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Abstract  

Mapping by unmanned aerial vehicles (UAVs) is a relatively new tool which is becoming more accessible, 
with an increasing set of sensors with potential applications in mine reclamation.  

UAV mounted multispectral and hyperspectral sensors provide imagery capturing narrow bands within the 
visible spectra, but also capture imagery in the invisible near-infrared, red-edge spectra, as well as the 
ultraviolet for hyperspectral. Imagery captured from these cameras are ideal for monitoring of vegetation 
communities, including through the analysis of vegetation indices, such as the most widely used normalized 
difference vegetation index (NDVI).  

Every year there are better and more cost-effective options for UAV mounted LiDAR sensors, which are 
able to provide detailed elevation maps of small areas. The best-known uses for UAV mounted LiDAR at 
mine sites are conducting high-quality cover-depth surveys and as-built site diagrams. These systems can 
also be used to create highly accurate descriptions of vegetation systems, providing data such as: canopy 
and sub-canopy heights, tree counts, and aboveground biomass. 

Even a small UAV equipped with a simple camera can be a useful tool in reclamation monitoring. Using a 
Mavic Pro purchased in 2018 for about fifteen hundred dollars, IEG created RGB (visual spectrum) imagery 
of a reclamation trial area. The RGB imagery was used for semi-autonomous classification of areas which 
had received a high, medium, or low application of an organic peat amendment as a component of 
reclamation-cover placement. This classification was then used to assess differences in survival of planted 
seedlings by peat content, which would have been more difficult using ground-based sampling methods. 
These methods will allow for assessment of impacts of this uneven distribution of an organic amendment 
on the success of revegetation efforts over time. 

This paper outlines reclamation monitoring applications of UAV technology, including a case study from 
our own work. 
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Introduction 

Technology is rapidly progressing in the fields of unmanned aerial vehicles (UAVs) and in the sensors 

they can carry. Along with the advances in technology, these tools have become more user-friendly, 

particularly as it pertains to the UAV flight and data collection. It is now normal that data collection 
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occurs with the UAV autonomously following a pre-determined flight plan developed in relatively easy-

to-use software (Valavanis Kimon P. and Vachtsevanos, 2015). Data processing ranges from quite easy 

for simple or cloud-based analysis, to extremely difficult for advanced applications. With these advances, 

UAV-based remote-sensing is becoming more accessible for use and has more possible applications in the 

field of mine reclamation (Park and Choi, 2020). 

Though there are additional sensors which may be useful for narrower applications, this paper will cover 

the following sensor technologies; LiDAR, photogrammetry, and multispectral or hyperspectral cameras 

for monitoring vegetation and soil characteristics.   

LiDAR 

LiDAR (Light Detection and Ranging) is a technology which has existed conceptually since the 1930s 

and in application since the 1960s but is now progressing rapidly due to its importance for self-driving 

vehicle technology (McManamon, 2019). LiDAR units use a narrow beam, or beams of light from an 

emitter sent in a known direction and measure the time and angle of the beam’s return in order to 

calculate the relative location of what the beam intercepted (McManamon, 2019). If the absolute location 

of the emitter and receiver are known, then the absolute location of where the beam is also known 

(McManamon, 2019). This can produce a 3D model of an object through rapid repetition of the process 

(modern UAV LiDAR units measure more than 100,000 points every second). UAV LiDAR units have 

three main components:  

1. the LiDAR unit itself, which includes the laser emitter and receiver; 

2. an inertial monitoring unit (IMU) which detects the angle of the unit, which is an integral part of 

understanding the relative location of each point; and 

3. a GNSS receiver which records the location of the unit, which allows the relative locations of the 

points to be converted to absolute locations. 

The location recorded by the GNSS receiver needs to be compared to the recorded location over a known 

point by a base-station in a process called post-processing kinematics (PPK), in order to result in accurate 

location data. LiDAR data needs to be heavily processed after data collection and results in a point-cloud 

file which will require further processing to get a final digital surface model (DSM) or digital elevation 

model (DEM).  

Photogrammetry 

Photogrammetry is a process that can be performed with any camera, where photos taken from a known 

location and angle can be processed to create an orthomosaic (i.e. a flat, top-down image like those found 
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on Google Earth), or a 3D reconstruction of an object or area. For UAV photogrammetry, an orthomosaic 

can be constructed from images taken straight down (nadir), however in order to create a 3D 

reconstruction of the landscape, the photos must be taken at an angle (off-nadir) (Kyriou, Nikolakopoulos 

and Koukouvelas, 2021). Photogrammetry processing requires a high level of overlap between each photo 

(generally 70-90%), so flights tend to take longer than LiDAR for a similar area. Ground control points 

(GCPs), which are known locations visible from the imagery, are used to georeference the imagery. This 

is both easier and more difficult than the PPK process for LiDAR, as it requires familiarity with high-

accuracy GPS units, but requires one less processing step. The characteristics of the camera, the 

roughness of the landscape, the flight height, the level of overlap, the accuracy of the GCPs, number of 

GCPs and the lighting conditions will all effect the quality of the resulting imagery (Mesas-Carrascosa et 

al., 2016; Rahman et al., 2019; Sangha et al., 2020). 

Multispectral and hyperspectral sensors 

Multispectral and hyperspectral sensors are different types of cameras, and photogrammetry methods are 

required to create an orthomosaic from the images they capture. In order to use the results for vegetation 

analysis, the background light must be measured and compensated for in analysis, and in order to ensure 

that the background readings and the sensor images are corresponding, the sensor must be oriented 

straight down (MicaSense, 2021). This means that multispectral and hyperspectral sensors should not be 

used for creating 3D models of landforms while also being used for spectral analysis. Both multispectral 

and hyperspectral sensors capture light which is outside of the visual spectrum, while multispectral 

sensors capture 5-10 wide bands of spectra (generally RGB, as well as near infrared [NIR] and red edge), 

hyperspectral sensors capture hundreds of narrow bands of spectra (de Castro et al., 2021). 

Applications for reclamation ecology 

LiDAR, photogrammetry, multispectral, and hyperspectral sensors can be used for a wide variety of 

applications. Both photogrammetry and LiDAR are capable creating high-quality DEMs of unvegetated 

areas, which makes either approach appropriate for cover placement analysis, erosion monitoring, as well 

as identification and delineation of opportunistic wetlands. Photogrammetry, either using a regular visual 

spectrum, multispectral or hyperspectral sensor, can be useful for unvegetated areas to detect differences 

in the cover material, such as levels of organic matter, or certain forms of mineralization.  

Detection of ground surface through vegetation can be difficult for photogrammetry, as the shadows cast 

by vegetation affect the imagery of underlying areas (Rahman et al., 2019). Any applications which 

require a clear reading of the ground level through a vegetation should be conducted using LiDAR. For 

this same reason, LiDAR is better for defining the biomass or LAI of forested ecosystems (Dainelli et al., 
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2021). This, along with the ability to extract traditional forestry measurements such as gap fraction, stem 

density, and even height and diameter at breast-height for individual trees using high-density LiDAR, 

mean that LiDAR is a much more versatile sensor for defining mature forests and other layered vegetation 

ecosystems (Dainelli et al., 2021). For ecosystems without a defined canopy1, the vegetation indices 

created using multispectral or hyperspectral cameras can be combined DSM and DEM data created using 

LiDAR or 3d photogrammetry to achieve biomass and LAI (Song, 2013).  

Multispectral and hyperspectral data has been used to create indices which correlate with biodiversity of 

ecosystems, this is particularly effective for ecosystems with flowering species and when imagery is 

collected multiple times over the course of a growing season (Astor, 2015; Baena et al., 2017; Saarinen et 

al., 2018; Sankey et al., 2018). These vegetation indices can be used to build proxies for biomass in 

vegetated systems which do not have complex canopy layering, or to report on health of vegetation. 

Hyperspectral sensors can be useful for advanced applications such as monitoring of water quality 

(Becker et al., 2019), which are not possible with a multispectral sensor. The advantage of multispectral 

sensors is that data collection and processing is much less expensive and complicated than that of 

hyperspectral sensors. 

All remote sensing, whether from UAV or using satellite imagery, must be extensively ground-truthed in 

order to build and test robust models. With the growing ease of use of some of these tools, rigorous 

ground-based measurements and research-informed interpretation of data is more important than ever.  

Case Study – UAV soil amendment mapping at Detour Lake Mine 

Growth of vegetation on waste rock and overburden materials is often slow, often due to the lack of 

organic matter. Application of an organic amendment can improve nutrient supply and cycling, water 

availability, and soil biodiversity (Larney & Angers, 2012). Sourcing and application of such an 

amendment is often complicated and faces numerous operational constraints. The combination of 

naturally sourced amendments being heterogenous at the source and the thin layer in which amendments 

are applied over large facilities such as waste rock dumps, can result in a patchy spread of amendment. 

This can lead to a mosaic of organic matter concentrations and quality. Understanding the heterogeneity 

of reclamation-cover placement is essential for the interpretation of revegetation studies on such systems. 

Mapping the spatial distribution of reclamation covers, such as a peat-mineral mix (PMM), using on-the-

ground methods can be time-consuming and expensive. UAVs offer an innovative, time-saving and cost-

effective approach to delineating placement of these covers.  

                                                           
1 Such as sparsely forested or shrubby.  
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Integral Ecology Group conducted a UAV survey of PMM distribution on a large (5.3-hectares) 

constructed plateau at Detour Lake Mine (located in northeastern Ontario) in 2020. The facility is a 

waste-rock stockpile, capped with overburden materials, which is designed as a cover and revegetation 

trial to establish reclamation methods which can be applied to future mine-planning. The trial is designed 

to measure a wide variety of metrics, including mortality and growth of planted seedlings, ingress of 

native species, cover hydrology, and carbon and water fluxes in and out of the system. The plateau of the 

facility, which makes up the study area, was covered with a 0.3 m overburden growth medium which 

consisted of a peat mineral mix (PMM) targeted to have approximately 20-30% peat by volume (BGC 

2020). The peat and mineral components of the mix were salvaged together and mixed through the 

dumping and spreading process, and additional peat was dumped and spread in order to achieve the 

desired proportions (BGC 2020). Due to the uneven distribution of peat and mineral soil in amendment 

stockpiles, the process resulted in a spatially heterogeneous distribution of peat. Though for operational 

reclamation, this degree of patchiness would have been appropriate, it represented a major covariate 

which could disrupt learnings from the trial area if not accounted for. The use of a UAV to create a 

spatially-explicit map of organic matter distribution will allow its inclusion as a variable in relevant 

analysis. Vegetation, hydrological and flux measurements are still being gathered at the time of writing, 

so only seedling mortality is currently available for comparison with peat content.   

UAV Parameters and Mission Planning 

Aerial images of the study area were collected using a DJI Mavic Pro equipped with a 12 Megapixel RGB 

camera with a 79-degree field of view. The Mavic Pro is a quadcopter drone, small enough to fit in a 

backpack, with batteries small enough to be permitted on commercial flights. It weighs approximately 

740 grams and can be flown safely and easily in non-restricted airspace over an unpopulated area with a 

Basic UAV Pilot’s license.  

The UAV mission was planned using the Pix4D Capture app, using the following settings: 

• 70% side overlap and 80% front overlap 

• 65-meter altitude 

• 75-degree camera angle (90 degrees would be straight down) 

• Double grid formation to create both an orthomosaic and a 3D model of the area 

The total area mapped was 19-hectares and had a flight time of 58 minutes, requiring four battery 

changes. 1250 aerial photos were collected as a result. The total area mapped was significantly larger than 
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the study area (5.3-hectares) – flight time would have been significantly reduced if only the study area 

was mapped2. 

UAV Data Analysis 

The workflow for analysis can be generalized into four main steps: (1) aerial image processing; (2) 

orthomosaic analysis; (3) accuracy assessment; and (4) application. 

1. Aerial image processing. Aerial images were processed into an orthomosaic using Agisoft 

Metashape Professional Edition 1.7.3. Agisoft uses structure-from-motion (SFM) to align photos, 

reconstruct 3D point clouds, and produce Digital Elevation Models (DEM) and orthomosaics.  

2. Orthomosaic analysis. Orthomosaic analysis was performed using OBIA, a workflow found 

within the Orfeo Toolbox3 . OBIA analyses images at the object level rather than the pixel level 

and uses spectral, textural, and contextual information to group pixels in an image. OBIA works 

well for very high resolution RGB UAV imagery and can help reduce the effects of shadow (De 

luca et al., 2019). OBIA has three main steps: 

a. Segmentation. The orthomosaic is segmented into a vector dataset based on groupings of 

similar pixels where every polygon represents an object.  

b. Training and control samples. Training and control samples are manually created in a 

GIS environment. The training samples will inform the classification what the 

characteristics of high-peat and low-peat polygons are, while the control samples will 

check the accuracy of the classification (step 2c). Training and control samples were 

categorised into the following land cover classes: (1) high-peat; (2) medium-high-peat; 

(3) medium-low-peat; (4) low-peat; (5) waste-rock.  

c. Classification. A supervised classification function is run using the Random Forest (RF) 

algorithm through the Orfeo Toolbox. The final output is a polygon layer where the 

polygons are classified as one of the five land cover classes. For the purposes of this case 

study, high-peat and medium-high-peat land cover classes were grouped together to 

represent high-peat polygons, while medium-low-peat, low-peat, and waste-rock land 

cover classes were grouped together to represent low-peat polygons. 

                                                           
2 The additional mapped area was included in the data collection to include trial areas which are unrelated to this 
case-study.  
3 The Orfeo Toolbox is an open-source multi-purpose remote sensing toolbox which can be used for basic pre-
processing or running advanced remote sensing algorithms (Grizonnet et al., 2017). 
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3. Accuracy assessment. A confusion matrix4 and kappa value5 are generated from the RF 

classification - these are the most common measures of accuracy for remotely sensed data 

(Morales-Barquero et al., 2019). User’s, producer’s, and overall accuracy are then calculated 

using the confusion matrix. 

4. Application. The proportion of high-peat and low-peat polygons within the PSPs were used to 

classify each PSP as high or low-peat. If a PSP had a peat content of 50% or greater it was 

classified as high-peat and if it had less than 50% peat content it was classified as low peat. 

Seedling survival rates were measured at each PSP, and comparisons between high-peat and low-

peat PSPs were analyzed by analysis of variance. 

Orthomosaic interpretation 

Visual inspection of the 3D model and orthomosaic (~1.5 cm/px) produced in Agisoft can provide useful 

information before any additional analysis is performed. Figure 1 highlights the heterogenous distribution 

of PMM, with the browner areas containing high-peat and the greyer areas containing low-peat. 

 

 

Figure 1. 3D model (left) and orthomosaic (right) of the study area. 

                                                           
4 A confusion matrix displays correct (and sometimes also incorrect) modeled outcomes for each given known 
(measured) outcome. 
5 Kappa value is a measure of how close the modelled classification outcome is to the correct outcome.  
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Orthomosaic analysis 

Figure 2 is the result of segmenting the orthomosaic (step 2a); each segment or polygon is now an 

individual object. The training points (step 2b) assign objects a land cover class based on the polygons 

they overlap. Check points (step 2b) will then assess the accuracy of the training algorithm by comparing 

the analyst classification with the RF algorithm classification. 

 

Figure 2. Distribution of training and check points over the segmented study area. 

Figure 3 is the final output of the orthomosaic analysis (step 2c). All of the polygons or ‘objects’ from the 

segmentation stage have been classified as having high or low-peat. The patchy distribution of PMM is 

now apparent.  
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Figure 3. Areas of high (black) and low (white) peat content on the study area. 

Accuracy assessment 

Table 1. reports the confusion matrix for the accuracy assessment. The overall accuracy for the RF 

classification is 84.51% while the kappa value is 0.81.  
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Table 1. Confusion matrix for the Random Forest classification algorithm.  

    Reference Data 
Total 

User's 

Accuracy     1 2 3 4 5 

Classified 

1 8 0 0 0 0 8 100 

2 0 4 3 0 0 7 57.14 

3 0 1 6 0 1 8 75.00 

4 0 0 0 8 0 8 100.00 

5 0 1 0 0 7 8 87.50 

                

Total   8 6 9 8 8 39   

Producer's 

accuracy   
100 66.67 66.67 100.00 87.50     

 

Correlation with seedling survival 

Results indicated a significantly (α = 0.05) higher survival for conifer seedlings planted in high-peat areas 

than those planted in low-peat areas, with survival approximately 15% higher for pine and 22% higher for 

spruce in high-peat areas Figure 4. 
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Figure 4. Seedling average survival rate by species and peat content within the study area (error 

bars indicate the standard error of the estimate of the mean). 

Discussion 

This case study demonstrates a practical method of using a UAV to obtain information from which to 

inform revegetation efforts. OBIA of the UAV derived orthomosaic and the resulting quantification of 

PMM in the study area allowed the distribution of the reclamation-cover to be included in an overall 

analysis of seedling survival rates as an important variable. Although there are likely other important 

covariates impacting seedling survival, the results of this case study suggest the application of PMM in 

future reclamation attempts at the Detour Lake Mine would likely lead to an increased rate of seedling 

survival over the initial year after planting. 

This case study is also an example of the value a relatively affordable UAV can bring to reclamation 

efforts. The Mavic Pro cost approximately $1500, making it one of the more affordable UAV options 

available, yet provided valuable information which otherwise would have been excluded from the 

seedling survival rate analysis. Although Agisoft, the photogrammetry software, requires a paid 

subscription, all other processing was performed using open-source software. Orfeo Toolbox is just one 

example of an open-source software that can be used for this kind of analysis but there are plenty of 

others available, including QGIS, a popular GIS platform that has supervised classification plug-ins 

available.   

The limitations of this study are similar to all UAV and remote sensing limitations – achieving high 

classification accuracy. Limitations were addressed by running multiple classifications with different 

settings to decrease reported errors, and visually inspecting each classification to ensure it agreed with 
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what the visual eye could perceive. While the accuracy of the classification could be improved, the results 

were more than satisfactory for the purposes of this study. The Mavic Pro and its camera, however, were 

pushed to the limits, and ultimately, there is a relative increase in equipment cost and technical ability in 

achieving higher accuracies.   
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