification

CHAPTER 4. THE C-ESTELLE COMPILER

which are still present in the generated C code.

25

Chapter 5

Implementation Example - The ISO
Transport Protocol

In order to evaluate the usefulness of the C-Estelle compiler, a fairly complex ISO class
2 Transport Protocol has been implemented both semi-automatically by using the C-Estelle
'compiler and manually in an ad hoc manner. Both implementations run on a VAX 11/750 and
several SUN Workstations under the UNIX 4.2bsd operating system. After an overview of the
protocol, the design of its implementation is presented. The two implementation approaches
and the experience learned from the implementations are discussed, followed by a tentative .
comparison of these implementations.

The state diagram of the protocol is depicted in Appendix A and the Estelle specification
of the protocol in Appendix B. The system initializer and scheduler of the semi-automatic

implementation is listed in Appendix C and those of the manual one in Appendix D.
5.1 Overview of The ISO Class 2 Transport Protocol

The ISO Transport Protocol [CCITT85,ISO82b] is a connection-oriented, end-to-end pro-

tocol, providing a reliable and efficient mechanism for the exchange of data between processes

26

CHAPTER 5. IMPLEMENTATION EXAMPLE - THE ISO TRANSPORT PROTOCOL 27

in different computer systems. The class 2 protocol assumes a highly reliable network service,
such as X.25, and has the ability to multiplex multiple Transport connections onto a single
network connection. It also uses a credit allocation scheme to provide an explicit flow control
because a single network connection flow control is insufficient to handle individual flow control
of multiplexed Transport connections.

Since Transport layer provides end-to-end data transfer independent of the nature of the
underlying network, the Transport service is the same for all classes. The ten Transport service
primitives have been listed in Figure 2.1 and Figure 5.1 displays the sequence in which these
primitives are used. In order to communicate over a Transport connection, nine types of
Transport protocol data units (TPDUs) are used. These TPDUs, shown in Figure 5.2, carry
parameters which play an important role in the protocol mechanism.

Each TPDU conveys a destination reference which uniquely identifies the Transport con-
nection within the receiving Transport entity. Thus, multiplexing is allowed. After a Transport
connection is established by exchanging CR/CC TPDUs, each data TPDU (DT/ED TPDU)
is sequentially numbered. This sequence number is used for the flow control. A Transport
connection is released whenever the Transport entity has sent or received a DR TPDU. The
entity will then ignore any i;lcoming TPDUs except DC/DR TPDUs. This explicit termina-
tion mechanism allows that a Transport connection is released independently of the underlying

network connection.

CHAPTER 5.

IMPLEMENTATION EXAMPLE - THE ISO TRANSPORT PROTOCOL 28

T CONN T _CONN T _CONN
request request request

~aA, , |-CONN T_CONN

''''' indication “,, | indication

T CONN y'd T_DISC T_DISC
confirm " T_CONN indicatio A/T_DISC indicatior

/ response ‘ request /

Successful Rejection Rejection

Establishment by TS user by TS provider
T DATA T EXPD T DISC
request request request

.TJ?AT/.\ T EXPD T _DISC
tndication indication indication
Normal Expedited Rel
Data Transfer Data Transfer eicase
by TS user
T_DISC T_DiSC
request request T_DISC :
request
T _CONN A/ T _CONN =
request indication AT_D‘lSC.
indication
Release by Rel Release by
both users elease user & provider
by provider

Figure 5.1: Transport Service — Primitive Sequence

CHAPTER 5.

IMPLEMENTATION EXAMPLE - THE ISO TRANSPORT PROTOCOIL 29

Figure 5.2: Transport Protocol Data Unit Fixed Header Formats

Li ch | CDT — Source Reference CisiOn:

LI CC | CDTiDestination Reference | Source Relerence Cls|Opi
|

L1 DR | — Déstination Reference | Source Reference Reason

LI DC | — |Destination Reference | Source Reference

LI DT. —— [Destination Reference ETPDU-NR

X €D | — |Destination Reference EEDTEQDU’

LI AK | CDT[Destination Reference | YR-TU-NR

L EA | — |Destination Reference YR'[E\J%TU’

L'J ERR| — (Destination Reference ;| Cause

CHAPTER 5. IMPLEMENTATION EXAMPLE - THE ISO TRANSPORT PROTOCOL 30

5.2 Design of the Implementation

5.2.1 Structure

The overall structure of an Estelle specified Transport entity has already given in Figure 2.3.
There are four different module types : TS_user, ATP, System and RS. Module instances of
these four module types are incorporated with each other to represent a Transport entity.

A TS_user module is a sub-layer which converts a Transport service user request into a
well-defined Transport service primitive or changes the module state according to the request.
A user task in the working environment can bind with one or more than one TS_user modules,
and hence one or more than one Transport connections. An ATP module is an abstract Trans-
port entity that establishes Transport connections, transfers data, and releases connections. A
System module simulates a system timer for an incoming network connection or the flow control
of a Transport connection. Finally, a RS module converts the network service primitives into

system calls. It also sets flag and stores data whenever an incoming network event occurs.

5.2.2 Implementation Issues

Since there are many unspecified properties in the protocol specification, these proper-
ties have to be determined for each particular implementation such that the resulting imple-
mentation best fits the working environment. Unspecified properties can be classified into
implementation-defined and implementation-dependent.

- Implementation-defined properties are left unspecified and their definitions can vary from
one implementation to another. For instance, in the TS_primitives channel definition, data
type ADDR_TYPE is implementation-defined. Type ADDR_TYPE represen.ts Transport ad-

dress which may be implemented differently by different implementors. Similarly, the buffer

CHAPTER 5. IMPLEMENTATION EXAMPLE - THE ISO TRANSPORT PROTOCOL 31

management and data exchanged by TS_users and a TS _provider are all implementation-defined.
Their definitions and implementations are left untouched to the implementor.

On the other hand, some properties are defined in the specification but their implementation
is left unspecified. Examples of such properties are functions constructing Transport protocol
data units. The format of a Transport protocol data unit is specified but how to construct such

a TPDU is unspecified.

5.2.3 Scheduler Design

A simple round-robin scheduler is employed to select the next available input interaction.
This scheduler scans queues associated with each interaction point of module instances for the
existence of any input interactions. The first available interaction is chosen and passed together
with the information of the associated interaction point to the module instance which executes
a transition,

As mentioned in Section 3.3, for a given input interaction and a given module state, a
number of transitions may be possible. Which possible transition is chosen to execute depends
on the priority and the order it is defined in the‘ specification. Generally, the chosen transition
is the one has the highest priority and the first one which enabling condition is satisfied.

At aregular time interval, a module instance which has spontaneous transitions is attempted
to execute one of its spontaneous transitions. The first possible spontaneous transition which
enabling condition is satisfied will be performed. This simple scheme works fine provided
that the enabling conditions of the spontaneous transitions are all distinct, and spontaneous
transitions are defined in a well-defined order.

The above consideration of spontaneous transitions does not work satisfact‘orily for those

initiated by the working environment. A module instance require to execute such a transition

CHAPTER 5. IMPLEMENTATION EXAMPLE - THE ISO TRANSPORT PROTOCOL 32

immediately whenever the working environment notifies the module an external event occurred.
The global scheduler-is fully aware of the external events, and invokes the module instance to

perform an action immediately whenever such event comes up.
5.3 Semi-Automatic Implementation

The protocol was first specified in Estelle from the description in the ISO document
[CCITT85,ISO82b] and by adapting many other specification attempts [ISO84,NB883]. The
Estelle specification was then compiled by the C-Estelle compiler to generate parts of the
protocol implementation. After this automatic process, the generated code was incorporated

with the pre-written generic routines and the system-dependent functions into a C program to

implement the protocol in question.

5.3.1 The Generated Code

The generated code can be classified into three types. The first type is the deftype and
structure declarations which represent module instance, interaction, type and variable defini-
tions. These definitions are required by the run-time executives to store the state information
of the protocol machines.” The second type is a set of functions which creates, initializes and
constructs data structures in the specified fashion. The last type is another set of functions
which implements the transition processes of the protocol machines.

Most data structures are self-explanatory and the special data structures have been discussed
in Chapter 3. They are the wheels of the protocol machines which are initialized and constructed
by the generated functions to implement the specified protocol.

Initialization functions can be further subdivided into two types, depending on their corre-

sponding Estelle specifications. A function which corresponds to an Estelle Process definition

CHAPTER 5. IMPLEMENTATION EXAMPLE - THE ISO TRANSPORT PROTOCOL 33

creates and initializes a process_block data structure. This process_block represents one of
the protocol machine instances in the specified system. Other type function corresponds to
an Estelle Refinement definition. It creates the sub-module instances and links the instances
according to the Estelle CONNECT and REPLACE definitions. Both type functions use a set
of pre-written generic function to perform the creation, initialization, and integration of the
specified system components.

Transition functions are simply a series of conditional expressions and statement blocks.
Expressions evaluate the enabling conditions of a possible transition type and block performs
the associated action. Unless priority is set, input transition types are always generated ahead
of spontaneous transition types. Only the first transition type, which enabling condition is
satisfied, will be performed at a given time.

Each transition type is generated in the same pattern. For an input transition, the operation
is preceded by tests on the identity (signal.id) of the received interaction and those (c_id and
index_num) of the interaction point at which it came. Additional tests, which correspond to
PROVIDED clause and/or TO clause, may also preceded the operation. At the end of each
transition type, a goto dispose statement passes control to the signal data structure dispose
code. For a spontaneous transition, the pattern is the same except that no tests on the identities
of the input interaction and the interaction point. For an ANY clause, which requires to make
a non-deterministic choice, a sub-block is created. The specified variable(s) is declared within
the sub-block and its value is randomly selected from its defined domain by the pre-written
function random select.

Creation and destruction of signal structures which represent interactions between module

instances are implemented completely within the generated transition functions. The output

CHAPTER 5. IMPLEMENTATION EXAMPLE - THE ISO TRANSPORT PROTOCOL 34

statement OUT is implemented as follows. First, a signal structure is crcated and initialized
with the given parameters. The signal structure is then passed to a generic function out together
with the information of the interaction point at which the module instance interacts with the
peer. If the interaction is a queued type, the signal structure is placed in the reception queue
of the peer module instance. Control returns to the initiating module instance immediately. If
the interaction is a rendezvous type, the transition function corresponding to the peer module
is invoked directly at this point. The destruction of the signal structure is handled by the

recipient module instance.

5.3.2 Integration Process

For convenience, deftype and structure definitions of the generated code were first extracted
into a well-known header file defs.h. Two run-time supporting functions, system_init and
schedule, was then modified to suite the specified system. Finally, the generated code was
incorporated with the system-dependent primitives and the run-time supporting functions into
a C program to implement the protocol in question.

Besides defs.h, there is another global header file listdefs.h included in all files. File
listdefs.h contains macro definitions and specification-independent channel block structure
declaration. This structure is used to represent an interaction point of a module. Another
important header file fdtglobal.h, which is required to be modified for every different specifi-
cation, contains the declaration of all global variables and external functions. This fdtglobal.h
file is included only in the main routine file. There are two key global variables : p_block and
signal _pending. During execution, pointer p_block is an entry to the current machine in-
stance, and signal_pending is a counter of interactions which have been initiated and are

waiting for execution.

CHAPTER 5. IMPLEMENTATION EXAMPLE - THE ISO TRANSPORT PROTOCOL 35

To execute, function system_init first builds and interconnects the specified machine in- .
stances. The working environment is also set up so that the upcoming scheduler can be fully
aware of any interested external events. Function schedule is then invoked to repeatedly scaﬁ
all interaction queues associated with channels and to activate the module instances. Module
instances which contain spontaneous transitions are tried at a regular time interval. Further-
more, whenever an external event occurs, the scheduler will activate a proper module instance

to perform a special-designed spontaneous transition.
5.4 Manual Implementation

Based on the same specification and the semi-automatic implementation, the protocol was
re-implemented manually in an ad hoc manner. Most principles discussed in Chapter 3 and
previous Section 5.2 were followed. The overall structure is similar to that of the semi-automatic
implementation. The Transport entity is implemented_ as a single task in the operating system:.
It communicates with user tasks and the network service provider through operating system
primitives (i.e. system calls). The major difference to the semi-automatic approach is the
implementation of scheduling interactions which are initiated either by a module instance or
the working environment.

Instead of using a single data structure process_block, three different data structures,
TS_MACHINE, TP_MACHINE and NP_MACHINE, are designed to store the state information
of a Transport service user, a Transport connection and a network service provider respectively.
Three global variables, tslist, tplist and nplist, are declared as head pointers of the three
different control queues.

The interactions between the Transport entity task and the working environment, user tasks

CHAPTER 5. IMPLEMENTATION EXAMPLE - THE ISO TRANSPORT PROTOCOL 36

and the network service provider, are based on the inter-process communication primitives
provided by the operating system, 1.e. UNIX 4.2bsd socket primitives. Spontaneous transitions
initiated by the working environment were handled in an ad hoc manner similar to that in the
semi-automatic implementation. Whenever an external event occurs, the corresponding module
instance is activated to perform a proper transition. A series of input transitibns, initiated after
this spontaneous transition, is then performed until all module instances are in a steady state.
As a result of this transformation, the global scheduler is simply a loop which performs the

processing for the incoming external events one after the other.
5.5 Results

The size of different parts of the resulting implementations are shown in Table 5.1. Both
implementations used the same INET primitives to interact with the network service provider.
This network service provider is usually a daemon process in the operating system. INET
primitives provide an uniform access scheme which can be easily modified to suite different
network service access schemes in different systems. Similarly, TSP primitives were used for
the interactions between Transport service user tasks and the Transport entity task.

Both implementations spent a large amount of code in TPDU encoding/decoding and buffer
management. However, they were not very difficult to implement because of the powerfulness
of the C language. The encoding/decoding of TPDUs were implemented almost the same in
both implementations. Both implementations shared the same header file pdu.h and differed
only in the passing parameters when decoding a TPDU. Since the buffer management was
implemented intermixed with other code in the manual implementation, no separate entry for

1ts code 1s in the table.

CHAPTER 5.

IMPLEMENTATION EXAMPLE - THE ISO TRANSPORT PROTOCOL 37

PART OF
PROGRAM

Number of
Functions and

Macros
(A) (B)

Number of
Source Lines

(A) (B)

Program size
(in bytes)

(A) (B)

INET
PRIMITIVES

509

10969

TSP
PRIMITIVES

741

17073

ESTELLE
SPECIFICATION

1910

46351

GENERATED
CODE

20

' RUN-TIME
SUPPORTING
ROUTINES

76 i 16

PRIMITIVE
ROUTINES

82

1447

3420 770

78821

3049

91421

21054

71340

(A) --- Manual

(B) --- Semi-Auotmatic

Implementation

Implementation

Table 5.1: Sizes of Different Parts of Implementations

CHAPTER 5. IMPLEMENTATION EXAMPLE - THE ISO TRANSPORT PROTOCOL 38

Forty two additional functions were used in the semi-automatic implementation. Sixteen of
them were pre-written run-time supporting functions and the rest were specially designed for
the global scheduler to activate the specific modules.

During the semi-automatic implementation, the most difficult task was integrating the gen-
erated code with the working environment. Both the implementation scheme using by the
C-Estelle compiler and the behaviour of the working environment must be thoroughly under-
stood in order to design the specific spontaneous transitions and to modify the two special
run-time supporting functions : system_init and schedule.

The weakness of Estelle forced the static allocation of data structure process_block which
represents a module instance. The number of Transport service users and network connections
must be pre-defined in the specification. The pre-definition was then used by the C-Estelle
compiler to generate code that the corresponding process_block structures must be allocated
in the global initialization phase. To execute, a pre-defined number of Transport service user
tasks must be executed so that the implemented system went through the global initialization
stage.

The advantages of the semi-automatic approach came from the well-constructed generated
code. Since the code was generated directly from a formal specification, the conformation was
almost guaranteed. The well-constructed code also localized hazards and system dependent
properties in a few routines, and hence, maintenance was much easier.

On the other hand, the most difficult task of the manual implementation was to design
the interfaces with the operating system for interactions with the user tasks and the network
service provider. Interactions initiated by the working environment intermixed with other input

interactions. The layer structure was less clear in the resulting code. A longer debugging period

CHAPTER 5. IMPLEMENTATION EXAMPLE - THE ISO TRANSPORT PROTOCOL 39

was spent and more exceptional cases were required to be handled.

Although the manual implementation was based on the same specification, no restriction
on static allocation was imposed in the global initialization phase. Any number of Transport
service user tasks can interact with the Transport entity. The Transport entity required no
static connections to go through its initialization phase. Furthermore, any number of network
connections can be established during the execution.

The manual implementation is tied closer with the working environment. An interaction
was implemented as simply a function call. It was always faster than the semi-automatic imple-
mentation because of the reduction of a large amount of generated code which had additional
swapping overhead for module interactions.

It took approximately one year to study and implement the ISO class 2 Transport Protocol
manually in an ad hoc manner without an Estelle specification. The protocol was subsequently
specified in Estelle, and re-implemented semi-automatically in about two months. After this
exercise, we gained a profound experience on protocol implementation and a good insight
to the ISO class 2 Transport Protocol. Therefore, in our last attempt, it took us only one
month to re-implement the protocol manually. From our experience, we think it saves protocol
development times and it is good practice to start with the semi-automatic approach to protocol
implementation, assuming one is familiar with the FDT compiler. The code produced this way
is well structured and easy to maintain. Even if the code is not efficient enough, we can always
attempt a manual implementation subsequently. Protocol implementations generally require a
lot of time on the development of the interfaces with the working environment. The manual
approach required additional time to implement module interactions. It also required more

debugging time than the semi-automatic approach.

Chapter 6

Conclusions

6.1 Thesis Summary

This thesis has discussed a semi-automatic approach to implement a protocol. The protocol
1s first specified in the Estelle FDT, and translated into C code by using an autorﬁatic tool,
C-Estellé compiler. The generated code is then incorporated with system-dependent primitives
and run-time supporting functions into a C program which implements the protocol in question.

Despite the fact that the semi-automatic implementation tends to be slow and an initial
effort is required to learn the Estelle FDT and the automatic tool C-Estelle compiler, the new
approach has the following benefits :

1. Easy maintenance because the generated code was constructed in a simple and easy-to-

read pattern.

2. Good conformance because the specification was directly (automatically) translated into
C code.

3. High portability because large amount of code was generated in standard C language and
system-dependent properties were easily located and modified.

4. Less development time because large amount of code was translated directly from the

specification.

Experience on implementing the ISO class 2 Transport Protocol has verified the usefulness

40

CHAPTER 6. CONCLUSIONS 41

of the C-Estelle compiler and the semi-automatic approach to protocol implementation. From
our experience, 1t is a good practice to approach a protocol implementation in the following
sequence :

1. Implement the protocol semi-automatically using the C-Estelle compiler.

2. Optimize the semi-automatic implementation, especially the generated code.

3. Re-implement the protocol manually (if high performance is required.)
6.2 Future Work

Further study on the semi-automatic implementation would be useful, in that a protocol
can be implemented by two completely indep-endent; teams, one using the traditional ad hoc
approach and the other, the new semi-automatic approach. This way, more concrete and
objective comparisons can be made on the performance and usefulness of the new approach.

Further testing of the C-Estelle compiler on complex protocols such as ISO class 4 Transport
Protocol is a natural extension of our thesis. Such experiment would further demonstrate the
usefulness of the compiler. Several enhancements to this technique and the compiler are under
consideration.

In order to enhance the C-Estelle compiler, some of the high-level code for interactions
of the specified system with its working environment should be generated by the compiler.
Dynamic structure, such as Process allocation should be supported by the Estelle, and hence
the compiler. Since global variables, WITH statements and SET operations are very useful
features, the compiler is also required to support them.

To be realistic, the compiler should be modified to support a general multi-process struc-

ture instead of the procedure-oriented structure. Since UNIX 4.2bsd is a procedure-oriented

CHAPTER 6. CONCLUSIONS 42

operating system, a better working environment, such as V-system and Team Shoshin which
are process-oriented , may be chosen.

To overcome the Pascal-to-C problem, a C-oriented FDT would be desirable for protocol
implementors who are working in C/UNIX oriented environment. However, the apparently
irreversible decision by the ISO standard committee (ISO TC 97/SC 16/WG 1 - FDT Subgroup
B) has been made to keep Estelle Pascal-oriented. Whenever the final Estelle standard becomes
available, the compiler will have to be adapted to that (our implementation of the C-Estelle
compiler is based on [ISO84], not the latest [Estelle85]).

As the last comment, the compiler can be well used as a simulation tool, and could be
incorporated with some validation, testing and performance evaluation facilities so that we
can have a complete automatic system for the design, validation, implementation, testing and

performance evaluation of the communication system.

Bibliography

[Aho78]
[Ansart83|
[Bluma82]
[Boch80]

[Boch84]

[Bria86)
[Brin85]

[CCITTSS)]

[Estelle85]
[Ford85|
[Gerber83|

[Grog80)]

Aho, A. and Ullman, J., “Principles of Compiler Design,” Addison—Wesley, 1978.

Ansart, J.P., Chari, V. and Simon, D., “From formal description to automated

implementation using PDIL,” Protocol Specification, Testing and Verification,
(IFIP/WG 6.1), H. Rudin and C. H. West, eds, North Holland (1983).

Blumer, T.P. and Tenny, R., “A formal specification technique and implementation
method for protocols,” Computer Networks, 6 (3), June 1982, pp. 201-217.

Bochmann, G.v. and Sunshine, C., “Formal Methods in communication Protocol
Design,” IEEE Trans. on communications, COM-28 (2), April 1980, pp. 624-631.

Bochmann, G.v., Gerber, G. and Serre, J.M., “Semi-automatic Implementation
of Communication Protocols,” TR 518, d’IRO,Universite de Montreal, Decem-
ber 1984. '

Briand, J.P., Fehri, M.C., Logrippo, L. and Obaid, A., “Structure and Use of a
LOTUS Interpreter,” SIGCOMM ’86, Symposium, Vermont, 1986.

Brinksma, E., “A Tutotial on LOTUS,” Protocol Specification, Testing and Veri-
fication V, (IFIP/WG 6.1), M. Diaz, eds, North Holland (1985).

CCITT, Recommendations X.200 to X.250, Red Book, Geneva, 1985.

ISO TC 7/SC 21/WG 1 —~ FDT, Subgroup B, “Estelle — a formal description
technique based on an extended state transition model,” Feb. 1985.

Ford, D.A., “Semi-Automatic Implementation of Network Protocols,” Master
Thesis, University of British Columbia, March 1985.

Gerber, G.W., “Une Methode D’Implantation Automatisq de Systemes Specifies
Formellement,” Master Thesis, University of Montreal, 1983.

Grogono, P., “Programming in Pascal,” Rev. ed., Addison-Wesley, 1980.

43

[Hans84]

[1S082a]
[1SO82b)

(15084]

[John75]

[Kern78]

[Lesk75]

[Lotos84]

[NBS83]

[Rit78]

[Tanen81|

[Vuong86|

Hansson, H., “Aspie, A system for Automatic Implementation of Communication
Protocols,” Uptec 8486R, Uppsala Institute of Technology, Uppsala, 1984.

ISO TC 97/SC 16, DP 8073, “Transport Protocol specification,” June 1982.
ISO TC 97/SC 16, DP 8072, “Transport Service Definition,” June 1982.

ISO TC 97/SC 16/WG 1 — FDT, Subgroup B, “A Formal Description Technique
based on an extended state transition model,” Working Document, March 1984.

John, S.C., “YACC : Yet Another Compiler-Compiler,” CS TR 32, Bell Labora-
tories, NJ, 1975.

Kernighan, B.W. and Ritchie, D.M., “The C Programming Language,” Prentice—
Hall, 1978.

Lesk, M.K., “Lex—A Lexical Analysis Generator,” CS TR 39, Bell Laboratories,
NJ, 1975.

ISO TC 7/SC 16/WG 1 — FDT, Subgroup C, N 299, “Definition of the Temporal
Ordering Specification Language,” May 1984.

National Bureau of Standards, “Specification of a Transport Protocol for Com-
puter Communication,” ICST/HLNP 83-2, Feb. 1983.

Ritchie, D.M, and Thompson, K., “The UNIX time-sharing system,” Bell Sys.
Tech., 57(6), July 1978, pp. 1905-1929.

Tanenbaum, A.S., “Computer Networks,” Prentice-Hall, 1981.

Vuong, S.T., and Ford, D.A., “An Automatic Approach to Protocol Implementa-
tion,” TR draft, Dept. of Comp. Sci., University of British Columbia, 1986.

44

Appendix A

The ISO Class 2 Transport
Protocol — State Diagram

45

APPENDIX A. THE ISO CLASS 2 TRANSPORT PROTOCOL — STATE DIAGRAM 46

‘ N_CONN_CONF /CR
T_CONN_REQ .
/N_CONN_REQ

N_DISCON_IND
/T_DISCON_IND
BADCC
T_DISCON_INL
T_CONN_REQ) ! oR =

N _BISON R E?_.
N_DISC():\’_I.\'I.(CLOSING

T_DISCON_REQ
/DR

cc
/T _CONN_CONF

DR/

Y
T_DISCON_REQ
/DR
ESTABLISHED
o«

N_DISCON_IND/T_DISCON_IND

DR/T_BISCON_IND.2R

/T_CONN_IND

ASCON_IND
SCON_IND

ES
N_DISCON_iND

f ---

N_CONN-_

I_CONN_RES DR/DC
[/ 1cc

N_CONN_IND
/

A

CALLED | CR-RCVD

/ CR/T_CONN_IND

v

T_OISCON_REQ
/DR

N_DISCON_IND/ ---

L
-4

{L/R) --- L Enabling Cong:tion
R Qutput Interacuion

Figure A.1: Transport Protocol State Diagram

Appendix B

The ISO Class 2 Transport
Protocol — Estelle Specification

47

MODULE Transport_sysrem.
END Transport_system;

REFINEMENT Ttanspoct_ref FOR Transport_system:

R R R R R AR AR RS R -

* Transport Protocol
N

machine Module

R R Rl R R N R R I R A R I A A IR B AL I

(* Constant and Type Definitions *)

(* Channel Definitions *)

TS_provider)

CHANNEL TS primitives (TS_user,

BY TS _user

From_transport_addc
To _tcansport addr
ngl_of_servTce
TS_user_data

T_CONNECT_request, (

Qual of secvice

T_CONNECT_response (
TS user_cdata

T_DATA_reqgue

1]

T (TS_

T _XPD_request (

T_DISCONNICT_recuesit (

3Y TS_provider

Trom_tIansport
To_transport_edd
Qual_cof service
TS_user_data

T_CONNECT_indication (

T_CONNECT_confirm ¢ Qual_of_service

TS_user_data
T_DATA_indication (TS_user_data
T_XPD_indication (TS user_data

T _DISCONNECT_indication (Reason
TS user _data
ZND TS _primitives:

CHANNEL NS _primitives (NS_user, NS_provider):

BY NS _user

N_CONNECT_request From_network_addrc

To_network_addr
Qos
N_CONNECT_response;
N_DATA_request (N5 _user_data
N _DISCONNECT requeskh:
BY NS _provider

From_network addr
To_network_addr
QOs

N_CONNECT indication {

48

I IR S AR S N S

ADDR TS
ADDR_TY?
205 TY!

DATA TYVE

QOSAT‘V"C -
DATA T

QOS_TYPE;
DATA_TYPE):

DATA_TYPE)

NQOS_TYP

NDATA_TYZZ).

NADDR_TYPE:
NADDR_TYPE:
NQOS_TYPE) :

http://rv_i.ce

4

N_CONNECT confirm;

N_DATA_indication (NS_user_data NDATA_TYPE)7
N_DISCONNECT_indication (Reason : REASON_TYPE)
MDD M pDruminivaes

~

CHANNEL System orimitives (5_user, 5_provider) o

B3Y 5 ouser

Timer request { Name TIMER_TYPE:
- Time integer:
Seqno : SEQUENCE_TYPH)
Timer cancel (Name TIMER_TYPE:
- Seqno : SEQUENCE_TYPE;
Allseq: boolean) :

BY S_provider

Timer_response (Name : TIMER TYPE:
Seqno SEQUENCE _TYPE)

END System primitives:

(tkﬂknwt*atttkkttttti*kt-v«~vttkkkttkfkittkﬁkk(tt&ktn(«««*-k)

MODULE TS _user_module:

END TS_user_process:
(**t*tk*t**tt*tk*k*kkkk(!'Kklth*kkt*kkki*tkkxwxkant'tt«kt*)
MODULE System module;

SEP : System primitives (S$_provider):
END System_module:;

PROCESS System_process (Sys_index : integer } FOR Systam_module;

END Svstem _process:

R R R R N R R REY!

MODULE ATP_module:
TCEP : ARRAY([TSAP_TYPE] OF TS_primitives (TS _provider):
NSAP : ARRAY({NCEP_TYPE] OF NS_primitives (NS_user):
SAPT : ARRAY[TSAP?_TYPE] OF System_primitives ¢ S_user):
SAPN : ARRAY[NCZP_TYPE] OF System_primitives (S _user):

END ATP_ module:

PROCESS ATP_process FOR ATP_module:

QUEUED TCEP, NS3AP;

(* Variable declarations)

VAR

tc : TP_TABLE:
nc : NS_TABLE:

http://TS_pci.mi.ci.vss

daca, temp
ndata

adu

Lid

aid

sk ingt

i3]

reason
nsdu_len

50

DATA_TYPE:
NDATA TYPE:
TPDU TYPE;
TSAP D TYPE;
MCEP T iD TYPE:
Q MIZC KIND:
SEQUENCE _TYPE:
REASON_TYPE:
Lnteqger:

(¢ Primitive functions and procedures *)

PROCEDURE Add_request(

FUNCT ION

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

VAR tc TP_MACHINE;
data DATA_TYPE) : PRIMITIVE;
Alloc_ref REFERENCE_TYPE: PRIMITIVE:;
Concatenare_2 NSDU (VAR nc NS _MACHINE:
dara DATA_TYPE | PRIMITIVE,
Construct_aK({ VAR packet DATA_TYPE:.
cat SEQUENCE_TYPEZ:
dref REFERENCE TYPE!
seano SEQUENCE_TYPE
extended boolean) PRIMITIVE:
Construct_CC(VAR
Ceonstruct_CR({ packet
bui_m
sref E T
lsuf SUFFIX_TYPE:
fsuf SUFFIX_TYPE;
maxsz integer;
qos QOS_TYPE:
data DATA_TYPE } PRIMITIVE:
Construct_DC{ VAR packet DATA_TYPE!
dref REFERENCE_TYPE;
sref REFERENCE TYPI } PRIMITIVE:
Construct DR(VAR DATA TYPE:
REFERENCE T
REFERENCE TY
REASONQTY
DATA_TYPE) PRIMITIVE,
Construct_DT(VAR packet DATA_TYPE:
dref REFERENCE _TYPE:
eflag boolean:
seqno SEQUENCE_TYPE:
extended’ boolean:
data DATA_TYPE) PRIMITIVE;
Construct ERR{ VAR packet DATA_TYPE;
dref REFERENCE TYPE:
reason REASON_TYPE:
data DATA_TYPE) PRIMITIVE;
Construct XAK(VAR packet DATA TYPE:

dreft

xseqno
extended

Construct_XPD(VAR packet

REFERENCE _TYPE;
SEQUENCE_TYPE:

bootean Y.

: DATA_TYPE:

PRIMITIVE:

http://pack.ec

FUNCTION Detecmine _TC(te

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURZ

PROCEZDURE

PROCEDURE

PROCEDURE

FUNCTION

PROCEDURE

FUNCTION

FUNCT L[ON

PROCEDURE

dref
xsegn
exten
data
data
VAR odu

Extract NSDU(VAR nbutfe
VAR ndata

nsdata
VAR tpdata
VAR nslen

Extract_TPDU(

buffer
VAR tsdu
VAR count

Extract_TSDU({

Get_net_ addr (VAR naddr
taddr

Merge(VAR buffer
pdu

Release(VAR buffar
segno
kind
allseqg

Relaase all(VAR
VAR ncC

Retrieve (buffer
seqgno
kind
VAR data

Same_naddr (naddrl, nadd

Store(VAR buffer
data
seqno
kind

SEQ_aDPD (seql
exte
SEQ_MINUS (seql, seqZ
extended
Uncode (VAR pdu

ndata
extended

: REFERENCE_TYPE!
o : SEQUENCE TYPE;

ded : boolean:
: DATA_TYPE)

TP_TABLE;
DATA_TYPE:
TPDU_TYPE) : TSAP_ID_TYPE:
€ : NBUFFER_PTR:

NDATA_TYPE)

NDATA_TYPE:
DATA_TYPE;
integer)

BUFFER_TYPE:
DATA_TYPE:
SEQUENCE_TYPE)i

NADDR_TYPE:
ADDR_TYPE

BUTFER_PTR:
TPDU_TYPE)

BUFFER_PTR:
SEQUENCE TYPE:
oDU KIND:
noolean)

(o}

tACHINE ;
THMACHINE) -

BUFFER_PTR:
SEQUENCE_TYPE;
PDU_KIND;
DATA_TYPE)i

r2 : NADDR_TYPE)

BUFFER_PTR:
DATA_TYPE:
SEQUENCE_TYPE:
PDU_KIND)

SZQUENCE
bDoolean)

TYDE!

SEQUENCE TYPE,

SZQUENCE _TYPE
yoolean) SEQUENCE_TYPE;

TPDU_TYPE:
NDATA_TYPE:
boolean 1}

boolean;

PRIMITIVE:

PRIMITIVE:

PRIMITIVE:

PRIMITIVE:

PRIMITIVE:

PRIMITIVE:

PRIMITIVE;

PRIMITIVZ,

PRIMITIVE,

PRIMITIVE;

PRIMITIVEI:

PRIMITIVE:

PRIMITIVE;

PRIMITIVE:

PRIMITIVE:

PRIMITIVE:

PRIMITIVE.

(R R R R R N R R R R

FUNCTION Acceptable CC{ qos

BEGIN

srot

pdu

Acceprable CC := TRUE:

if { pdu.version

<> VERSION

(pdu.data.dlen > MAX_CRC
(pdu.maxsz = 0 }

then

QOS_TYPE:
REFERENCE_TYPE:
TPDU_TYPE)

) or
C_5Z) or

S

acCeptable CC := FALSE.

if (pdu.qos.class <> gos.class) and (»ndu.ocls <> gos.clans)

then
Acceptable CC = FALSE!
LY NOT aqos. misciQ NG IXPEDITED _DATAS anc
pdu.qgos. PEDITED_DATA;) v
{ NOT qgos. and
pdu.gos . misciQ _IN_) o
{ NOT ¢gns . misc|Q NO_FLOW_CONTROL) and
pdu.qos.misc [Q_NO_£LOW_CONTROL]) or
({ NOT gos.misc{Q EXTENDED FORMAT] and
pdu.qos .misc (Q EXTENDED FORMAT])
then - -
Acceptable CC := FALSE:
if pdu.dref <> sref then Acceptable CC := FALSE

END

[R R R R R I D]

FUNCTTON Acceptabla CR(gos : QOS_TYPE!
pdu : TPDU_TYPE) : booclean:

VAR

gkind : Q MISC_KIND:

Acceprable_CR 1= FALSE
18 (pdu.gos.class <> gos.class) and (pdu.ccls <> gos.class)
then
Acceptable CR := FALSE:
if (NOT gos.misc[Q NO_EXPEDITED_DATA] and
pdu.qos.misc(Q _NO_EXPEDITED DATA]) or
(NOT gos.misc(Q_CHEECKSUM IN_USE} and
pdu.qos.misc [Q,_CHECKSUM IN USE]) or
¢ NOT qos.misc(Q_NO_FLOW _CONTROL} and
pdu.gos.misc(Q_NO_FLOW_CONTROLF) or
{ NOT gos.misc{Q_EXTENDED_ FORMAT] and
pdu.gos.misc{Q_ZXTENDED FORMAT])
then -
Acceptable CR := FALSE
“ND
R R S PP e R

FUNCTION Choose_class(qos : Q0S_TYPE) : Q CLASS TYPE:

BEGIN. B - -
Choose_class := qos.class

END;

(G E R E R Y

PROCEDURE Construct addr(VAR transport addr : ADDR TYPE;
- suffix - . SUFFIX TYPE:
net addr : NADDR TYPE)
BEGLH - B
transport_addr.suftix := suffix;
transport_addr.prefix = net_addr
ZNO

[R R R R

FUNCTION Get _ncep(nc : NS _TABLE:

L _naddr, £ naddr : Nabor _TYYE o @ NCEP D _TYPE;

VAR
nid : NCEP_ID_TYPE:
notdone : boolean;
HEGIN
notdone = TRUE:
nid i= 1
winile notdonc and (nid <=) do
begin
1€ Same naddr(f_naddce, ncioidl.f _nec_adds)
then begin
notdone 1= TALSE;
Get_ncep nid
end
else
nid := nid + 1
end:
nid := 1:
(* A new network connection s required *)
while notdone and (nid <= _NCEP_ID) do
begin
if nc{nid].state = NIDLE
then begin
notdone c= FALSZ:
Get _ncep := nid
end
21se
nid = nid + 1
2nd;
1f notdone ihen Ga2t_ncep := O
END

AR A R AR R R AR AR AL A RS R R RS AR !

FUNCTION Get_suffix(transport_addr : ADDR_TYPE) : SUFFIX TYPE:
BEGIN

Get_suffix := transport_addr.suffix
END;

GAAAAA LA EEEES SR SRR AR R SRR ESRRERREREEEELEEEEEEEEEANERAREEEEESANERS]

FUNCTION Min(m, n : integer } : integer:’
BEGIN

ifm > n
then Min := n
else Min := m
END

(A hh Ak ok A R R AR L KRS e R KR AR T AN R AR A KRR K E KR KR TR AR KRR KA KA

FUNCTION Nc_multiplexed(np : NS_MACHINE } : boolean:
BEGIN
if np.link > 1
then Nc multiplexed TRUE
else Nc multiplexed := FALSE

]

END.

R R R AR R LR R R R R LR R RS

FUNCTION New_nc_required(nc NS _TABLE:!
B laddr, faddr . ADDR_TYPE)} : boolean;
VAR -
' nid : NCEP_ID_TYPE:

notdone : boolean:
BEGIN
notdone := TRUE:

nLd = L

while notdone and (nid <
begin
1f { nci{nid}.stata <>

Same naddr(acinid].{_nec_addr,

then begin

notdone

New nc_required
end
alse

nid := nid + |

end;

i1f notdone then Ncw _nc_re
END,

[EZAEA AR R R R AR AL NS RERAL AR SN

FUNCTION Size(dats DATA_TYPE
BEGIN
Size := data.dlen
END;
(* Initialization *)
INITIALIZE
BEGIN
for tid := 1 to MAX _TSAP
begin
tcfcid) .stacsa
tcltid] . ncep_id
tcleid).src_raf
tcltid] .dsc_ref
te{cid].
tcfeid].
tcltid] . _
tc(tid}.snd nxt
tc{tid).rev_nxt
tc{tid]).rcv_upper_edg
te(tid).x_seq
tc{tid}).x_nxt
tcltid]).xsnd_nxt
tcltid]).x_una
for gkind := Q_NO_ZX?
tcf{oid] .qual_of_ se
tcftid] .qual_of_serv:i
tc{tid] . reason
tc{tid] .max_TPDU_size
tcltid) .DT_maxlen
teltid]) .sbuf
tcl{tid).rbuf
tc{tidl].xbuf
end:
for nid := 1 to MAX NCEP_
begin
nc{nid] .state
nc{nid] . link
nclnid]} .nqos
nci{nid] .sbuf
nc(nid]} . cbuf
end

END/ {(* Initialization *)

o= 0
:= CLASS TWO:
s= NIL:

L= NIL

= MAX_NCEP_ID) do

MIDLE) and

faddr.prefix)

= FALSE:

1= FALSE

quired := TRUE

R R R AN SRR

) Lntegec:

1= CLOSED:;

=0y

= 0
Q0.
= 0
O;
1= 05
e := DEF_BUFFER_M:
= 0.
= 0;
= 0
0:
EDITED_DATA to Q_EXTENDED_FORMAT do
rvice.misc{gkind) 1= FALSE:
ce.class := CLASS_TWwWO!

= NORMAL:

n

DEF_TPDU_SZ:
:= DEF_TPDU_SZ - NOR_DT_HEADER

NIL.

c= NIL:

NIL

ID do

NIDLZ.

54

(~ Transitions *)

TRANS

(=)

TRANS

TRANS

WHEN TCEP(tid].T_CONNECT_request
PROVIDED { (tclrid] . state = CLOSED

(New_ne_required(nc, From

To_trans

(Choose_class{ Qual_of_ser

(Size(TS_user _data) <= i

BEGIN
tc(rnid}.state = CALLING!
tcftid].local_addr := From_transpor
tcl{tid).remote addrc := To_transport

I

tcltid] . 1_suffix Get_suffix(&
tcitid].f_suffix := Get_suffix(T

Get_net _addr(tc{tid].l_net_addr, From
Get net_addr(tcltid].f_net_addr, To_t

nid := Get_ncep(nc, tcftid].l net_a
tcl{tid) . .ncep_id := nid;
ccftid].qual_of_service := Qual of ser

Store(tc(tid].sbuf, TS user_date, 0, 0

ncnid) .state 1= NWAITING,
nc(nid} .1l _net = tcfoid].Ll_
ac[nid].{_net_ ad = teltid] . £
nc(nid]}.link S

nc{nid} .ngos = Qual o

OUT NSAP[nid].N_CONNEZCT_recues:t
END;

WHEN NSAP (nid] .N_CONNECT_confirm
PROVIDED nc{nid}.state = NWAITING
BEGIN,
nec[nid).state := NOPEN:

for tid := 1 to MAX_TSAP_ID do
begin
if (tc{tid].ncep_id = nid) and
(tc(tid) .state = CALLING}
then begin
tc[tid] .state

CR_SE

tc{tid].src_ref = Alloc
Retrieve(tclrvid] .sbuf, 0, 0, t
Release(tcltid] .sbuf, 0, 0, TR

Construct_CR(data, tc{tid]
tc(tid}
tcrid]
tcitid).
tc{cidi.
tcfridi].
cemp)

Concatenate_2_ NSDU (nc(nid],

end (* if CALLING *)
end (« for loop *)

WHEN TCEP(tid].T_CONNECT_request
PROVIDED ((tc(tid]).state = CLOSED)
(NOT New nc required(nc,

-7 To _t

(* Transition !
and
tcansport_nddy,
Soct addr))
vice) = CLASS _TWO)
AX_CRCC_S2)y)

t_addc:
addrc:

rom_transport_addc):
o_transport_addr)

_transport addr)
ransport_addr).

ddr, tclcid].f _net_adi:
vice:
)

_addz:
_addr:

(* Transition 2

NT:

_ref:
emp) ;
UE)

.rcv_upper edge,
.src_ref,
.1 suffix,

f suffix,
max _TPDU_size,
qual_of_service,

data)

(* Transition 3

fFrom_transport_addr,
ransport_addr))

L

)

*)
and

and

35

Lo)

MAX_CRCC_SZ

(Choosa _class(Qual_o!
(Size(TS_user _data) <=

BEGIN
cofeid] ostate = CR 3
cof{eidl . local_addrs N

tritid) . remote_add:
rao{rid]l Ll suffix I suffix(“rom transport_addr }:
o fn] sutffix Do - ik (To_transport_addwy

net adde(tefnid] . i _nau_adde, From_transport_adde

Goet_net_addr(tefvid] £

aid :=

tc{tid] .ncep_id =

(SR

ncinid].link

(<%

vztid) .qual_of_servict: =
tcltid]).src_ref c=

Construct _CR(data.

TRANS

aet _addr, To_transport_addr).

Get ncep(nc, tclivid).l_net_addr,

nid;

ncinid} . link + 1

Qual of service:

Alloc reft:

.tcv_upper_adge,
{tid] .scc ref,

TPOU size,
of service,
)y

WHEIN 0
PROVIDED ncini N
BEGIN
nsdu_len := 0;

while (nsdu_len < NS_user_data.dlen) do
begin

Extract TPDU(NS_user_cata, data, nsdu_len):
tid := Determine_TC(tc¢, data, pdu }:

if £id <> 0
then begin

Uncode (pdu,data, tcltid}.qual_of_service.misc[Q_EXTENDED FORMAT)}):

if pdu.kind = CR (* CR TPDU *)
rhen begin
if teltid] . stat2 = CLOSED
then begin (*
if Acceprabl: CR(tcltid] . gual oi_sarvice, pdu
then begin
tcf{tid}.scate 1= CR_RCVD:
OUT SAPN(nid] .Timer_cancel(INCOMING_NC, 0,
tcfrid) . £_suffix pdu.lsuf:
tc(tid} .l _suffix := pdu. fsuf;

tc{tid].f_net_addr :=
tc{tid].l_net_addr :=
tcf{tid) . ncep_1d i=

nc{nid].f_net_addr:
nc(nid} .l net_addr:
nid:

Construct_addr(tcl{tid].local addr,
tCItidJ.l_su{fix,
tc{tid].l net_addr):

Construct_addr{ tc(tid].remote_addr,

te{tid] . f_suffix,

tc{tid].f_net_addr 1}

= Clans Two)

})

)

)

cransition

)

TRUE

tc(tid) . t_net_addr),

).

and

)

37

tcltid).gqual of service 1= pdu.gos:

tc{tid] .max TPDU_size 1= Min{ pdu.maxsz,
- tc[tid).max_TPDUvsize):

tcf{rid] . dst_cef 1= pdu.sref:
tc(tid}.snd_upper_edge = pdu.cdty

QUT TCEP({tid].T_CONNECT_indication(tc(rid}.remote_addr,
tcltid].local_addr,

pdu.qos,

pdu.data }
end (* Acceptable CR *)
else begin (* transition 5 ¢

tc{tid].dst_ref := pdu.sref;
tcltid].reason NEGOTIATION_FAILED:

]

Empty_data(temp }:

Construct DR(data, tc{tid}.dsc_ref, O,
tc(tid).reason, temp).

Concatenate_2_ NSDU(nc{nid], data)

end {* NOT Acceptable CR -*)
end (* CLOSED *)
end: {* CR TPDU *)

if pdu.kind = CC (* CC TPDU *)
then begin
if tcftid].scate = CR_SENT (= Transition & *)
then begin
1f Acceptable CC(tcltid).qual_oi_service,
tcltid] .src_raf

pdu)
then begin

tc(tid} .stace := ESTABLISHE

tc{tid] .dsc_ref := pdu.scaf;

tc(tid}.snd upper_edge 1= odu.cdt;

teltid] .qual_of_service 1= pdu.qgos:

tecf{tid].max_TPDU_size 1= pdu.maxsz:

QUT TCEP(tid}.T_CONNECT_confirm{ pdu.qos, pdu.data)
end: (* Acceptable CC ~)
else begin (* Transition 7 *)

tc(tid].state = CLOSING:

tc(tid) .dst_ref := pdu.sref;

tc(tid].reason := NEGOTIATION FAILED;

Empty_data(temp }:

OUT TCEP{tid).T_DISCONNECT indication{ tc{tid].reeson,
remp)

Construct DR(data, tcltid].dst_ref, tcltid].src_ref,
tc{tid].reason, temp):

Concatenate_2_ NSDU(nc{nid], data)
end (* NOT Acceptable CC *)
end (* CR_SENT *)
end: (* CCTPDU *)

if pdu._kind = DT (« DT TPDU *)
then begin
if tcf{tid}.state = ESTABLISHED (* Transition 3 *)
then begin
if (pdu.segno = tcltid].rcv_nxt } and
(pdu.seqgno < rcltid).rcv_upper_edge)
then begin
(**) Merge(tc{tid].rbuf, pdu)

tc(tid) .rcv_nxt := SEQ ADD(tc{tid].rcv_nxt, 1,
tc(tid] .qual_of_ service.misc{Q EXTENDED_ FORMAT}).

if pdu.eflag (* a complete TSDU in the duftfer)
then begin
Extract TSDU{ tcltid].rbuf, data, n).
Release(tofrid] . chut, tc{vid}.zcv_nxt, DT, FaLSE)

(* update the upper 2dge of the receiving window *)

ccl{tid).rev_upper_adge := SEQ _ADD(to(uid].cev_upper 2dge, n,
vice. nisc [Q EXTENDED ZOMAT) I

cef{tid] . qual_of_ s

OUT TCEP([tid}.T_DATA indication{ data)

(* compute the current butfer space *)
n = SEQ MINUS(tci{tid] . cov_upper_edge, tcloid] . ccv

tc{tid]).qual of service.misc(Q_EXTENDED EFORMAT]):

Construct_ AK(data, n, tcltid}.dst_ref, tcltidl.rcv__
tcltid] .qual_of_service.misc{Q_EXTENDED_ FTORMAT!

Concatenate_2 NSDU(nc[nid], data):

if n = 0 then

OUT SAPT(tid].Timer request { WINDOW, W3 0)
else -
OUT SAPT(tid].Timer_cancel(WINDOW, O,)
end (< pdu.eflag *)
end (* receivable DT *)
else begin (* Transition 2 *)
tcltid}.rezason := INVALID T2DU:

o

%3
Q]
ol
sl
Q.
¥
{
(4]

Construc

TiC!

QO ort oot
20
C o~ —

.Cata)

Concatanate_2 NSDU(ncinid},

end (* NOT receivable DT ~)
end: (* ZSTABLISHED *)
end: (* DT TPDU *)

if pdu.kind = AK
then begin
if (¢ tc[tid).state = ESTABLISHED) or
(tcltid) .state = CLOSING)) and (* Transicion 10 =)
{ pdu.segno >= tc[tid}.snd una)
then begin

tc{tid).snd_una := pdu.seqno:
tc{tid].snd_upper_edge := SEQ_ADD{ tc(tid].snd_upper_ edcse
pdu.cdt, tc{tid].qual_of_ service.misc(Q_EXTENDEID_fORMAT;

S

Release(tc{tid}.sbuf, tcltid].snd_una, DT, F:

Resume_daca(tcltid], nclnid})

end (~ ESTABLISHED anc AK_ok)
end; (= AK TPDU =)
if pdu.kind = XPD ,

then begin
if tc(tid).state = ESTABLISHED
then begin
1f pdu.seqno = tc(tid].x_nxt
then begin (* Transizion 11 <)
OUT TCEP(tid].T_XPD_indication{ pdu.daca):

Construct_ XAK{ data, tc{tid}.dst_ref, tc{tid!. .z
tcltid) .qual_of_service.misc{Q_EXTENDED_ ¥

Concatenate_2 NSDU(nc{nid]), data):

tcl(tid}.x_nxt := SEQ_ADD(tc{tid}.x_nxt, 1,
tc(tid) .qual_of_service.misc(Q_EXTENDED FORMAT])
end -
else begin
tc{tid).reason := INVALID_TPDU:

tc{tid] dst_ref,

Construct ERR(data,
pdu.data)

vo(tad)

P AR B

)

Concatenate 2 N3DUL ncinid], data)
end
end (¢ ABLISHED and Or)
end;
1f pdu.kind =
then begin
18 ((vejoedi. ESTARLISHED) or
(tcltid]. CLOSINGY) and
(pdu.seqnoe v (oid].ox_una
then begin (* Transition !2
teltid].x _una = cc{tid].xsnd_nxt:
Resume_xdata(tcicid}, nc{nid]);
Resume_darta(rtelnid], ncinid})
end
end:
if pdu.kind = ZRR
then begin (* Transition 12
L teltid] st CALLING) or
teftid] . st CR_ZENT) or
(tcficid).st CR_RCVD) or
(tclrid}.sn ESTABLISHED) or
(tc{tid].stace CLOSING))
fols g in
CLOSING
T'Jf{()‘
T_DISCOECT _indicerion
r_cancei(ALL_TIMER, 2, TRUE)
Construct_DR(déca, tcltid).dse_ref, wcltid] . src_-a?,
reason, temp }/
Concatenate_2 NSDU{(nclnid]}, data)
end: {* active connection *)
end: (* ERR TPDU *)
1f pdu.kind = DR
then begin]
if ({ tc{tid).state = CR_RCVD) or (* Transition 14
(tcltid].state = CR_SENT) or
(tcfrid]j.stace = ESTABLISHED))
then begin
OUT TCEP{tid].T_DISCONNECT_ indication(pdu.reason,
odu.data):
Construct _DC(cdeva, tclrid].dst_reif, tci{vid].scc_rel).

Concatenate_2_N5DU(nclnid]), data):

OUT SAPT{tid}.Timer_cancel(ALL_TIMER

if Nc_multiplexad(nc(nid])
then begin
tc(tid).scate

CLOSED:

Release_all(tcltid], nclanid])

end
else
tc{tid] .state

"DISCON_WAIT

.0,

end (* CR_SENT, CR_RCVD, ESTABLISHED
end: (* DR TPDU *}
if tc(tid].state = CLOSING
then begin

if ((pdu.kind = DR) or (pdu.kind = DC

TRUE).

(* Nc_multiplexed =)

*)

then begin (~ transicron (5 %)
tcfrid) .state := CLOSED:

OUT SAPT(rid].Timer_cancel(ALL_TIMER, 0, TRUE).

.t

if NOT N¢ mulriplexed(nc(nid])
OUT NSAP([nid] . N _DISCONNECT_ request:

Redease_alll velnid]l, aclaidi)

o (* DR TPDU, D TPDU)
arnd (* CLOSING *)
end (* vid <> 0 %)

else begin
1f (pdu.scef <> UNDEFINED REFERENCE) and
(pdu.kind <> DR) and (pdu.kind <> DC)
then begin
Empty_ data{ temp).

Construct DR data, pdu.scef, 0, pdu.zason, temp).
Concatenate 2 NSDU(nclnid], data)

end
end
end (* while loop *)
END;
TRANS
WHEN NSAP [nid] .N_CONNECT indication (* Transition 16 %)
PROVIDED nc(nid}.state = NIDLE
BEGIN
ncinid}.stace := NCPIN;
nc{nidj] .l nec addr = To network addr:
nclnid] . £ _nct_addz zom_network_addi:
ac{nid].link
OUT NSAP([nid].N_CONNZCT_ response;
CUT SAPN([nid}.Timec - 25T { INCOMING NC, 2
IND: - -
TRANS
WHEN NSAP [nid] .N DISCONNECT indication
PROVIDED (nc(nid].state = NOPEN)
BEGIN
nc(nid] .state := NIDLE: (* Transition 17 *)
if nci{nid).link > O
then begin
for tid := 1 to.MAX_TSAP_ID do
begin
if tc{tid).ncep id = nid
then begin - (* Transition 18 <}

if ((rc{rid).state = CR_RCVD) or
(tcefrid].scate CR_SENT) or
(tcitid].state = ESTABLISHED))
then begin
tci{tid] . .scaca := CLOSED:

3

Empty_dataf

OUT TCEP {tid}.T DISCONNECT indication{
LOSS_OF NETWORK CONNECTION,
date):
QUT SAPYT(tid).Timer cancel{ ALL TIMER, 0, TRUE):
Release_all(tc(tid], nc(nid])~

end: (" CR_RCVD, CRﬂSENT, ESTABILIGHE *)
Lf tcl{tid].state = CALLING (* Transition 19 -)
then begin

tc{tid].state := CLOSED:

Empty data(data):

OUT TCEP{tid].T_DISCONNECT_indication(
NETWORK_CONNECT_FAILED,
data).

80

&1

)

<)

")

OUT SAPT{tid].Timer_cancel(ALL_TIMER, 0, TRUE);
Release_oall(tc{tid], nc{nid])
aend; (~ CALLING *)
Lf te{uid].state = CLOSING (¢* Transition 20
then begin
ce(tid] . srtate := CLOS
1f RKReason <> NORMAL
thon bogin
Empty _data{ datae): .
QUT TC {rid]).T DISCONNECT indication('
- TLOSS OF NETWORK CONNECTIQM,
data) -
end;
Release all(vc{tid], ncnid])
end: (¥ CLOSING *)
1f te(cid].state = DISCON WAIT (* Transition 21
then begin -
tc{rid] .stace := CLOSED:
Release all(tci{tid], ncinid])
end (¥ DISCON_WAIT *)
end (* matching transport connection *)
end (* for loop)
end (~ link > 0 =)
else
QUT SAPN|nid).Timar_cancel(INCOMING_NC, 0, TRUE)
END;
TRANS
WHEN TCZP{tid).T_¢ (*~ Transition 22
PROVIDED ¢ (tcf = CR RCVD) and
(Choosz_classt Qual:ofﬂs ce) = CLASS _TwWO) and
(Size¢ TS_user_date) <= {_CRCC_S2z)
BEGIN - -
tc{tid}.state := ESTABLESHED:
tc(tid}.sre_ref := Alloc_ref:
tcltid).qual of_service = Qual_of service;
Construct_CC(data, tcltid).rcv_upper_edge,
tc{tid].scc_ref,
tc(cid}.dst ref,
tcltid] .l suffix,
tc(tid).f suffix,
tc(tid).max_TPDU_size,
tcf{tid).qual_of service,
TS_uSer_daca—)
nid i= tcltid) . ncep id:
Concatenate 2 NSDU (nclnid]., data)
END; -7
TRANS
WHEN TCEP(tid].T_DISCONNECT_request (* Transition 23
PROVIDED tc(tid].state = CR_RCVD
BEGIN -
tc{tid].state := DISCON_WAIT:
tc{tid].src_ref = Alloc_ref:
tcf{tid] . reason 1= CONN_REJECT:
Construct DR{ data, tc(tid}.dst_ref,
tcl{tid] .src ref,
tc(tid] . reason,

TS _user_data)

tc{tid] .ncep_id:
nc{nid],

aid 1=
Concatenate_2 NSDU (

Release_all(tc{tid]}, nc(nid]

data)

)

42

END:

PROVIDED ((telnid) (+~ Transicion 110
(telond] i
JEGIN
rcitid] .state ST SR
te{tud] reason = MNMORMAL:

Construct DIR(i,

Store(tc(tid].sbuf, data, 0, DR);

nid := tcltid] .ncop_id:
Resume_data(tc(tid], ncinid]).
OUT SAPT(tid].Timer_czancel (ALL_TIMER, J, TRUE)

END
TRANS
WHEN TCEP [tid]).T_DATA_re i (" Transitioen 2T
PROVIDED tcitid).stats =5
3EGIN
Add_request (tcitid], TS_user_data):
nid =
Resume_da)
ZND:
TRANS
WHEN TCEP[tid].T Trzasizion 2%
PROVIDED (tcl
(Siz 3
BEGIN
Construct_XPD(data, tctid].dse_ref, ctcizid].= :
tcl{tid} . qual_of service.misc{Q_EXTINDED_ FORMAT],
TS _user_data)}
tc(tid].x_seq := SEQ_ADD(tc{tid].x_seq, 1,
tcl{tid] .qual_of_service.misc{Q_EXTENDED_FORMAT]):
Store(tcltid).xbuf, data, tcltid).xsnd nxt, XPD):
nid := tc{tid}.ncep_id:
Resume_xdata(tc{tid], nclnid})
END;
TRANS
WHEN SAPN([nid].Timer_ response (* Transition 27 *)
PROVIDED (Name = INCOMING_NC) and
(nclnid).stace = NOPEN)
BEGIN
nc{nid) .state := NIDLE:
OUT NSAP[nid].N_DISCONNECT_request
END;
TRANS
WHEN SAPT(tid].Timer_response (* Transition 28 *)

PROVIDED (Name = WINDOW) and
(tcltid) .state = ESTABLISHED)
BEGIN
n = SEQ MINUS{ tcltid}.rcv_upper_edge, -citid).ccv_nxt,
tci{tid) .qual of_service.misc(Q_SXTENDED_FORMAT]):

if n > 0 then
begin
Construct_ AK(data, n, tcltid].dst_ref, tcltid].rcv_nxt,
tc{tid}.qual_of_ service.misc{Q_EXTENDED FORMAT] }:

nid := tc{tid).ncep_id:

Concatenate_2_Ni

QUT SaPT{tid] . Tt
and

SAPT(vid] . Tt

(* spontaneous transition --

TRANS
PROVIDED TRUE
BEGIN
for nid = 1 o M
begia
if ncinid).sbuf
then begin
Extract NSDU(
OUT NSAP{nic).
and
end
END;

END ATP _process:
R R R R R
MODULE RS_module;

MCEP? : NS orimitives

DU nc{nid}, data)

mer_cancel (WINDOW, 0, T

s requesc (WINDOW, WN_STYNC, 0)

Send the network data anyway *)

< _NCEP_ID do
<> NIL

nc(nid} .sbuf, ndata }:
N_DATA_request{ ndata)

CAK R I N R KR A KR KA KR AR A L A K Kk kA kel

integer) FOR

VAR

rs_id : integer:

local, remote NADDR_TYPE;

gos NQOS_TYPE:

reason REASON_TYPE;

data NDATA_TYPE;
(* Primitive functions and procedures *j
FUNCTION 'Net accept (rs_id : integer:

- VAR local, remote : NADDR TYPE:
VAR QoS : NQOS_TYPE) : boolean;:PRIMITIVE:

PROCEDURE Net_close(rs_id

FUNCTION Net_confirm(rs_id integer) : boolean: PRIMITIVE:
PROCEDURE Net_connect (rs_id integer:

local NADDR_TYPE:

remote NADDR_TYPE;

gos NQOS_TYPE) : PRIMITIVE:
FUNCTION Net_disconnect(rs_id : integer:

VAR reason : REASON_TYPE) : boolean; PRIMITIVE:

FUNCTION Net recv(rs_id
VAR data

PROCEDURE Net _send(rs_id

data
INITIALIZE
BEGIN
cs_id := RS_index
END; (* Initialization *)

TRANS

integer).

integer:
NDATA_TYPE) : boolean:

integer:
NDATA_TYPE):

PRIMITIVE:

PRIMITIVE:

PRIMITIVE:

63

WHEN NCEP.N_CONNECT request
BEGIN

Tocal 1= From_network_addr:
remote = To_n2twork addr:
GOS = QA5
Nex st (s _id, local, zomota, Gos
END
TRANS
WHEN MNCEP 3 response
BEGIN
(* Do nothring @ the Network or hand!e
END
TRANS
WHEN NCEP.N_DATA_request
BEGIN
data := MNS_user_data
Met send(rs_id, data)
END:
TRANS
TRANS
PROVIDED Nen_accept (rs_id, lecal, remeie, gos)
BEGIN
ouT iocal, 203)
END
TRANS
TRANS
PROVIDED Net_recv(cs_id, data
BEGIN
OUT NCEP.N _DATA indication(data)
END;
TRANS
PROVIDED Net_disconnect(rs_id, reason)
BEGIN
OUT NCEP.N_DISCONNECT_indication{ reason)
END;

END RS_process:

(ﬂ\ﬂllitkkkt!dtqtlﬂtiktw<~<tntk&ﬂknqkinnnv-x-g~t~xt«<-qthi4)

Ul: TS user module with TS_user process(l):
U2: TS user_module with TS_user_process(2);

ATP: ATP_module with ATP_orocess:

S1: System module with System process(l):
S2: System module with System process(2):
S3: System module with System_process(3);
S4: System_module with Svstem_process(4).

RS1: RS_module with R$_orocess (1)
RS2: RS _module with RS_orocess(2):

R R R R
CONNECT

Ul.TSAP TO ATP.TCEP(1l]:
U2.TSAP TO ATP.TCEP([2]:

http://NJ.XNNECT_respon.se

ATP.NSAP{1] TO RS1.NCEP:
ATP . NSAP{2) TO RS2.NCEP;

1] TO S1.SEP:
2} TO $2.SEP:
Il TO $3.5c2pP;
2] TO S4.SEP:

END Transport_ref;

Appendix C

System Initialization and Scheduler
— For Semi-Automatic
Implementation

66

87

te

 fdturil.c - system_init, schodule

: Chee
<sys/timeb.h>
iinclude <sys/time . h>
jinclude <sys/un.h>
#include <netinet/in._h>
#include <netdb.h>
$include <errno.h>
finclude <signal.h>
tinclude <stdio.h>
#include <strings.h>

#include "../inet/inet.h"
{include "listdefs.h™
#include “"defs.h"
#include “tpdefs.h™
#include "../tsp/tsp.h"

* pefine the outermost refin2
define REF_NAME ioTransport_t

/
H

extern int signal pending:

extern struct process_block *p_block:
2xtern NCONN conr (]

This routine ce
for dangling che

ruct process_block

-— U0
ot

struct process_block *“ptr,
struct channel block *c_otr;
struct itimerval value:
int i, J:)

/* user included dcl */
struct process_block *REF_NAME () ;

process_list = remove_header (REF_NAME (NULL))

for (ptr = process_list:; ptr '= NULL: ptr = ptr->next)
o
Lf (strcmp(ptr->p_ident, "TS_user oprocess") == 0)
{
1 = ptr~>lvars.s5_T5 us=2:_process.user_id - 1;
uprocess i) = ptr:

if (strcmp(ptr->p_ident,
{

1 = ptr~>lvars.s_Svstem_process.svs_id - L;

sprocess(i] = ptr:

if (strcap(ptr->p_ident, "RS_process™) == 0)
{

i = ptr~>lvars.:

rprocess (i) =

1

_process. s _id - 1

for (c_ptr = ptr-»>chan_list: <_ptr '= NULL: < ptr = ¢ otr-rpaxt)
{
if (c_ptr->target_channel == NULL)
{

/* oops a dangling connection *+/

fprintf (stderr, "\nSYSTEM INITIALIZATION ERROR: dangling™):

file:///nSYSTEM

fprintf (stders, * channel in an insctance of \"%s\", .
otr->p_ident):

forintf(stders, “channel number id, ind 3d\n",c_ptc->a i,

¢ ptr->index numj};

}

/* join the ends of the process list into a loop */

for (ptr = process_list, prtr->next != NULL: ptr = ptc->next):
ptr->next = process_lisc:
/~ ___

+ Establishing connection to the system environment
b e e e e o e e
\¥

/* fire up a clock */

value.it_interval.tv_sec = value.it_value.tv_sec = Ll-

value.it_interval.tv_usec = valuve.it_value.tv_usec = Ol

setitimer (ITIMER VIRTUAL, &value, (struct itimerval *)0):
signal (SIGVTALRM, clock):

/* set up timer lists */
for (1L = 0; 1 < NTIMER: i++) timerlisc{i} = NULL:

/4 open a network listener */

LE ((i = N _open(éconni0), NSNAME)) != NET_OX)
{
tprinti(stders, ">>> N_opan problem
exic (1)
}
nermask = (1 << conn{f!->30Cck2at):

jol

n¢_inuse =
for (L = 0; 1 < MAX_NCZP_:ID; 1++)
{
netpool{i].fill FALSE:

netreason{i) = NET_OK:;
net_status(i]) = NET_NORMAL:

i

/* open a UNIX listen socket */
if ((usock (0] = TS_open(TSNAME)) < 0)
{
fprincf (stderr, ">>> TS_open problem %d\n",usock(0})
exit (1) ;

/* establish the inter-process connections */
for (usermask = 0,1 = 1. i <= MAX_TSAP_ID: i++)
{
struct sockaddr_un from:

int len sizeof {struct sockaddr_un);
3 = 1 - 1:
userpool|j}.fill = FALSE:
errclose(j]) = FALSE,
usock {1} = accept (usock{01, (struct sockaddr *)&from, &len):
1f (usock(i] < 0)
{
perror ("UNIX domain : accept™):
exit (1),
I
usermask {= (1l << usockl{il]}:
}
close(usock (0}) ; /* close the listener */

retura(process_list):

schedule (process_list)
struct process block *procass _lisc:
{

3

extern strucCt proces:

3

extern int signal_pendi
_block *p_block:

struct channel_block ‘c °:
struct signal_block to, *get_signal():
struct process_block ‘*o_ptr, *p_ptrcl;
struct timer block ‘tptrl, *tptr2;

struct timeval timzout;

int i, j, n, mask, notdone;
p_ptr = p ptr2 = process_list;

c_ptr = p ptr->chan_list

signal_pending = 0;

while {(usock({l] *'= -1) 1 {(usock{2] '= -1)) /* while there is a

{
if (signal_pending > 0)
{
s_ptr = get_signel(fc_ptr, &p_ptr):
signal_pending--:
/* call the transition routine */
p_block = p_
(*(p_ptr->cr

DT

<
SC

/* move on TO “h2 stazz of uha RNl
if (c_ptr->na2
c_otr = c_
else
i
p_ptr = o
c_ptr = D list
}
} /* internal input signal pending */
/* spontaneous transitions are handled below */
/* TS user process */
mask = usermask;
timeout . tv_sec = 0:

timeout .tv_usec S01:
1f (select (16, &mask, 0, 0, &timeout) < 0)
{
perror ("UNIX domain : select™):
exit (2):
!

for (i = 1;(mask > 0) && (1 <= MAX _TSAP_ID): i++)

{
1f ((usockfi]) '= -1) &a&
(mask & (1 << usock(i]))) /* Incoming request */

j o= 1~ 1:
if ((n = TD_input (usockii], userpoclj].datum, TS _MAX_LENGTH+2))
>= sizeof (struct data_hdr))
{
userpocl{j].fill = TRUE:
userpool{jl.ien = n:

ercclose({j)] = TRUE:
}
p_block = uprocessitj]:
(*(p_block->proc_ptr)) (NULL, NULL):

http://proces.-5_bl.ock

/* RS_process «/

mask = netmask:;
Llmeout .o = 0
S imeout . = 501

vf (selecc(l6, &mask, 0, O, &uimoour) <)

pecror ("INET domain : salecc™is
exit(2) .

Lf ((mask > 0) && (nc inuse < _NCEP_ID)) /* network channel available

{
1f (mask & (1 << conn{0)->s0cket))
|

for (notdone = TRUE, i = MAX_NCEP_ID; notdone && (i > 0): i--)
{
1f (conn(i} == NULL
{

notdona = FALSE

j =1 - 1;

if (N_ecceptliconn(i}, connil}->socket) == NET_OK)

t

net_statusij) = NET_NEWCOMER:
nc_inuse+*:

= (1 << {conni{ij-~->socket)):
= rorocessi{jl:
->proc_Dt o)) (MULL, NULL) .
ance 13 OX </

2

avallablia </

IS K

=i -1

j ;
if ((conn{i] !'= NULL} 3¢ /* the network channel is inuse
{mask & {1 << conn(i)->socket))) /* Incoming request */

if ((n = N_receive(conn{i}], netpool(j].datum, NET_DATA_SIZE})

>= NET_OK)
l netpool(j}.£ill = TRUE;
netpool(jl.len = n:
el;e
(netreason(jl = n

p_block = rpr
(*(p_block->proc_zt

3 .
I
)) INULL, NULL)

Lf ((netreason(j] !'= NET_OK) (1 (net_status(j] == NET_CONFIRM))
{
p_block = rprocess(j}:
(*({p_block~>proc_otr)) (NULL, NULL):
}

} /* for i-loop */ .

/* ATP process */
if (strecmp(p_ptc2->p_ident, "ATP_proces

{

(91
it
U

[l

p_block = p ptr2:
(*(p_ptr2->proc_ptr)) (NULL, NULL) ;
)

p_ptr2 = p ptr2->next:’

/* System_process */
for (i = 0; 1 < NTIMER; i++)

t= NMULL: tourl o= tprrl->next)

for (tptzl = cimecrlisvii)l, ©n

for (tprtr2 = vptzl: wpuol = MNGLL: tptcl->next)

p block =

(7(p_bl<u' t

P4 time oun t/

} /* each timer ./

} /+ cach timer L1

I /+ ach system proa
/* forever loop </

Appendix D

System Initialization and Scheduler
— For Manual Implementation

72

/k ___
* TS_initsys (privaze)
. TS_schedule (privace)

<

<.
#include <s
finclude <
#include <sys/un.h>
finclude <netinet/in.h>
§include <ercno.h>
#include <signal.h>
#include <stdio.h>
#include "../inet/inet h"
#include “"tpdefs.h”
tinclude “"tp.h"
finclude "../tsp/tsp.h”
finclude "tpvar.h"”

/A __
¢ TS_initsys
‘ Transporct Station initialication (GLOBZAL)

L. Handling the SIGINT & SIGCHLD signals
2. Initialize TS, T? and NP gueus.

* 3. Open TS listener.
4

]
v o

time.it_interval.cv_sac = cime.ii_value.
time.it_interval.tv_usec = time.it_value.

setitimer (ITIMER VIRTUAL, &time, (struct itimerval <*)0);
signal (SIGVTALRM, TM_clock):

/t
* Open a NSNAME server listening to the NP providers.
*/
if ((n = N_open (& (nplist. nconn), NSNAME)) !'= NET_OK)
{
fprincf(stderr, ">>> N _open problem 3d\n", n):
exit (1)
l
/t
“ Open a TSNAME server listening to the TS users.
«/

if ((tslist.tsap = TS_open(TSNAME)) < 0)

{
fprintf (stderr, ">>> TS _open problem id\n",tslist . tsap):

exit (1)
1
/4
< Inivialize the gleobal queues.
-/
tslist.prev = tslist.next = &4tslist:
tplist . prev = tplist next = &eplisc:

aplist.prev = nplist.next = &nplist:

73

- TS_schedule fprivace)
This is the scheduler of the interactions

~hedu le ()

struct timeval rime;

struct sockaddr_un from:

int n, flen, mask, sock:

char datum[TS_MAKﬂLENGTH+2], ndacnm[NET“DATA_S[ZEl:

TSCONN tsp, tspnext;
TPCONN tp, tpnext:
NPCONN np, npnext:
NDATA_PTR nptr;
NCONN aconn;

for (.:)
{
/* Transport service users </
mask = TS _builldmask ().

time.tv_sec = 0;

time.tv_usac = 5001;

1f ((n = select(l6, &mask, 0, 0, stime)) < O
if {(errno '= EINTR) TS_arcrorshutdown ()’

flen = sizeof (st kaddzr_un)
1f (({sock = acce st.ts2D2), {struct sockaddr
n)) < 9)
TS_errorshutdown
else
{
if (TS_newuser(sock) == NULL)
{
shutdown (sock, 2);
close(sock) ;
}
i
} /* new TS user */
for (tsp = tslist.next, tsp '= &tslist: tsp = tspnext)
{
Lspnext = tsp->next;

i1f (mask & (1l << tsop->tsap)
{
1f ((n = TD input(tsp->tsaop, datum, TS MAX LENGTH+2)
< sizeof (struct data hdr)) -7
TS_disconnect (tsp, UNKNOWN_ERROR) :
else
(void) TS_input (tsp, datum, n):
}

} /« for tslist <~/
} /*n > 0 */
/* Send,nhé filled network outgoing buffars =~/
for (np = nplist.next: np '= &nplist; np = npnext)
{
npnext = np->next;
if (np->s3buf !'= NULL)
{
nptr = np->shuf->data;
i€ (N_send(np->nconn, nptr->datum, nptr->dlen) != NET_OK)
NP_close (np):
else

NP_release (& (np->shuf), FALSE):

/5

}

/* network provider /
mask = NP_buildmask():
time.tv_sec = 0;
time.tv_usec = 5001;

if ((n = select(l6, &mask, 0, 0, &time)) < 0O}

if (errno !'= EINTR) TS_errorshutdown ()
if (n > 0)

{
if (mask & (1 << (nplist.nconn->sockect)))
{
if (N_accept (&nconn, nplist.nconn->sockct) != NET_OK)
TS_errorshutdown(};

else
! if (NP_accept (nconn) != NET_OK)
N_close(nconn):
J }/‘ new TS user */
for (np = nplist.next; np '= &aplist: np = npnext)
(npnext = np~>néxt:

if (mask & (1 << np->nconn->socket))
{

1 ((n = N_receive(np->nconn, ndatum, NET_DATA 317ZE})
< NET_OK)
NP _close(np):
z=lse

N?_inpuc{np, ndatum, n).;
}
} /+ for nplist =/

} /* n > 0 +/
/* timers */
for {tp = tplist.next: tp != &tplist: tp = tpneuc)
(tpnext = tp->next:
if ((tp->timp != NULL) && (tp->timp->time == 0))

TP_expired(tp);
}

for (np = nplist.next; np '= &nplist: np = npnext)
{

npnext = np->next:’

if ((np->timp != NULL) && (np->timp->time == 0))
NP_expired(np):
1
} /* forever loop */

http://v_.se

