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Abstract

Reinforcement learning (RL) is an area of machine learning where intelligent agents take sequential actions

in an environment and learn from experience to maximize rewards. This is particularly useful when the dy-

namics of the environment are complex and explicit training data is limited, such as in autonomous driving,

robotics, game-playing, recommendation systems, finance and health care. The main challenge in RL is to

balance between exploration (taking less observed actions to gather information) and exploitation (taking

actions with high historical reward). Stochastic Multi-arm bandits (MABs) can be viewed as a simplified

decision-making problem where the state of the agent does not change by the actions. The rich existing

bandit theory provides insights into tackling expiration-exploitation trade-offs in RL.

In this work, we draw inspiration from the classical bandit algorithms upper confidence bound (UCB)

and Thompson sampling (TS), and propose a novel algorithm in RL: Optimistic Thompson sampling. Op-

timism encourages exploration: Agents can gain information by being optimistic and playing actions that

are estimated to be sub-optimal but are not sufficiently sampled. We first discuss our performance metric in

theoretical analysis, namely regret. Regret measures how the algorithm performs compared to the optimal

strategy if the rewards and dynamics of the environment are known. We then provide a novel theoretical

analysis of the optimistic Thompson sampling (O-TS) [Chapelle and Li, 2011] algorithms in bandits. Next,

we extend the algorithms to the Markov decision process (MDP) setting, a common representation for RL

problems. We propose two novel algorithms, O-TS-MDP and O-TS-MDP+. We compare their performance

to existing work both theoritically and with numerical experiments. Finally, we conclude our work with a

discussion of future directions for strategic exploration in bandits and RL.
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Lay Summary

We often need to make a series of decisions and do not have the full information. Doctors adapt medical

treatment plans according to patient responses; self-driving cars navigate uncertain road conditions by con-

tinually making decisions based on sensor signals; bankers adjust financial investments over time depending

on market fluctuations. Optimizing decision-making involves the trade-off between exploration (trying out

unfamiliar options to gather information) and exploitation (taking the best possible actions under known

information). In this work, we design ways to make a series of decisions to balance this trade-off effectively

and efficiently. The key ingredients in our methods are optimism and randomization. We encourage the

exploration of uncertain options through optimistic estimates of their payoffs and introduce randomness to

prevent getting stuck in less ideal choices, thus fostering the discovery of better solutions over time. We

demonstrate the performances of our methods with mathematical proofs and computer experiments.
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Preface

This thesis is based on the collaborative work Hu et al. [2023] with Dr. Bingshan Hu (University of Alberta;

Amii), Dr. Nidhi Hegde (University of Alberta; Amii), and my supervisor Dr. Mark Schmidt (University of

British Columbia; Amii). It was published at the Uncertainty in Artificial Intelligence (UAI) conference in

2023 with the title Optimistic Thompson Sampling-based algorithms for episodic reinforcement learning.

The breakdown of the contribution for the paper is as follows: There are four algorithms included in

the paper: O-TS and O-TS+ for bandits, and O-TS-MDP and O-TS-MDP+ for RL. The idea of O-TS in

bandits is first empirically evaluated by Chapelle and Li [2011]. Dr. Hu proposed the original ideas for

the other three algorithms and developed the theoretical analysis for all four algorithms. I contributed to

the implementation of the numerical experiments, comparison to existing work, and the related writing and

visualizations. I attempted to analyze the two bandit algorithms, but due to limited time, the analysis was

completed by Dr. Hu in the paper. Dr. Scmidt and Dr. Hegde have provided valuable edits and comments

to improve the clarity and presentation of the work.

The goal of the thesis is to define and motivate the research problem, and to describe the dense theory

of the paper in a way that is intuitive and approachable to researchers who are unfamiliar with this line of

work. The writing and visualizations in this thesis, unless specified otherwise, are the original product of

the author Tianyue H. Zhang. Dr. Schmidt, Dr. Hu, and Dr. Mathias Lécuyer have provided valuable edits

throughout the process.

In Chapter 2, I include a summary of different definitions of regret. This is the part I found most

confusing when I was first introduced to the topic, so I hope it could be a useful clarification. In Chapter 3,

I include the proof intuition for two well-known bandit algorithms, UCB Auer et al. [2002a] and Thompson

sampling Agrawal and Goyal [2017], and discuss my own understanding of our analysis for O-TS and

O-TS+. In Chapter 4, I draw connections between bandits and RL and discuss other types of RL theory

work and their assumptions. I find it helpful to understand different perspectives for approaching the same

problem. In Chapter 5, I discuss our proposed RL algorithms and their empirical performance. The writing

in this chapter is partially borrowed from the paper. Finally, in Chapter 6 I conclude the thesis with a few

future directions. The fast algorithm with greedy updates in this Chapter is proposed by Dr. Hu and I

performed empirical evaluations. The connection between differential privacy is proposed by Dr. Lécuyer

and is an ongoing project with all collaborators mentioned above.
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Chapter 1

Introduction

Reinforcement learning (RL) is a subfield of machine learning that focuses on sequential decision-making

under uncertainty. RL gained its modern interest in 2016 when DeepMind developed a groundbreaking AI

gaming program named AlphaGo [Silver et al., 2016]. It gained significant attention when it defeated the

world champion Go player, marking a major milestone in AI and game playing. The agent was trained

and improved using RL and played many games against itself to refine its strategies. Since then, the field

of RL has continued to expand with numerous and diverse practical applications. In robotics, agents are

trained with RL to complete tasks like grasping objects [Gu et al., 2017] or navigating through space [Zhu

and Zhang, 2021]. In the financial sector, RL is used for portfolio optimization [Soleymani and Paquet,

2020] and algorithmic trading [Li et al., 2019]. In self-driving cars, RL is employed to take action in real-

time while navigating through traffic safely [Sallab et al., 2017, Shalev-Shwartz et al., 2016]. In healthcare,

researchers use RL to design personalized treatment recommendations [Coronato et al., 2020], discover new

drugs [Popova et al., 2018], and optimize resource allocation [Yu et al., 2021]. In the recent development of

large language models such as GPTx [Ouyang et al., 2022], RL is also used to collect human feedback to

design better dialogue responses.

Inspired by behavioural psychology, the RL agent interacts with the environment and receives feedback

through rewards or penalties based on the actions it takes. The goal is to learn a policy that determines the se-

quence of actions to take in different states of the environment to maximize its cumulative rewards over time.

Because of its adaptability to environmental changes and its ability to learn autonomously from experience

without manual programming, RL is well-suited for handling complex, dynamic, uncertain decision-making

tasks in real life that are difficult to model explicitly.

Despite its broad application, RL algorithms face many challenges and are far from perfect. Agents often

require many interactions with the environment to learn effective policies, which can be expensive and time-

consuming in real-world scenarios. In addition, balancing exploration and exploitation is a fundamental

challenge: the agent needs to explore different actions to learn about their effects, but it also needs to exploit

its current knowledge to maximize rewards. Moreover, it isn’t easy to guarantee that RL algorithms converge

to optimal or near-optimal policies, especially in complex environments. Therefore, it is essential to design

1



reliable and efficient algorithms that leverage historical data to collect new data that optimizes reward and

information gain.

Regret analysis in RL theory helps address these challenges by providing a framework to quantify the

performance. Although many theoretical studies, including our work, make simplifying assumptions about

the environment and may not fully capture the complexities of real-world scenarios, they often provide valu-

able insights. Markov Decision Processes (MDPs) are a simplified representation of RL that are commonly

used in the literature. The simplification allows researchers to analyze the convergence and optimality of

algorithms under certain conditions and quantitatively evaluate and compare algorithms. Establishing the

performance and reliability of algorithms allows researchers and practitioners to make informed decisions

in algorithm designing and use available data more efficiently.

Stochastic Multi-arm bandits (MABs) can be viewed as a simplified subset of MDPs with no states.

Inspired by slot machines in gambling, an agent in a bandit environment faces a series of actions, each

associated with an unknown reward, and can only learn the reward of the action it selects. The objective is

to make decisions under uncertainty while minimizing regret (the difference between the reward received

and the reward that could have been received with perfect knowledge). Unlike in MDPs, the actions taken

in the bandit problems do not impact its state in the environment. The advantage of considering bandit

problems is that they have been studied extensively for many decades, dating back to the mid-20th cen-

tury [Robbins, 1952]. The rich existing bandit literature provides important understandings in tackling

expiration-exploitation trade-offs and can be a powerful source of inspiration for algorithms in the more

general MDP settings.

Besides providing insights into MDPs, studying bandit algorithms on their own is already valuable in

practice where data and resources are limited, and efficient decision-making is essential. Bandit algorithms

could be applied in adaptive clinical trials to determine the most effective treatment among multiple options

while minimizing the number of patients exposed to ineffective treatments. In online advertising, bandit

algorithms are used to decide which ad to display to users based on limited information about the effective-

ness of each ad. Bandits are also used in personalized recommendation systems to determine which items

to show users to maximize engagement.

In this work, we revisit the classical bandit algorithms: upper confidence bound (UCB) and Thompson

sampling (TS). We also provide a novel theoretical analysis of optimistic Thompson sampling (O-TS) algo-

rithms that are based on a combination of TS and UCB. Optimism encourages exploration: Agents can gain

useful information by being optimistic and playing actions that are estimated to be sub-optimal but are not

sufficiently sampled. We then extend the algorithms to the MDP setting and propose two novel algorithms,

O-TS-MDP and O-TS-MDP+. We compare their performance both theoritically and with numerical exper-

iments. Finally, we conclude with a discussion of existing work and provide directions for future studies of

strategic exploration in bandits and RL.
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1.1 Organization and Contribution
The organization of this thesis and the contributions in each chapter are as follows:

In Chapter 2, we formally define the stochastic multi-armed bandit problem and its performance mea-

surement, namely the regret. There are many different definitions of regret studied in the related literature.

Some are due to practicality, for example, pseudo-regret is easier to analyze than actual regret; some are

due to different assumptions and perspectives of the problem, for example, the worst-case regret versus the

problem-dependent regret. We will explain the difference and connections between these regret definitions,

and justify our choice of performance measurement. We will discuss what it means for a policy to achieve

optimality or near optimality under the measurement that we choose.

In Chapter 3, we will discuss the exploration-exploitation trade-off in bandits, and why it is challenging

but essential to design algorithms with good performance. We introduce some of the existing approaches to

tackle this trade-off. One of the most widely used exploration schemes, epsilon-greedy, is not optimal both

theoretically and in practice. The UCB [Auer et al., 2002a] algorithm is based on the philosophy of optimism

in the face of uncertainty. It is a simple algorithm to implement and enjoys elegant theoretical analysis on

its regret upper bound. Thompson’s sampling [Agrawal and Goyal, 2017] is another provably efficient

algorithm that approximates each arm’s reward by iteratively constructing posterior distributions based on

the collected data. We also include a brief proof sketch of these two algorithms to serve as the foundation for

our proposed algorithm and its analysis. Finally, we introduce optimistic Thompson sampling (O-TS) and

O-TS+. The O-TS algorithm is a modified version of the TS algorithm that is more optimistic. It was first

empirically evaluated by Chapelle and Li [2011], and here we fill in the gap in theoretical analysis. Here,

we relate the proof of O-TS to Thompson’s sampling analysis in both worst-case and problem-dependent

settings. O-TS+ on the other hand is a more optimistic clipping of TS that can be viewed as a randomized

version of UCB, so we discuss how the analysis is developed from the UCB proof. Finally, we demonstrate

these methods’ empirical performance by running a numerical experiment on a simple bandit example.

In Chapter 4, we discuss reinforcement learning and its commonly used framework, Markov Decision

Processes (MDPs). We provide formal definitions and notations and discuss the relationship between bandit

and MDP. We explain some common assumptions in the literature, such as stationary versus time-dependent,

finite horizon versus infinite, stochastic policy versus deterministic, etc. The discussion is to clarify the

assumptions we made in this work, where we mainly focus on the finite horizon, time-inhomogeneous,

episodic MDPs. Exploration algorithms in RL often consist of two phases: planning the optimal policy

based on existing data, and sampling based on the planned policy to collect new data. As the planning phase

is trivial in bandit, we discuss more in detail some fundamental algorithms for planning when the underlying

MDP reward and transition dynamics are known. We discuss dynamic programming in the finite horizon,

value iteration, policy iteration, and linear programming in the infinite discounted horizon. Then, we include

a literature review of the exploration algorithms in RL, mainly how the ideas from bandit algorithms such

as UCB and TS have been adapted and extended to the MDP setting. We discuss how the two classes of

algorithms relate or compare to each other before introducing our algorithms in the next chapter.

3



In Chapter 5, we introduce two novel algorithms for finite horizon, episodic MDPs, O-TS-MDP and

O-TS-MDP+. These algorithms are a natural extension of our bandit algorithms in Chapter 3. They rely

on a modified version of TS-like posterior distribution generated from historical data and carefully chosen

variance that reflects uncertainty. We describe the algorithm in detail and discuss the intuition behind the

improved performance and regret bounds. Then, we run numerical simulation experiments to demonstrate

their performance. We compare the original, unclipped version of Thomspon sampling and our two clipped

versions. We also compare them with other existing work including SSR-Bernstein [Xiong et al., 2022] and

UCB-VI Azar et al. [2017].

In Chapter 6, we summarize and conclude our work and contributions, advantages, and limitations.

In the future work section, we include a few ideas related to and worth exploring. Firstly, in this work,

we focus on designing good reward distributions. The transition dynamics in MDPs are another source of

uncertainty so it is worth exploring how to take advantage of that. Secondly, it is of interest to practition-

ers how the theory can be applied to practice, so we include a few modifications of these algorithms and

practical approaches in deep learning. Then, we also explore existing work in exploration in distributional

RL, which can be generalized into deep learning more easily, and explore a greedy update rule to improve

computational complexity. Finally, we discuss the possible connections between exploration in RL and dif-

ferential privacy. We believe this novel connection can potentially yield valuable theoretical advancement

and practical impact in both fields.
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Chapter 2

Stochastic Multi-Arm Bandits

A multi-arm bandit (MAB) problem is a classic decision-making problem in which a player must choose

between several options (or arms), in a sequential manner, with the goal of maximizing their cumulative

reward over time. The term “bandit” comes from the idea of a gambler pulling the arm of a slot machine

(or “one-armed bandit”) in order to try and win money. While the history of the multi-arm bandit problem

dates back to the 1950s when it was first introduced as a mathematical model [Robbins, 1952], the problem

has since been studied extensively in the fields of probability theory, statistics, optimization, and machine

learning [Lattimore and Szepesvri, 2020].

Stochastic multi-arm bandits have a wide range of applications in various fields including clinical trials

[Villar et al., 2015], financial investments [Bouneffouf and Rish, 2019], and perhaps most famously online

advertising [Schwartz et al., 2017]. For example, a company has a few different advertisements that can be

displayed to the target audience, and there is a monetary reward each time the user clicks on the ad. The

likelihood of a user clicking on each ad is unknown, but we can model this problem using a multi-arm bandit

and design algorithm that monitors the performance of each ad and optimizes advertising spend by showing

the most effective ads more frequently.

In the stochastic multi-arm bandit problem, each arm has an associated probability distribution of re-

wards, and the player must choose which arm to pull at each time step without knowing the exact distribution

of each arm. The goal is to find the arm with the highest expected reward while balancing the trade-off be-

tween exploration and exploitation. Exploitation involves pulling the arm that is known to produce high

rewards based on past experience, whereas exploration involves pulling arms that may produce lower re-

wards but have not been extensively explored yet. Balancing between the two is crucial to maximizing

long-term rewards: if the agent only focuses on exploitation, it may miss out on discovering better options;

if it only focuses on exploration, it may waste time on the sub-optimal arms.

Regret analysis is often used to provide a quantitative measure of algorithm performance in multi-armed

bandits. Generally speaking, regret is a measure of how much the agent’s chosen actions deviate from the

optimal actions. It represents the opportunity cost of not always choosing the best action. With this tool in

mind, researchers can design algorithms and strategies that balance the exploration-exploitation trade-off.

5



Figure 2.1: Multi-armed Bandits

A good algorithm should minimize regret or equivalently maximize the reward.

In this chapter, we will formally define the multi-armed bandit (MAB) problem. Then, we will introduce

a few different forms of regret, and what it means for an algorithm to be optimal in each metric. We will

discuss the advantages and drawbacks of each performance measure and justify our choice in the rest of this

work.

2.1 Problem Definition
Consider the standard bandit problem where we have a set of K arms. Each arm j ∈ [K] has an unknown

reward distribution with bounded support. Without the loss of generality, we assume that the reward is in

[0,1]. Let µ j be the mean reward of the arm j, in other words µ j = E [X jt ]. We also assume there is no

dependency between arms. At each round t, the agent plays an arm Jt ∈ [K] and receives a reward XJt (t).

Let Ft = {Jτ ,Xτ(τ),τ = 1, . . . , t} be the history. The agent interacts with the bandit according to a sampling

strategy that is learned based on the history, which we call a policy π ∈Π. See Table 2.1.
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Table 2.1: Notations for Multi-arm Bandits

K Number of arms

µ j Mean reward of arm j

Jt The arm played in round t

∆ j Sub-optimality of arm j

XJt (t) Reward received by playing Jt

O j(t) Number of times arm j has been played by round t

Ft History by the end of round t

π ∈Π Policy that determines the sequence of actions

We consider a finite horizon of T rounds. The goal of the agent is to maximize the cumulative reward

T

∑
t=0

XJt (t)

Or equivalently, minimize cumulative regret, which is the difference between the reward from the played

arm at each round, and the best possible reward at each round. Let Jt be the arm played in round t. The

regret of an algorithm π after playing T rounds is defined as

RegretT (π) = max
i=1,...,K

T

∑
t=1

Xit −
T

∑
t=1

XJt .

It is useful to consider the regret of an algorithm since it quantifies the performance of an algorithm

compared to the best outcome if the reward model is known.

We often analyze the performance of an algorithm with the expectation of regret over the randomness in

rewards, where lower regret indicates superior performance. The expected regret is defined as

E[RegretT (π)] = E

[
max

i=1,...,K

T

∑
t=1

Xit −
T

∑
t=1

XJt

]
The agent aims to minimize regret by learning a policy of which arm to play next based on past obser-

vations. However, the expected regret can be difficult to analyze and optimize. In this work, we instead try

to minimize the pseudo-regret, a weaker notion that is commonly used in many other related works. The

pseudo-regret of a policy is defined as

RT (π) = max
i=1,...,K

E

[
T

∑
t=1

Xit −
T

∑
t=1

XJt

]
Notice that E[RegretT (π)]≥RT (π). Without loss of generality, we can assume the first arm is the unique

optimal arm, meaning µ1 > µ j∀ j ̸= 1. Using that E[XJt ] = µJt , we can write the pseudo-regret as:
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RT (π) = E

[
T

∑
t=1

X1t

]
−E

[
T

∑
t=1

XJt

]
= T µ1−E

[
T

∑
t=1

XJt

]
Let ∆ j = µ1− µ j to be the sub-optimality gap (or instantaneous regret) of arm j. Then, we can further

decompose the regret:

RT (π) = T µ1−E

[
T

∑
t=1

XJt

]

=
k

∑
j=1

(µ1−µ j)E

[
T

∑
t=1

1 [Jt = j]

]
= ∑

j:∆ j>0
∆ jE [O j(T )]

where O j(t) = ∑
T
t=11 [Jt = j] is the number of times arm j has been played by time t. This decomposition

will be useful when we consider problem-dependent regret bounds, which will be discussed more in detail

in the next section.

2.2 Performance Measures
There will always be some regret given the agent is unaware of the reward distributions, and it is important

to talk about the lower bound of the regret. This can answer the question of how good one can do in theory.

From there, we can then discuss the notion of optimality under different assumptions. For example, do we

want an algorithm to be not too bad for any bandit problems, or do we care about being better for some

easier bandit problems at the expense of being bad for harder problems? Since the rewards are stochastic,

do we care about the performance in the worst cast, or on average? Do we care to distinguish whether the

algorithm makes a few large mistakes or many small mistakes? In this section, we will discuss a few types

of regret measures and how they approach these questions.

Worst-case (problem-independent) regret and optimality In the previous definitions for simplicity, we

omitted the dependence on a specific bandit environment Θ. The worst-case regret of a policy π over T

rounds is a problem-independent performance measurement, meaning it considers the hardest problem” in

a set of bandit environment Θ:

sup
θ∈Θ

RT (π,θ)

The terms problem-independent regret and worst-case regret are interchangeable. Both capture the regret

that an algorithm can incur over all possible bandit instances of a given number of arms. These measures do

not consider any particular structure or correlation between the arms.
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Minimax regret and optimality While worst-case regret measures the performance of a single policy in a

given bandit environment, minimax regret measures the performance of a set of policies. Let Π be the set of

all policies, then the minimax regret is

R∗T = inf
π∈Π

sup
θ∈Θ

RT (π,θ)

The word “mini-max” comes from minimizing regret over the set of policies, while maximizing regret

over the bandit environment. Minimax regret is not just a property of a policy, but also a property of the

bandit problem itself: a large minimax regret could mean that the bandit environment is difficult to learn in

the worst case. A policy is called minimax optimal when R∗T = RT (π).

In the case where T ≥ K, Auer et al. [1995] shows that all policies suffer Ω
(√

KT
)

worst-case regret,

which is called the minimax-optimal regret. Achieving minimax optimal is typically difficult in practice,

and we often settle for near-optimal algorithms.

Problem-dependent regret In practice, mini-max optimal policies can be too conservative as they do not

take advantage of the specific structures or difficulties of a bandit instance. It is useful to look for policies

that perform well in easier problems. Problem-dependent regret, denoted as RT (π,θ) refers to the regret

that a specific MAB algorithm incurs on a particular set of arms or distributions. This type of regret takes

into account the specific characteristics of the problem, such as each arm’s sub-optimality ∆ j. In general,

problem-dependent regret is usually lower than problem-independent regret because an algorithm can ex-

ploit the specific characteristics of the problem to achieve better performance.

Asymptotic problem-dependent optimality An algorithm is called strongly consistent if they have sub-

polynomial regret on all problems. Existing literature [Burnetas and Katehakis, 1997, Lai and Robbins,

1985] showed that there is a regret lower bound and that any consistent policies cannot do better. Conse-

quently, a policy π is asymptotically optimal if

lim
n→∞

RT (π)

log(T )
= ∑

j:∆ j>0

2
∆ j

Lai and Robbins [1985] also showed that it is possible to construct an algorithm that achieves asymptotic

optimality. It’s worth noting that asymptotically optimal policies can still have a long burn-in period or large

mini-max regret.

Finite-time problem-dependent optimality Finite-time lower bounds can be established by making a finite-

time analogue of consistency. Without going into the details, ? showed that any algorithm that has reason-

able worst-case performance cannot have much better problem-dependent regret than UCB.
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Bayesian Approach All the above-mentioned concepts (and our work in the following chapters) are based

on the stochastic approach, where we don’t make assumptions about the reward distribution. In comparison,

the Bayesian approach assumes that the reward of each arm is drawn from a family of parameterized distri-

butions. Here, Bayesian regret is used to measure the expected cumulative regret, taking an expectation over

the prior. The Gittins index theory proposed by Gittins and Jones [1979] provides a method of prioritizing

arms that can maximize the discounted cumulative reward. The prior assumption and discount factor make

things easier and allow convergence analysis, but choosing the proper assumptions can also be challenging

in practice. In this sense, the stochastic approach can be more robust.

Adversarial Approach The adversarial approach can be thought of as a two-player game played by a fore-

caster and an adversary. At each round, the forecaster tries to play an action to minimize regret, but the

adversary gets to determine the reward of each arm in order to maximize regret. In other words, the cumu-

lative regret in this approach is

RegretT (π) = max
i=1,...,K

T

∑
t=1

Xit −
T

∑
t=1

XJt .

This is a harder problem to optimize compared to the stochastic approach. Adversarial algorithms such

as Exp3 [Auer et al., 2002b] are also robust to the reward distributions since they also make no assumptions,

but can be too conservative in practice.

PAC and uniform-PAC The above bounds on the expected cumulative regret cannot distinguish a policy

that makes a few large mistakes or a lot of small mistakes. Depending on the application, either of these

might be a preferred quality. If instead of taking expectation, we view the cumulative regret as a random

variable, then we can derive high probability bounds. The probably approximately correct (PAC) framework

addresses this issue. Very briefly, PAC algorithms are allowed to be approximately accurate with a small

probability of failure. Neither PAC nor expected regret guarantees imply convergence to optimal policies

with high probability. Dann et al. [2017] provides an extensive discussion of the relationship between these

regret bounds, and provides a new notion of uniform-PAC that can imply both PAC and expected regret

bounds, but can be harder to achieve.

In conclusion, none of these criteria are perfect by themselves. Worst-case regret is the maximum

regret over all possible reward distributions but can be too conservative on easy problems. For the problem-

dependent measures, asymptotic optimality can have large burn-in times, and finite-time optimal algorithms

might not be asymptotically optimal. While Bayesian regret could be a more realistic measure of perfor-

mance on average, frequentist analysis provides a more conservative and robust measure of performance.

This can be useful in scenarios where the reward distribution is highly uncertain or the consequences of poor

performance are severe. Compared to expected regret analysis, PAC and uniform-PAC have high probability

guarantees that are potentially harder to achieve.

In the following chapters, we consider the stochastic approach, since it is more robust than the Bayesian
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approach but not as conservative as the adversarial approach. For each of our new algorithms, we provided

both worst-case and problem-dependent bounds on the expected cumulative regret and also demonstrated

their performance on toy examples.
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Chapter 3

Exploration in Bandits: O-TS and O-TS+

The fundamental challenge to designing a bandit algorithm is to balance exploitation and exploration. Ex-

ploitation maximizes the reward using current knowledge, exploration improves knowledge about the en-

vironment at the expense of returns. At each time step, the agent must choose between playing known

options with potentially high rewards or exploring unknown options to learn more about the environment

and potentially find even better alternatives. One simple exploration policy could be to act greedily and

always choose the arm with the highest estimated reward after a fixed period of exploration. However, this

policy exploits the best-known option at the expense of further exploring other options, which can lead to

sub-optimal results in the long run.

In this chapter, we will discuss a few well-known approaches in multi-arm bandits: epsilon-greedy

[Sutton and Barto, 2018], upper confidence bound (UCB) [Auer et al., 2002a] and Thompson sampling (TS)

[Agrawal and Goyal, 2017]. The epsilon-greedy algorithm is simple and widely used in practice, but not

asymptotically optimal. In contrast, UCB and TS allow agents to explore strategically, taking into account

the agent’s uncertainty of its estimate. They are proven to achieve asymptotically optimal regret. We will

discuss the intuition behind these algorithms as well as the proof sketch, as our proposed algorithms share

the same underlying logic and proof techniques.

Table 3.1: Regret bound comparison for O-TS and O-TS+

UCB1 [Auer et al., 2002a] O(
√

KT lnT )

TS (Gaussian) [Agrawal and Goyal, 2017] O(
√

KT lnK)

O-TS O(
√

KT lnK)

O-TS+ O(
√

KT lnT )

In Section 3.4, we will introduce two other algorithms, Optimistic Thompson Sampling (O-TS), and

O-TS+. The O-TS algorithm was first empirically studied by Chapelle and Li [2011]. The key idea for

the original O-TS is to clip the posterior distribution optimistically to encourage exploration, while for O-

TS+ we clip the distribution even more optimistically at the upper confidence bound. These two algorithms
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also achieve near-optimal regret. We will discuss the connections between the regret analysis for these two

algorithms and the analysis for UCB and TS, and include an empirical demonstration.

3.1 Epsilon-greedy
Epsilon-greedy is a straightforward method to encourage exploration. Here, the agent plays a random arm

with a probability of ε ∈ [0,1] (exploration) or the best-known arm with a probability of 1−ε (exploitation).

The value of ε is typically chosen to be small, such as 0.1, to ensure that the majority of the time the agent

selects the best-known arm. The algorithm is as follows.

Algorithm 3.1 Epsilon-greedy
1: Input: an arm set A, ε

2: for round t = 1,2, . . . , T do
3: Draw a number uniformly: θ ∼ U(0,1)
4: if θ ≤ ε then
5: pull random arm Jt

6: else
7: pull arm Jt ← argmax j∈A µ̂ j(t)
8: end if
9: Update µ̂Jt

10: end for

The main advantage of epsilon-greedy is its simplicity. For this reason, it is widely used in practice.

It can work well in scenarios where the reward distributions are relatively stable and the exploration-

exploitation trade-off is not critical. Epsilon-greedy also serves as a baseline algorithm for comparison

with more sophisticated algorithms that dynamically adjust their exploration strategies.

The main disadvantage of epsilon-greedy is that it requires a fixed value of ε , which may not be optimal

for all situations and requires further hyperparameter tuning. Additionally, the epsilon-greedy strategy does

not explicitly take into account how uncertain the agent is about the rewards of the different actions. This

means it does not guarantee convergence to the optimal solution. The amount of exploration does not change

as the agent gathers more data and becomes less uncertain about optimal actions.

There exist more advanced modifications of this algorithm that change ε over time [Tokic, 2010]: In

the early stages of the problem when there is limited information about the reward distributions, ε is set to

a higher value and the algorithm explores more. As time goes on, ε decreases and the algorithm exploits

more, favouring actions that have shown higher historical rewards.
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Figure 3.1: UCB and Thompson sampling. µ is the upper confidence bound, and µ̃ is a random sample
from the posterior distribution. At the top row, arm 1 is chosen in both algorithms (exploitation).
At the bottom row, arm 2 is chosen in both algorithms despite having a lower mean reward
(exploration).

Table 3.2: Notations for UCB, TS, O-TS and O-TS+

µ̂ j,O j(t−1) Empirical mean of arm j

µ j(t) Upper confidence bound of arm j in round t

µ̃ j(t) Random sample of arm j in round t

µ̃ j(t)′ Optimistic random sample of arm j in round t

3.2 Optimism Based Exploration
Optimism-based exploration is based on the principle of optimism in the face of uncertainty, which encour-

ages exploration by overestimating the reward of unfamiliar actions. One popular algorithm in this category

is upper-confidence bound (UCB) [Auer et al., 2002a].
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The UCB algorithm maintains an estimate of the expected reward of each arm, which comes from the

average of past rewards of this arm. In addition, it also maintains an upper confidence bound for each arm,

which adds a “bonus term” to the empirical reward that quantifies the uncertainty of the estimate. At each

round, the UCB algorithm selects the arm with the highest upper confidence bound value. See Algorithm

3.2.

Algorithm 3.2 UCB
1: Input: an arm set A
2: Pull each arm once to initialize O j, µ̂ j,O j

3: for round t = 1,2, . . . do
4: for j ∈ A do
5: Set µ j← µ̂ j,O j(t−1)+

√
2ln(t)

O j(t−1)
6: end for
7: Pull arm Jt ← argmax j∈A µ j(t)
8: Update OJt , µ̂Jt ,OJt

9: end for

The key idea of the algorithm is that the upper confidence bound is designed using the Hoeffding in-

equality or other concentration bound such that the true reward of an arm lies within a certain interval with

high probability. Intuitively, the bonus term
√

2ln(t)
O j(t−1) decreases as the number of observations of a certain

arm increases. As we become more certain about an arm, we will explore it less. We give a brief proof

sketch for the regret analysis below.

Concentration inequalities In algorithms for stochastic multi-arm bandit problems, one important step is

to estimate the unknown true mean reward of each arm µ j with the empirical mean reward µ̂ j =
1
T ∑

T
t=1 XJt .

Analyzing regret often involves calculating the probability of deviation between the estimate and the true

mean, as a function of the number of observations. Concentration inequalities such as Hoeffding’s inequality

provide a bound on the tail probabilities of random variables. These inequalities are the mathematical

foundations in the regret analysis for bandit algorithms.

Lemma 3.2.1 (Hoeffding’s Inequality [Hoeffding, 1994]). Let X1, ...,Xn be i.i.d. random variables on [0,1],

and let X = 1
n ∑

n
i=1 Xi, and µ = E[Xi]. Then, for any ε ∈ R+,

P(X ≥ µ + ε)≤ exp(−2ε
2n)

P(X ≤ µ− ε)≤ exp(−2ε
2n)

Taking the union bound of the two gives

P(|X−µ| ≥ ε)≤ 2exp(−2ε
2n)

With this tool, we can then analyze the regret of the UCB algorithm.
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Theorem 3.2.2 ([Auer et al., 2002a]). Let ∆ j = µ1−µ j. For the K-armed stochastic bandit problem, UCB

has problem-dependent regret

RegretT (UCB)≤ ∑
j:∆ j>0

8lnT
∆ j

+(1+
π2

3
)∆ j

Theorem 3.2.3 ([Auer et al., 2002a]). For the K-armed stochastic bandit problem, UCB has problem-

independent regret

RegretT (UCB)≤O(
√

KT lnT )

Proof sketch for theorem 3.2.2. On a high level, regret occurs when a sub-optimal arm is pulled. It’s suffi-

cient to bound E [Oi(T )], the number of times each sub-optimal arm i is pulled, since

RegretT (UCB) = ∑
j
E [O j(T )]∆i

.

A sub-optimal arm i can only be selected at round t in three cases:

1. Optimal arm 1 is underestimated: µ̂1 +
√

2ln(t)
O1(t−1) < µ1

2. Sub-optimal arm j is overestimated: µ̂ j > µ j +
√

2ln(t)
O j(t−1)

3. Sub-optimal arm j is not sufficiently sampled: O j(t−1)≤ 8ln t
∆2

j

Some derivation steps are required to show why these events are a partition for selecting sub-optimal

arm j, but we can think about it intuitively with Figure 3.2.
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Figure 3.2: In the figure, µ1 is the true mean of the optimal arm, and µ j is the true mean of the sub-
optimal arm. The yellow and blue highlight bands are confidence intervals respectively. A sub-
optimal arm j is pulled if and only if the upper confidence bound of arm j (blue) is above the
upper confidence bound of arm 1 (yellow).
In case 1, the confidence interval of arm 1 is entirely below the true mean of arm 1 (underes-
timation of arm 1). In case 2, the confidence interval of arm j is entirely above the true mean
of arm j (overestimation of arm j). In case 3, if arm 1 is not underestimated and arm j is not
overestimated, then the confidence interval of arm j must be large enough to cover the difference
∆ j. This can only happen if arm j is not sufficiently sampled and the confidence interval of arm
j is not tight.

Then we can upper-bound the first two cases using Hoeffding’s inequality. In the first case,

P

(
µ̂1 +

√
2ln(t)

O1(t−1)
< µ1

)
≤ e−2O1(t−1) 2ln t

O1(t−1) =
1
t4

And by taking a union bound over the number of times to arm j is pulled in the first t rounds, we can

bound this term with a constant. The second case holds with the same argument.

Overall, UCB is a powerful and easy-to-implement algorithm with well-understood theoretical guaran-

tees regarding its regret and can achieve near-optimal performance in many scenarios. However, the constant

factor of the logarithmic term is not optimal since Hoeffding’s inequality cannot be very tight depending on

the specific reward distribution.

3.3 Posterior Sampling
Another well-known family of algorithms to balance exploration and exploitation is posterior sampling, also

known as Thompson Sampling [Thompson, 1933]. In Thompson Sampling, the agent maintains a posterior

probability distribution over the (unknown) mean reward of the unknown reward distribution of each arm,

centring around the empirical mean reward from past observation. Agent draws a sample from each posterior

distribution at each round and pulls the arm with the highest sampled reward.
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The data-dependent posterior distribution takes into account the uncertainty of the agent’s estimate of

the mean reward of each arm. When the uncertainty is high, the agent will be more likely to explore arms

that have not been tried enough, and when the uncertainty is low, the agent will be more likely to exploit

the arm with the highest expected reward. The variance of each distribution shrinks as the agent gains more

observation of the corresponding arm and becomes more confident about its true mean reward.

Algorithm 3.3 Thompson Sampling with Gaussian priors
1: Input: an arm set A
2: Pull each arm once to initialize O j, µ̂ j,O j

3: for round t = 1,2, . . . do
4: for j ∈ A do
5: Draw µ̃ j(t)∼N

(
µ̂ j,O j(t−1),

1
O j(t−1)

)
6: end for
7: Pull arm Jt ← argmax j∈A µ̃ j(t)
8: Update OJt , µ̂Jt ,OJt

9: end for

Intuitively, this algorithm encourages exploration by carefully tuning randomness: The variance term

is large enough such that the posterior sample is an overestimate of the true mean reward with a constant

probability. In the meantime, it is not too large and decreases with the number of observations. This means

that as the agent becomes more confident about a certain arm, the posterior distribution narrows down to the

true mean, and in time the agent will more likely pull the optimal arm.

We include a brief proof sketch for the regret analysis for Thompson sampling using Gaussian priors

[Agrawal and Goyal, 2017]. The idea is similar to the UCB analysis but relies on concentration inequalities

of Gaussian distribution.

Theorem 3.3.1. Let ∆i = µ1− µi. For the K-armed stochastic bandit problem, Thompson’s sampling with

Gaussian prior has problem-dependent regret

RT (TS)≤ ∑
j:∆ j>0

O(
lnT
∆ j

)

Theorem 3.3.2. For the K-armed stochastic bandit problem, Thompson’s sampling with Gaussian prior has

problem-independent regret

RT (TS)≤O(
√

KT lnT )

Proof sketch for theorem 3.3.1. We want to bound the number of times each sub-optimal arm is pulled, since

RT (TS) = ∑
i
E [Oi(T )]∆i
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We can then decompose the regret into the following events:

A(t) := {µ̃ j(t)≤ µ j +
1
2

∆ j}

B(t) := {µ̃ j(t)> µ j +
1
2

∆ j}

C(t) := {Ot−1( j)< O(
ln(T )

∆2
j

)}

Event A implies that the optimal arm is underestimated, since µ̃1 ≤ µ̃ j ≤ µ j +
1
2 ∆ j = µ1− 1

2 ∆ j. Event

B is when sub-optimal arm j is overestimated. Event C is when sub-optimal arm j is insufficiently sampled,

which can be upper bounded by O( ln(T )
∆2

j
).

Event B can be further separated into two events:

B1(t) := {µ̃ j(t)> µ j +
1
2

∆ j, |µ̂ j,O j(t−1)−µ j| ≤

√
3ln t

O j(t−1)
}

B2(t) := {µ̃ j(t)> µ j +
1
2

∆ j, |µ̂ j,O j(t−1)−µ j|>

√
3ln t

O j(t−1)
}

The event B1 is the posterior deviation. It means that the empirical mean reward is close to the true

mean, but the posterior sample is far from the empirical mean. This is a low probability event that can be

upper bounded using concentration inequalities of Gaussian distribution.

The event B2 is the empirical deviation. It means that the empirical mean reward is far from the true

mean, in other words, the confidence interval does not hold. This is also a low probability event that can be

upper bounded by Hoeffding’s inequality when the arm is sufficiently sampled.

Thompson Sampling has been shown to have strong theoretical guarantees and can perform well in

practice. It is more effective in scenarios where the reward distribution is complex or non-parametric, and

the variance is difficult to estimate accurately for algorithms such as UCB. However, Thompson Sampling

can be computationally expensive since it requires sampling from the posterior distribution for each arm

at each time step, whereas UCB only requires calculating an upper confidence bound value for each arm.

Additionally, Thompson Sampling can be sensitive to the choice of the prior distribution over the reward.

3.4 Optimistic Thompson Sampling (O-TS), and O-TS+

In our paper [Hu et al., 2023] we propose two other algorithms, O-TS and O-TS+, and provide the regret

analysis for them to fill in the gap in relevant bandit theory. The empirical performance of O-TS is mentioned

in Chapelle and Li [2011]. Besides enjoying near-optimal regret bounds, the algorithms are also simple to

implement and sample/computationally efficient in practice. In the next chapter, we will extend these two

algorithms beyond the bandit setting and analyze how they can be extended to reinforcement learning.
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Figure 3.3: Clipping of O-TS and O-TS+, compared to the original TS

Optimistic Thompson Sampling (O-TS), shown in algorithm 3.4, can be viewed as a modified version of

Thompson sampling with a modified posterior distribution. Instead of using a full Gaussian distribution to

model each arm, we clip each distribution up to the positive half and put a Dirac distribution at the empirical

mean. In other words, when we draw a sample µ̃ ∼ N
(

µ̂ j,O j(t−1),
1

O j(t−1)

)
for arm j at round t, if the

sample µ̃ is lower than the empirical mean µ̂ , we boost its value to the empirical mean. With probability 1
2 ,

the sample from this modified distribution will be equal to the empirical mean.

Algorithm 3.4 O-TS for Multi-Armed Bandits
1: Input: an arm set A
2: Pull each arm once to initialize O j, µ̂ j,O j

3: for round t = 1,2, . . . do
4: for j ∈ A do
5: Draw µ̃ j(t)∼N

(
µ̂ j,O j(t−1),

1
O j(t−1)

)
Set µ̃ ′j(t)←max

{
µ̃ j(t), µ̂ j(t)

}
6: end for
7: Pull arm Jt ← argmax j∈A µ̃ ′j(t)
8: Update OJt , µ̂Jt ,OJt

9: end for

Clipping the posterior up to the mean makes it more likely for the sample to be optimistic, and therefore

encourages exploration while taking variance into account. However, despite its name, O-TS is not an

“optimistic-based” algorithm since it only provides weak optimism. The analysis of O-TS is largely similar

to Thompson’s sampling.

Theorem 3.4.1. Let ∆i = µ1−µi. For the K-armed stochastic bandit problem, O-TS has problem-dependent

regret

RT (OTS)≤ ∑
j:∆ j>0

O(
lnT
∆ j

)

Proof Sketch. The proof of O-TS is similar to TS. First, We want to bound the number of times each sub-
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optimal arm is pulled, since

RT (TS) = ∑
i
E [Oi(T )]∆i

We can then define the following events:

E1
j (t−1) =


∣∣∣µ̂ j,O j(t−1)−µ j

∣∣∣≤
√√√√0.5ln

(
T ∆2

j

)
O j(t−1)


E2

j (t) =
{

µ̃
′
j(t)≤ µ j +

1
2

∆ j

}
Event E1

j (t−1) is when the confidence interval holds for arm j after the first t−1 round. In other words,

the empirical mean of arm j is close to the true mean.

Event E2
j (t) is when the clipped sample of arm j is not far from the true mean.

For any sub-optimal arm j, let L j be a positive integer. We will choose the specific number later, but

intuitively it denotes the number of observations for arm j such that it is considered “sufficiently sampled”.

This is important since with enough samples we can apply Hoeffding’s inequality to bound tail events of

poor estimation.

Then we can decompose the regret using these events:

E [O j(T )]

=
T
∑

t=1
E [111{Jt = j}]

≤ L j +
T
∑

t=1
E
[
111
{

Jt = j,O j(t−1)> L j
}]

≤ L j +
T

∑
t=1

E
[
111
{

Jt = j,E1
j (t−1)

}]
︸ ︷︷ ︸

A

+
T

∑
t=1

E
[
111
{

Jt = j,E2
j (t),E

1
j (t−1),O j(t−1)> L j

}]
︸ ︷︷ ︸

B

+
T

∑
t=1

E
[
111
{

Jt = j,E2
j (t)
}]

︸ ︷︷ ︸
C

.

(3.1)

Part A is the empirical deviation. It means that the empirical mean reward is far from the true mean, in

other words, the confidence interval does not hold. This is also a low probability event that can be upper

bounded by Hoeffding’s inequality when the arm is sufficiently sampled.

Part B is the posterior deviation. It means that the empirical mean reward is close to the true mean,

but the posterior sample is far from the empirical mean. This is a low probability event that can be upper

bounded using concentration inequalities of Gaussian distribution.
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Part C is when the clipped sample of arm j is close to the true mean, which can be bounded with careful

analysis. We refer readers to Theorem 9 in [Hu et al., 2023] and Lemma 2.14 in [Agrawal and Goyal, 2017].

We also propose a novel O-TS+ in Algorithm 3.5, an optimistic-based randomized algorithm. Here, we

maintain the upper confidence bound of each arm similar to UCB, as well as a posterior distribution similar to

Thompson’s sampling. Then at each round, we clip the posterior samples up to the upper confidence bound.

Different from O-TS, this algorithm is an optimistic algorithm where the clipping is more aggressive.

Algorithm 3.5 O-TS+ for Multi-Armed Bandits
1: Input: an arm set A
2: Pull each arm once to initialize O j, µ̂ j,O j

3: for round t = 1,2, . . . do
4: for j ∈ A do
5: Draw µ̃ j(t)∼N

(
µ̂ j,O j(t−1),

1
O j(t−1)

)
Set µ j← µ̂ j,O j(t−1)+

√
3ln(t)

O j(t−1)

Set µ̃ ′j(t)←max
{

µ̃ j(t),µ j(t)
}

6: end for
7: Pull arm Jt ← argmax j∈A µ̃ ′j(t)
8: Update OJt , µ̂Jt ,OJt

9: end for

The analysis of O-TS+ is very similar to UCB. Here, we will include intuition for the analysis.

Theorem 3.4.2. Let ∆i = µ1 − µi. For the K-armed stochastic bandit problem, O-TS+ has problem-

dependent regret

RT (OTS+)≤ ∑
j:∆ j>0

O(
lnT
∆ j

)

Proof Sketch. Regret occurs when a sub-optimal arm is pulled. It’s sufficient to bound E [Oi(T )], the number

of times each sub-optimal arm i is pulled:

RT (OTS+) = ∑
j
E [O j(T )]∆i

For any sub-optimal arm j, let L j be a positive integer. We will choose the specific number later, but

intuitively it denotes the number of observations for arm j such that it is considered “sufficiently sampled”.

This is important since with enough samples we can apply Hoeffding’s inequality to bound tail events of

poor estimation.

We can decompose the regret as follows:
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E [O j(T )]∆i = E

[
T

∑
t=1

1(Jt = j)

]

= E

[
T

∑
t=1

1(Jt = j,O j(t−1)≤ L j)

]
+E

[
T

∑
t=1

1(Jt = j,O j(t−1)> L j)

]

≤ L j +E

[
T

∑
t=1

1(Jt = j,O j(t−1)> L j)

]

Then, we just need to bound the event Jt = j,O j(t−1)> L j. When a sub-optimal arm j is selected at

round t while being sufficiently sampled, by contradiction, one of the following must happen:

1. Optimal arm 1 is underestimated: µ̃ ′1 < µ1

2. Sub-optimal arm j is overestimated: µ̃ ′j > µ j +
√

24ln(t)
O j(t−1)

3. The upper confidence bound of arm j is not tight, it is above optimal arm:
√

24ln(t)
O j(t−1) > ∆ j

We can upper-bound the first two cases using Hoeffding’s inequality. In the first case, since µ̃ ′1 ≥ µ̂1, the

analysis is exactly the same with UCB:

P
(
µ̃
′
1 < µ1

)
≤ P

(
µ̂1 +

√
2ln(t)

O1(t−1)
< µ1

)
≤ e−2O1(t−1) 2ln t

O1(t−1) =
1
t4

And by taking a union bound over the number of times to arm j is pulled in the first t rounds, we can

bound this term with a constant.

The second case is where the analysis slightly differs from UCB. In addition to Hoeffding’s inequality

argument, we also need to use the concentration bound of Gaussian distribution to bound the probability of

the sample µ̃ j being much larger than the upper confidence bound µ j.

At last, we choose the constant L j = O( ln(T )
∆2

j
) such that the third case cannot happen, since with enough

sample the upper confidence bound should be close to the true mean. Then, we have E[O j(T )]≤O( ln(T )
∆2

j
).

Theorem 3.4.3. For the K-armed stochastic bandit problem, both O-TS and O-TS+ have problem-independent

regret

RT (O-TS, O-TS+)≤O(
√

KT lnT )

1

Proof Sketch. In both proofs for problem-dependent bound for O-TS and O-TS+, we have established that

E[O j(T )]≤O( ln(T )
∆2

j
).

1With more careful analysis, the problem-independent regret bound of O-TS can be further improved to O(
√

KT lnK) in our
paper. Here we only show the O(

√
KT lnT ) version.
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For a ∆∈R that we will choose later, let Ψ = { j ∈ [K] : 0 < ∆ j < ∆} to be the set of arms where the sub-

optimality gap is smaller than ∆. Let Ψ = { j ∈ [K] : ∆ j ≥ ∆} be the set of arms with larger sub-optimality

gap than ∆. The key idea of problem independent bound is to set ∆ just large enough such that the regret

generated by arms in Ψ dominates the regret generated by arms in Ψ.

RT (O-TS, O-TS+) =
T

∑
t=1

E[µ1−µJt ]

=
T

∑
t=1

E[µ1−µJt ,1{Jt ∈Ψ}]+
T

∑
t=1

E[µ1−µJt ,1{Jt ∈Ψ}]

≤ T ∆+ ∑
j∈[K]:∆ j≥∆

T

∑
t=1

E[1{Jt = j}]∆ j

= T ∆+ ∑
j∈[K]:∆ j≥∆

E[O j(T )]∆ j

≤ T ∆+ ∑
j∈[K]:∆ j≥∆

O(
ln(T )

∆ j
)

≤ T ∆+O(
A ln(T )

∆
)

Set ∆ =
√

A lnT
T , then we have

RT (O-TS, O-TS+)≤O(AT ln(T ))

3.5 Experiments
In this section, we evaluate the empirical performance of our discussed algorithms O-TS [Chapelle and Li,

2011] and our proposed algorithm O-TS+ for bandits and compared their performance to the UCB [Auer

et al., 2002a] and TS [Agrawal and Goyal, 2017] algorithms. We run two sets of experiments shown in

Figure 3.4. When an agent pulls an arm, a reward is generated as a Bernoulli random variable with a fixed

mean. On the left, we let the mean reward of a 5-armed bandit be µ = [0.1,0.05,0.03,0.02,0.01]. On the

right side, we have a 10-armed bandit with mean µ = [0.1,0.05,0.05,0.03,0.03,0.02,0.02,0.01,0.01,0.01].

We run both for 105 rounds and plot the cumulative regret compared to pulling the best arm.
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Figure 3.4: Empirical performance for 5 and 10 arms bandits

As shown in Figure 3.4, all algorithm shows a fast increase in regret at the beginning and a slower

increase at the end. Thompson sampling tends to perform better than UCB since UCB is overly optimistic.

The O-TS algorithm performs similarly to TS and has the lowest cumulative regret in both experiments.

This is expected since it is a modified version of TS, and the added optimism prevents underestimation.

The O-TS+ algorithm has lower regret than UCB in the 5-armed bandit and performs similarly to UCB in

the 10-armed bandit since O-TS+ can be viewed as a randomized version of UCB that is potentially more

optimistic.

3.6 Discussion
Optimism-based algorithms are well understood and have been shown to be asymptotically efficient in many

settings. Its regret analysis is also more straightforward thanks to the precisely controlled deterministic

bonus term. However, the design of the specific upper confidence bound can be challenging to design when

the problem is complicated, especially beyond independent arm bandit problems. In contrast, posterior

sampling takes advantage of prior knowledge of a specific problem while not compromising on performance.

Our analysis of O-TS and O-TS+ offers insights into the connection between the two and leverages the

optimistic but still stochastic samples to boost performance as well as simplify theoretical analysis. These

algorithms can be generalized easily to more complicated settings and tend to perform well in practice

in both sample and computational efficiency. In the next chapter, we will discuss how the two classes

of algorithms generalize to the Markov Decision Process (MDP) algorithms to balance exploration and

exploitation in reinforcement learning.
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Chapter 4

Markov Decision Process

Reinforcement learning (RL) is a subfield of machine learning that models sequential decision-making. It

has a wide range of applications in various fields including robotics [Gu et al., 2017], gaming [Silver et al.,

2016], finance [Soleymani and Paquet, 2020], healthcare [Coronato et al., 2020], and transportation [Shalev-

Shwartz et al., 2016]. Different from supervised or unsupervised learning, the RL agent’s action affects its

state in the environment. The goal of RL is to learn a policy that maximizes the cumulative reward obtained

by the agent over time.

Reinforcement learning is often modelled using Markov Decision Process (MDP). It has very close

connections with the multi-arm bandit problem. Both RL and MAB are types of sequential decision-making

problems that estimate the expected reward of each action and rely on a reward signal to guide the agent’s

behaviour. However, in RL, the agent’s action also affects the environment, and there is an extra transition

dynamic that takes the agent from one state to another depending on the actions. In other words, a multi-arm

bandit can be viewed as a simple MDP with a single state and a set of actions.

Figure 4.1: Multi-arm bandits can be viewed as stateless MDP [Weng, 2018]

There are several challenges in RL that must be addressed to make it effective and scalable. Similar
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to the bandit problem, one main challenge is the exploration-exploitation dilemma: agents must balance

exploring the environment to gather new information and exploiting what they already know to maximize

rewards. However, this is more difficult in RL compared to bandits, as the environment is more complex

with large state and action spaces. The reward attribution to a specific action can be unclear, as sometimes

the reward can be delayed throughout the multi-step process.

Another challenge is that data can be expensive to acquire. RL algorithms typically require a large

number of interactions with the environment to learn an optimal policy. This can be prohibitively expensive

in real-world applications, where data collection is often time-consuming and expensive. A good algorithm

should be able to learn without having to observe and memorize all possible state, action and transition

dynamics, but rather to explore strategies and make the most use of past experience.

We aim to address both challenges in our work [Hu et al., 2023]. We draw inspiration from the bandit

algorithms and study how to extend optimism-based and posterior sampling-based methods to the MDP

setting. This allows us to design and analyze RL learning algorithms that tackle the exploration-exploitation

dilemma by learning the reward model efficiently from past data. Similar to the bandit analysis, we use regret

minimization as our performance measure. Before diving into the details of our algorithm, it’s important to

clarify the settings and assumptions that we make, as well as some existing related work.

In this chapter, we introduce the definition of MDPs and discuss common assumptions or variations

used in literature. Although our theoretical work is done in the finite-horizon tabular setting, they offer

insights into the scalability of different approaches. Then, we introduce a few planning methods: In bandit

algorithms, once we have an estimate of each arm’s reward, it is straightforward to pull the arm with the

highest reward. In MDPs, this step requires further computation, and an intelligent way of estimation and

optimization can lead to much more efficient algorithms. Although computation efficiency is not the main

focus, it is still an important step in our algorithms. The most common approach is to maintain a point

estimate of the system, including reward and transition dynamics of a certain state and action, or even

time in the non-stationary setting. Then, in the finite-horizon algorithms, we could optimize the policy by

computing the value function following a backward induction procedure.

After planning, we enter the running phase where the agent acts greedily according to the estimation

to collect more samples and then update the estimation. We next include an overview of existing sampling

methods in MDP. As inspired by bandit literature, there are also two main approaches: optimism-based,

and posterior sampling. We will discuss the differences and connections between the two genres. In the

next Chapter, we will discuss how our optimistic Thompson sampling methods in bandit can be extended to

MDPs.

4.1 Problem Definition
In this work, we mainly focus on the finite horizon, episodic, non-stationary MDPs defined as follows. We

will also briefly discuss these terminologies, and their counterparts such as the infinite horizon, non-episodic,

stationary, or continuous setting.
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4.1.1 Finite Horizon, Non-stationary, episodic MDP

We consider a Markov Decision Process (MDP) specified by M = {S,A,H,PPP,µµµ, p0}, where the notations

are defined below:

Table 4.1: Notations for Markov Decision Processes

S finite state-space with size S

A finite action-space with size A

H time horizon (number of rounds in each episode)

PPP time-dependent transition function

µµµ mean of the time-dependent reward function

p0 initial state distribution

π = (π(·,1), ...π(·,H)) Time-dependent policy

V π
t (s) State value function for s ∈ S

Qπ
t (s,a) State-action value function for s ∈ S,a ∈ A
Fk =

{
sq

t ,a
q
t ,X

q
sq
t , aq

t ,t
, t ∈ [H],q ∈ [k]

}
History

An agent interacts with the environment as follows: At the beginning of each episode k ∈ [K], an initial

state sk
1 is drawn from p0. Then, at each timestep t ∈ [H], agent plays an action ak

h, receives a random

reward Xk
sk
t ,ak

t ,t
∈ [0,1] that is drawn from a fixed reward distribution with mean µsk

t ,ak
t ,t

= µµµ(sk
t ,a

k
t , t). Then,

the agent transitions into the next state sk
t+1 that is sampled from a fixed probability distribution over states,

Psk
t ,ak

t ,t
= PPP(sk

t ,a
k
t , t).

Similar to the multi-arm bandit problem, the agent also aims to maximize cumulative reward or minimize

regret over a finite number of T episodes, or HT rounds.

A deterministic policy π = (π(·,1),π(·,2), ...π(·,H)) is a sequence of functions where π(·, t) : S →A
takes a state as input and map it to an action that the agent will take at time t. Let Π be the set of all policies.

A value function V π
t : S → R is defined as:

V π
t (s) = E

[
H

∑
t

µst ,at ,t |π,st = s

]

where the expectation is taken over the randomness in the transition dynamics. Note that V π
t (s) ∈

[0,H− t +1], and that V π
1 (s) ≥ V π

2 (s) ≥ ... ≥ V π
H (s) since rewards are non-negative. Or recursively, define

VH+1 = 0⃗,

V π
t (s) = µs,π(s,t),t +P⊺

s,π(s,t),tV
π

t+1
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Similarly, the state-action value function Qπ
t (s,a) : S ×A→ R is defined as

Qπ
t (s,a) = E

[
H

∑
t

µst ,at ,t |π,st = s,at = a

]

Notice that V π
t (s) = Qπ

t (s,π(s, t)). Or recursively, let Qπ
H+1(a,s) = 0 ∀s ∈ S,a ∈ A,π ∈Π,

Qπ
t (s,a) = µs,a,t +P⊺

s,a,tV
π

t+1 = µs,a,t +P⊺
s,a,tQ

π
t+1(·,π(s, t))

If we know PPP and µµµ , then we can compute the optimal policy π∗ via backward induction. For t =

H−1, ...,1:

π∗(s, t) = argmax
a

(
µs,a,t +P⊺

s,a,tV
π∗

t+1

)
= argmax

a
Qπ∗

t (a,s)

where

V π∗
t (s) = µs,π∗(s,t),t +P⊺

s,π∗(s,t),t
V π∗

t+1 = max
a

Qπ∗
t (a,s)

Qπ∗
t (s,a) = µs,a,t +P⊺

s,a,tV
π∗

t+1 = µs,a,t +P⊺
s,a,t(max

a
Qπ∗

t+1(·,a))

This is referred to as the Bellman optimality equations [Bellman, 1966]. The history trajectory drawn

by the end of episode k following policies π1, . . . ,πk is defined as follow:

Fk =
{

sq
t ,a

q
t ,X

q
sq
t , aq

t ,t
, t ∈ [H],q ∈ [k]

}
where the initial state in each episode is drawn independently from p0. Define F0 = {}.

The regret of a series of policy π1, . . . ,πk over T episodes is defined as:

RT (π1, ...,πk) =
T

∑
k=1

E
[
V π∗

1 (sk
1)−V πk

1 (sk
1)
]

where sk
1 ∼ p0.

4.1.2 Other Common Settings

As mentioned above, we focus on the finite horizon, episodic, and non-stationary MDPs, as it is simpler

to analyze and provide theoretical guarantees. Another common setting that is often preferred in practical

RL is the infinite, discounted reward MDPs. Here, the temporal information is incorporated into the states

directly. To understand this, let us first discuss a few important concepts:

Episodic vs continues learning Episodic RL is when the agent interacts with the environment for a fixed

number of time steps or until it reaches a terminal state. At the end of each episode, the environment is reset

to its initial state and a new episode begins. Here, the goal is to maximize the total reward obtained within
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each episode. This means that there is a need for strategic exploration in order to maximize reward within

a limited number of steps, but the agent can also afford to explore more freely as everything resets at the

beginning of the next episode.

There is also the non-episodic setting where the agent interacts with the environment continuously over

an indefinite period of time. The agent must balance exploration and exploitation continuously while ensur-

ing that it does not get stuck in a suboptimal policy since there is no sense of rest.

Stationary vs time-dependent (non-stationary) Stationary MDP refers to when the reward structure, tran-

sition dynamics, and consequently the policy, all remain fixed over time throughout the learning process. A

policy in a stationary environment can be evaluated by averaging the rewards obtained over a fixed number

of trials. In contrast, in time-dependent (non-stationary) MDP, the transition probabilities and rewards can

be a function of time, and we typically look at cumulative rewards over a fixed time horizon.

In practice, stationary RL is typically easier to learn than non-stationary RL because the environment

remains fixed. In non-stationary RL, the agent needs to adapt to changes in the environment and update its

policy accordingly. In addition, the policy and values are much larger to store and therefore rarely used in

practice. However, much theoretical analysis of RL considers the finite horizon non-stationary scenario. The

finite horizon simplifies the analysis, while the non-stationary assumption still allows temporal information,

thus approximating the infinite horizon, stationary scenario.

Finite horizon vs infinite horizon The finite horizon is when the agent interacts with the environment for a

fixed number of time steps, after which the episode ends. The goal of the agent is to maximize the cumulative

reward obtained over the fixed number of time steps. On the other hand, in infinite horizon RL the agent

interacts with the environment indefinitely. Typically in the infinite setting, we consider the discounted

future reward calculated by summing the rewards obtained by the agent at each time step, discounted by a

factor of γ ∈ [0,1] raised to the power of the number of time steps taken to obtain the reward. Mathematically,

the value function of policy π in the infinite, stationary, discounted future reward setting is defined as:

V π(s) = E

[
∞

∑
t=0

γ
tr(st ,at)|π,s0 = s

]
The discount factor γ determines the importance of future rewards relative to immediate rewards. A

value of γ close to 0 indicates that the agent is myopic and only cares about immediate rewards, while a

value of γ close to 1 indicates that the agent values future rewards almost as much as immediate rewards. By

discounting future rewards, the agent takes into account the uncertainty of future rewards, as future rewards

are worth less than immediate rewards due to the delay in receiving them.

In finite-horizon, the agent can use dynamic programming to learn an optimal policy. These methods are

not applicable in the infinite horizon and the agent must use other techniques such as Monte Carlo methods,

temporal difference learning, or function approximation.
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Stochastic vs deterministic policy A deterministic policy maps states directly to one action, while a stochas-

tic (randomized) policy assigns a probability distribution over actions for each state. It is shown [Agarwal

et al., 2019] [Puterman, 2014] that in the infinite, discounted MDPs, there always exists a stationary and

deterministic policy that is optimal. Therefore, the restriction to only using deterministic policies will not

affect performance. In our work, the policy is non-stationary since the MDP itself is non-stationary, but we

restrict it to be deterministic for simplicity.

Model-based vs model-free Our algorithm is considered to be model-based. Model-based RL involves

learning a model of the environment, which represents the transition dynamics between states and actions

and the associated reward structure. Once the model is learned, the agent can use it to plan its actions and

make optimal decisions. Model-based algorithms typically enjoy good theoretical results and require fewer

samples, but can have high computation/memory costs. The choice of model can also impact the robustness

and generalization to different environments.

Model-free RL, on the other hand, does not involve learning a model of the environment. Instead,

it directly learns an optimal policy through trial-and-error interactions with the environment. Model-free

RL algorithms estimate the value function or the policy directly from the experience, without explicitly

modelling the transition dynamics. Model-free algorithms typically require a large amount of experience to

estimate the value function or policy accurately but are often more efficient computationally and therefore

more scalable.

4.2 Planning
Assuming we know all the parameters of an MDP M = {S,A,H,PPP,µµµ, p0}, we can compute the optimal

policy exactly or approximately.

4.2.1 Backward induction for finite horizon MDPs

In the finite horizon setting exact calculation of the optimal policy can be done using backward induction

with a computational cost of O(AS2T ). In our algorithm, the agent cycles between the two phases: sampling

and planning. In the sampling phase, the agent acts according to the policy set in the planning phase. The

agent collects a data trajectory and adds it to the history. Then in the planning phase, the agent computes

the optimal policy under the estimated MDP, which comes from the historical data collected in the sampling

phase.
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Algorithm 4.1 Backward Induction in Finite Horizon MDP

1: VH+1 = 0⃗

2: for t = H, ...,1 do
3: for s ∈ S do
4: for a ∈ A do
5: Qt(s,a) = µs,a,t +P⊺

s,a,tVt+1

6: end for
7: Vt(s) = maxa∈A Qt(s,a)

8: π(s, t) = argmaxa∈AVt(s)

9: end for
10: end for

4.2.2 Value and Policy iterations for infinite discounted MDPs

In the infinite horizon setting, there are a few commonly used planning methods. Iterative methods such as

value iteration (VI) and policy iteration(PI) are studied extensively in both exact and approximate optimally.

Their progress relies on the contraction property of the discounted MDPs. Typically, VI takes more iterations

to converge than PI, but each iteration of PI is much more expensive than that of VI. Both methods have also

been adjusted to the deep learning settings. With neural network function approximation and incremental

update, VI leads to algorithms like DQN [Mnih et al., 2015], and PI leads to things like policy gradient

Silver et al. [2014]. In the finite horizon, the analogy of both algorithms is equivalent to backward induction

[Agarwal et al., 2019].

Algorithm 4.2 Value Iteration
1: Input: Discount factor γ , accuracy ε

2: Initialize V (s) = 0 for each state

3: while |V (s)−Vold(s)| ≥ ε for any s ∈ S do
4: Vold =V

5: for s ∈ S do
6: for a ∈ A do
7: Q(s,a) = µs,a + γP⊺

s,aVold

8: end for
9: V (s) = maxa∈A Q(s,a)

10: π(s) = argmaxa∈AV (s)

11: end for
12: end while
13: return π

Algorithm 4.3 Policy Iteration
1: Input: Discount factor γ

2: Initialize π randomly

3: while π ̸= πold do
4: πold = π

5: Solve the following for V (s):

V (s) = µs,πold(s)+ γP⊺
s,πold(s)

V

6: for s ∈ S do
7: for a ∈ A do
8: Q(s,a) = µs,a + γP⊺

s,aVold

9: end for
10: π(s) = argmaxa∈A Q(s,a))

11: end for
12: end while
13: return π
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4.2.3 Linear programming for infinite discounted MDPs

There is also a non-iterative planning method: linear programming (LP). This method takes advantage of

the rich literature of LP and can be solved by algorithms such as the Simplex or Interior Point Method that

is more computationally efficient [Ye, 2011]. We include a brief description here for readers to have a better

understanding of MDPs.

For a fixed (possibly stochastic) policy π , we can define a visitation measure over states and actions

induced by following π after starting at s0∼ ρ .

µ
π(s,a) = (1− γ)

∞

∑
t=0

γ
tPr[st = s,at = a|s0 ∼ ρ]

We call µπ the state-action occupancy of policy π . Note that µ is a distribution over S×A. If we take a sum

over actions, we can get the state occupancy measure of a policy:

dπ(s) = ∑
a

µ
π(s,a) = (1− γ)

∞

∑
t=0

γ
tPr[st = s|s0] = (1− γ)ρs + γ ∑

s′
∑
a′

P(s|s′,a′)µ(s′,a′)

Then we can also describe a policy by π(a|s) = µπ (s,a)
dπ (s) . Note that ⟨µ,r⟩ = (1− γ)Es∼ρV π

r (s) = (1− γ)V π
ρ .

Then, we can define the following primal and dual forms:

Primal:

minimize ⟨ρ,v⟩
subject to ∑

s
(I− γP)v≥ r

Or equivalently v≥ r+ γ⟨P,v⟩

Dual:

maximize
1

1− γ
⟨µ,r⟩

subject to µ ∈ Fρ

where the state-action polytope Fρ is defined as

Fρ = {µ ∈ RS×A|∑
a
(I− γP⊺

a )µa = (1− γ)ρ}

Which comes from

∀s,∑
a

µs,a = γ ∑
a
(P⊺

a µa)s +(1− γ)ρ(s)

or

∑
a

µa− γP⊺
a µa = (1− γ)ρ

since this is the set of linear constraints such that µ ∈ Fρ if and only if there exists a stationary (and possibly

randomized) policy π such that µπ
ρ = µ . Notice that in the primal form, v ≥ r + γ⟨P,v⟩ is the Bellman

optimality equation when v = v∗.
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4.3 Sampling Algorithms in Finite Horizon MDPs
Statistical efficiency is one of the main challenges in RL as data collection in real life can be expensive,

and the state space can be intractably large. It is especially challenging to explore strategically in RL since

often rewards can be delayed. An action might not be immediately optimal, but can potentially be beneficial

in the future by being on the right trajectory. It is not always obvious which action or trajectory yields

more cumulative reward, or will be more informative in exploration. The need for an intelligent exploration

strategy is therefore crucial.

Bandit literature offers various approaches that one can adapt to MDPs. A widely used approach in

MDPs is also ε-greedy, where the majority of the time the agent follows the optimal trajectory in its experi-

ence, and with some small probability the agent explores random actions. Despite the simple implementa-

tion, this method takes exponentially long to learn [Osband et al., 2019]. This is because the algorithm does

not prioritize exploring the more informative states, and the proportion of exploration stays fixed through-

out the learning process. Improved methods take into account the agent’s uncertainty toward any trajectory

while also aiming to be efficient statistically and computationally.

Optimism-Based Following the principle of optimisim in the face of uncertainty, much work extends the

UCB-styled algorithms from bandits to MDPs. At the beginning of each episode, optimism-based algorithms

construct a carefully calculated upper confidence bound to represent a likely yet optimistic outcome based on

historical observations. The confidence upper bound is constructed by adding a bonus term to the empirical

estimate. The agent then follows a greedy policy with respect to this deterministic upper bound.

The key idea is to be overly optimistic toward unfamiliar states and actions to encourage the exploration

of poorly understood trajectories. The bonus term is inversely proportional to the square root of the number

of times this action has been taken in a certain state and at a certain time. This is to increase the probability

of the agent playing the less familiar actions (exploration). Nevertheless, the bonus term will shrink as the

agent collects more data to allow convergence to optimality.

There are many UCB-based algorithms in the RL literature. Azar et al. [2017] proposed Upper Confi-

dence Bound Value Ieration (UCB-VI), a modified version of value iteration with an exploration bonus. It

enjoys the (near)-optimal Õ
(√

ASH3T
)

regret bound up to a logarithmic factor. Dann et al. [2017] proposed

the “Upper Bounding Expected next state Value (UBEV)” algorithm and provided uniform high-probability

regret analysis. Zhang et al. [2020] provides a model-free algorithm UCB-Advantage and proves that it

achieves near-optimal regret bound. Tiapkin et al. [2022] propose the Bayes-UCBVI algorithm that uses

the quantile of a Q-value function posterior as the upper confidence bound on the optimal Q-value function.

Their algorithm is also proven to be near optimal. Despite the abundant theoretical analysis, the optimism-

based methods can be computationally expensive and often do not perform as well as posterior sampling in

practice [Osband and Roy, 2017].
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Posterior sampling-Based On the other hand, the posterior sampling-based method encourages exploration

by randomizing the obtained data. Because of the randomization, the learning agent is encouraged to visit

states and actions that have been less explored. Randomness can be achieved by injecting noise into the data.

For example, many related methods add calibrated Gaussian noise to the empirical estimates of the rewards.

A model-based algorithm, NARL-UCBVI [Pacchiano et al., 2021] and a model-free algorithm, C-RLSVI

[Agrawal et al., 2020] achieve the same Õ
(√

AS2H4T
)

regret bound. Very recently, another model-free

algorithm SSR-Bernstein [Xiong et al., 2022] tightens the regret bound to Õ
(√

ASH3T
)

. Although the

transition dynamics are also unknown, these learning algorithms do not add any noise to the empirical esti-

mates of the transition probability distributions. Empirically, Osband et al. [2019] has shown that learning

algorithms with random noise can explore efficiently.

One could also extend the Thompsom sampling algorithm from bandit to MDPs more directly. These

algorithms maintain a data-dependent distribution, often with a carefully designed variance to account for

uncertainty. For example, Gaussian distributions can be used to model the means of the reward distributions

and Dirichlet distributions can be used to model the transition probability distributions in MDPs. In fact, the

exact posterior distribution is not required explicitly, so long as random samples can be drawn. The agent

then acts greedily and plays the action with the highest random sample. Chapelle and Li [2011] studied

the practical performance of Thompson Sampling extensively. The theoretical performance of Thomp-

son Sampling depends on the choice of the prior distributions. Thompson Sampling with Beta priors is

asymptotically optimal [Agrawal and Goyal, 2017, Kaufmann et al., 2012], while Thompson Sampling with

Gaussian priors is problem-dependent optimal [Agrawal and Goyal, 2017]. Limitations of existing posterior

sampling-based methods include complicated theoretical analysis and computational efficiency: algorithms

often need to draw more samples than necessary to construct a model.

Algorithm 4.4 Optimism-based RL
1: Input: History buffer, bonus constructor

2: for episode k = 1,2, ...,K do
3: Planning:
4: for step t = 1,2, ...,H do
5: Compute bonus term for each (s,a)

based on history

6: Construct UCB and compute Qk
t

7: end for
8: Sampling:
9: for step t = 1,2, ...,H do

10: Take action ak
t = argmaxa Qk

t (s,a)

11: Update history buffer

12: end for
13: end for

Algorithm 4.5 Posterior Sampling in RL
1: Input: History buffer, bonus constructor

2: for episode k = 1,2, ...,K do
3: Planning:
4: for step t = 1,2, ...,H do
5: Construct posterior distribution for each

(s,a) based on history

6: Sample from distribution, compute Qk
t

7: end for
8: Sampling:
9: for step t = 1,2, ...,H do

10: Take action ak
t = argmaxa Qk

t (s,a)

11: Update history buffer

12: end for
13: end for
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As summarized in Osband and Roy [2017], there are many connections and similarities between the

two algorithms 4.5 and 4.4. Osband et al. [2016b] compared the two types of algorithms, and argued that

the posterior sampling-based method can be viewed as stochastically optimistic. They argue that despite

the simplicity, the existing optimism-based algorithms do not enjoy the same statistical and computational

efficiency compared to posterior sampling. The reason is that the deterministic confidence sets constructed

in UCB-like algorithms are often not optimal. In the next Chapter, we will introduce our algorithms that

modify the posterior distribution to be more optimistic, with the hope of achieving the best of both worlds.
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Chapter 5

Optimistic Thompson Sampling in MDPs

As discussed in the previous chapters, Thompson sampling maintains data-dependent distributions to esti-

mate parameters of the environment (bandits or MDPs). The agent acts greedily with respect to random

samples at each round, and the resulting policy is shown to balance the exploration-exploitation trade-off.

The Gaussian distribution, thanks to its well-developed theory and nice properties, became a popular choice

of prior distribution used to model the reward [Agrawal and Goyal, 2017].

However, one does not need to use the exact Gaussian distribution to be able to take advantage of these

nice properties. In fact, some recent work in bandits demonstrated the benefits of reshaping the posterior

distribution in various ways. For stochastic bandits, MOTS Jin et al. [2021] reshapes the posterior distribu-

tion by clipping the upper tail and boosting the variance of the posterior distribution. It is the first Thompson

Sampling-like algorithm to achieve minimax optimality. Later, Hu and Hegde [2022] reshapes the posterior

distribution by adding a bonus term to the mean to devise an optimal Thompson Sampling-like algorithm in

the context of differentially private stochastic bandits.

In this chapter, we discuss two novel algorithms proposed in our work [Hu et al., 2023]: O-TS-MDP,

and O-TS-MDP+. The two algorithms can be viewed as Thompson sampling-like learning algorithms with

posterior distribution reshaping. They are extensions of our previous bandit algorithms O-TS and O-TS+

to the MDP setting: they modify the posterior distributions of the reward in a more optimistic way and

therefore may improve the performance as well as simplify the analysis.

Table 5.1: Regret bound comparison for O-TS-MDP and O-TS-MDP+

UCB-VI [Dann et al., 2017] Õ
(√

ASH3T
)

Model-based Deterministic

RLSVI [Russo, 2019] Õ
(√

AS2H4T
)

Model-free Randomized

O-TS-MDP Õ
(√

AS2H4T
)

Model-based Randomized

O-TS-MDP+ Õ
(√

ASH3T
)

Model-based Randomized

Our first algorithm, Optimistic Thompson Sampling for MDPs (O-TS-MDP), achieves a Õ
(√

AS2H4T
)
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regret bound, where S is the size of the state space, A is the size of the action space, H is the number of time-

steps per episode and T is the number of episodes. Our second algorithm, Optimistic Thompson Sampling

plus for MDPs (O-TS-MDP+), achieves the (near)-optimal Õ
(√

ASH3T
)

regret bound by taking a more

aggressive clipping strategy.

We will describe the algorithms and the intuitions for their improved regret bounds and performance,

and refer readers to the paper [Hu et al., 2023] for detailed proofs. Then, we demonstrate the empirical

performance on a simple random MDP and compare it to existing optimism-based and posterior sampling-

based algorithms.

We define some additional notations used in our algorithm in Table 5.2. Variance of the Gaussian is

choosen to be σ k
s,a,t := 5

√
H2 log2 (H

δ

)
/Ôk−1

s,a,t , where δ = 1
ASH2T 2 . Notice that the number of observations is

in the denominator, meaning that with more observations we are more confident about the empirical estimate

of a (s,a, t) pair, and therefore have a more concentrated posterior distribution. For the case when (s,a, t)

has not been visited yet by the end of episode k−1 and Ôk−1
s,a,t = 0, our algorithms set σ k

s,a,t to a large constant.

This is to encourage exploration of the more uncertain state, as a more positive sample is likely to be drawn

with a large variance.

Table 5.2: Additional notations for O-TS-MDP and O-TS-MDP+

Ôk
s,a,t = ∑

k
q=1 111

{(
sq

t ,a
q
t
)
= (s,a)

}
# visitation of (s,a, t) by the end of episode k

µ̂k
s,a,t =

1
Ôk

s,a,t
∑

k
q=1 111

{(
sq

t ,a
q
t
)
= (s,a)

}
Xq

s,a,t Empirical mean of (s,a, t) by the end of episode k

P̂k
s,a,t(s

′) = 1
Ôk

s,a,t
∑

k
q=1 111

{(
sq

t ,a
q
t
)
= (s,a),sq

t+1 = s′
}

Empirical transition probability from (s,a, t) to s′

σ k
s,a,t Variance of the Gaussian distribution

µ̃k
s,a,t Random sample drawn from unclipped Gaussian for

(s,a, t) at episode k

µ̃ ′
k
s,a,t := max

{
µ̂

k−1
s,a,t , µ̃

k
s,a,t
}

Optimistic sample used in O-TS-MDP
µ

k
s,a,t Upper confidence bound for (s,a, t) after k episode

µ̃ ′
k
s,a,t = max

{
µ̃k

s,a,t ,µ
k
s,a,t
}

More optimistic sample used in O-TS-MDP+

5.1 OTS-MDP
We propose Optimistic Thomson sampling for MDPs (O-TS-MDP) shown in Algorithm 5.1. In the planning

phase, O-TS-MDP uses Gaussian distributions with increased variance centred around the empirical mean

reward to model the performance of a state-action-time tuple. When the random posterior sample is smaller

than the mean, O-TS-MDP increases the value of the mean reward. In other words, the actual distribution

used is a clipped Gaussian with all the mass of the lower half concentrated at the mean as a Dirac distribution.

This idea is from the O-TS [Chapelle and Li, 2011] algorithm in bandits mentioned in Chapter 3.

O-TS-MDP follows a similar structure to other model-based algorithms. In episode k, we construct an

episode-dependent model M̃′k to simulate the true model. To do this, we draws a random sample µ̃k
s,a,t ∼
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N
(

µ̂
k−1
s,a,t ,SH

(
σ k

s,a,t
)2
)

for each (s,a, t). The clipping is done in the following way: If µ̃k
s,a,t < µ̂

k−1
s,a,t , we

boosts it to µ̂
k−1
s,a,t . Our final sample used by the algorithm is µ̃ ′

k
s,a,t := max

{
µ̂

k−1
s,a,t , µ̃

k
s,a,t
}

. In other words,

µ̃ ′
k
s,a,t can be viewed as a random variable drawn from distribution N ′ks,a,t with the following probability

density function (PDF):

f ′(x) =

 0, x < µ̂
k−1
s,a,t ,

φ

(
x; µ̂

k−1
s,a,t ,SH

(
σ k

s,a,t
)2
)
+

δ(x−µ̂
k−1
s,a,t )

2 , x≥ µ̂
k−1
s,a,t ,

where φ(x; µ,σ2) denotes the PDF of N
(
µ,σ2

)
and δ (·) denotes the Dirac delta function.

With the optimistic sample µ̃ ′
k
s,a,t for all (s,a, t) in hand, we construct M̃′k =

{
S,A,H, P̂k−1, µ̃ ′

k
, p0

}
,

where P̂k−1 =
{

P̂k−1
s,a,t

}
collects all the empirical transition probability distributions by the end of episode

k− 1 and µ̃ ′
k
=
{

µ̃ ′
k
s,a,t

}
collects all the random samples after the boosting. After constructing M̃′k, O-

TS-MDP uses backwards induction to find the optimal policy πk for M̃′k (shown in Line 4 to Line 12 in

Algorithm 5.1). Let Ṽ ′
π

t denote the value functions of a fixed policy π for M̃′k in round t.

Algorithm 5.1 O-TS-MDP
1: Input: MDP instance M, number of episodes T

2: Initialization:
Set Ôs,a,t ← 0, P̂s,a,t ← 0⃗, µ̂s,a,t ← 0,∀(s,a, t)

3: for episode k = 1,2, . . . ,T do
4: Set Ṽ ′

πk

H+1 = 0⃗

5: for t = H,H−1, . . . ,1 do
6: for s ∈ S do
7: for a ∈ A do
8: Draw µ̃s,a,t ∼N

(
µ̂s,a,t ,

(√
SHσ k

s,a,t
)2
)

Set µ̃ ′s,a,t ←max{µ̃s,a,t , µ̂s,a,t}
Set Q̃s,a,t ← µ̃ ′s,a,t + P̂⊺

s,a,tṼ ′
πk

t+1

9: end for
10: Set πk(s, t)← argmaxa∈A Q̃s,a,t

Set Ṽ ′
πk

t (s)← Q̃s,πk(s,t),t

11: end for
12: end for
13: Sample sk

1 ∼ p0, run πk, and update µ̂sk
t ,πk(sk

t ,t),t
, Ôsk

t ,πk(sk
t ,t),t

, and P̂sk
t ,πk(sk

t ,t),t
for all t ∈ [H].

14: end for

O-TS-MDP is both computationally efficient and space efficient and enjoys elegant theoretical analysis.

At each episode, O-TS-MDP only draws one random sample for each state-action-time tuple and enjoys a
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Õ
(√

AS2H4T
)

regret bound. Per episode, the time complexity is O(AS2H) and the space complexity is

O(AS2H). Although the regret bound of O-TS-MDP is not as tight as OPSRL [Tiapkin et al., 2022] and

SSR-Bernstein [Xiong et al., 2022], OPSRL needs to draw Õ(1) random samples while SSR-Bernstein is a

model-free algorithm and therefore inherently different.

Intuitively, clipping the lower half of the Gaussian distribution guarantees that the sampled parameter

is at least as good as the empirical, which encourages the exploration of the uncertain. Theoretically, the

reshaping of the posterior distribution plays a crucial role in simplifying the algorithm and the analysis.

The one-sided distribution helps to avoid upper bounding the absolute value of the estimation error, thus

simplifying the theoretical analysis as compared to the analysis of RLSVI-based algorithms [Agrawal et al.,

2020, Russo, 2019, Xiong et al., 2022]. As for the transition kernel, OPSRL and SOS-OPS-RL use Dirichlet

random variables to construct the model.

Our methods only model the reward with the posterior distributions. Different from stochastic bandits

where the rewards are the only unknown factor, in MDPs the transition dynamics are also unknown. In our

work, we directly use the empirical estimate for the transition dynamics for simplicity, since the reward ran-

domization in our algorithm is enough to drive exploration in the analysis. Two Thompson Sampling-like

algorithms, SOS-OPS-RL [Agrawal et al., 2020] and OPSRL [Tiapkin et al., 2022], use Dirichlet distribu-

tions to model the transition probability distributions. They boost the variance of the Dirichlet distributions

to encourage exploration. SOS-OPS-RL achieves a Õ
(√

AS2H4T
)

regret bound while SPSRL achieves the

(near)-optimal Õ
(√

ASH3T
)

regret bound.

5.2 O-TS-MDP+

The O-TS-MDP+ Algorithm 5.2 is similar to O-TS-MDP but uses a more aggressive clipping for the Gaus-

sian distribution. Different from O-TS-MDP, O-TS-MDP+ is an optimism-based algorithm with random-

ization. O-TS-MDP+ boosts the random sample to the upper confidence bound if smaller than the up-

per confidence bound. This aggressive clipping strategy contributes to reducing the variance of the poste-

rior distribution as compared to O-TS-MDP, which, consequently, leads to tightening the regret bound to

Õ
(√

ASH3T
)

.

Similar to Algorithm 5.1, in each episode, O-TS-MDP+ also constructs a model M̃′k =
{
S,A,H, P̂k−1, µ̃ ′

k
, p0

}
.

The only difference is in how to construct µ̃ ′
k
. Let µ

k
s,a,t := µ̂

k−1
s,a,t +2σ k

s,a,t be the upper confidence bound for

(s,a, t) which is determined by Fk−1. At the beginning of episode k, for each (s,a, t), O-TS-MDP+ draws

a random sample µ̃k
s,a,t ∼ N

(
µ̂

k−1
s,a,t ,

(
σ k

s,a,t
)2
)

. Then, O-TS-MDP+ boosts it to µ
k
s,a,t if µ̃k

s,a,t < µ
k
s,a,t . The

final sample used in the model is µ̃ ′
k
s,a,t = max

{
µ̃k

s,a,t ,µ
k
s,a,t
}

denote the sample value after the boosting. The

PDF for the distribution of µ̃ ′
k
s,a,t can be defined as follow:

f ′(x) =

{
0, x < µ

k
s,a,t ,

φ

(
x; µ̂

k−1
s,a,t ,(σs,a,t)

2
)
+Φ

(
µ

k
s,a,t ; µ̂

k−1
s,a,t ,(σs,a,t)

2
)

δ (x−µ
k
s,a,t), x≥ µ

k
s,a,t ,
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where Φ(x; µ,σ2) denotes the cumulative distribution function (CDF) of N
(
µ,σ2

)
.

Let µ̃ ′
k
=
{

µ̃ ′
k
s,a,t

}
collect all the samples after the boosting. After constructing M̃′k, O-TS-MDP+ com-

putes the optimal policy πk for M̃′k by using backwards induction. Algorithm 5.2 presents the pseudo-code

of O-TS-MDP+. The differences between O-TS-MDP and O-TS-MDP+ are highlighted in Algorithm 5.1

and Algorithm 5.2, respectively.

Algorithm 5.2 O-TS-MDP+

1: Input: MDP instance M, number of episodes T

2: Initialization:
Set Ôs,a,t ← 0, P̂s,a,t ← 0⃗, µ̂s,a,t ← 0,∀(s,a, t)

3: for episode k = 1,2, . . . ,T do
4: Set Ṽ ′

πk

H+1 = 0⃗

5: for t = H,H−1, . . . ,1 do
6: for s ∈ S do
7: for a ∈ A do
8: Draw µ̃s,a,t ∼N

(
µ̂s,a,t ,

(
σ k

s,a,t
)2
)

Set µs,a,t ← µ̂s,a,t +2σ k
s,a,t

Set µ̃ ′s,a,t ←max
{

µ̃s,a,t ,µs,a,t
}

Set Q̃s,a,t ← µ̃ ′s,a,t + P̂⊺
s,a,tṼ ′

πk

t+1

9: end for
10: Set πk(s, t)← argmaxa∈A Q̃s,a,t

Set Ṽ ′
πk

t (s)← Q̃s,πk(s,t),t

11: end for
12: end for
13: Sample sk

1 ∼ p0, run πk, and update µ̂sk
t ,πk(sk

t ,t),t
, Ôsk

t ,πk(sk
t ,t),t

and P̂sk
t ,πk(sk

t ,t),t
for all t ∈ [H].

14: end for

O-TS-MDP+ is a model-based, optimistic algorithm, meaning the regret can be decomposed in a certain

way. More specifically, if the Optimism Decomposition [Pacchiano et al., 2021] can be used to decompose

the regret. The Optimism Decomposition requires the parameters in the constructed model to be greater

than the parameters in the true model. Meanwhile, the estimation errors should be maintained low enough.

O-TS-MDP+ achieves the (near)-optimal Õ
(√

ASH3T
)

regret bound. The aggressive clipping con-

tributes to reducing the variance of the reshaped posterior distribution as compared to O-TS-MDP. Conse-

quently, the regret bound is tightened to be (near)-optimal, same as OPSRL of Tiapkin et al. [2022] and

SSR-Bernstein of Xiong et al. [2022]. O-TS-MDP+ can be viewed as a randomized version of UCB-VI

[Azar et al., 2017].
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5.3 Experiments
In this section, we evaluate the empirical performance of our proposed algorithms O-TS-MDP and O-TS-

MDP+ for MDPs with S = [5,20,50], A = 3 and H = 10. For a fair performance comparison, our experi-

mental set-up is fully adopted from Dann et al. [2017]. For a specific (s,a, t), the random reward Xs,a,t in

each episode is drawn from a Bernoulli distribution with parameter µs,a,t . We set µs,a,t = 0 with probability

0.85 and with probability 0.15, the value of µs,a,t is drawn from a uniform distribution. Similarly, the transi-

tion probability distribution Ps,a,t is sampled from a Dirichlet distribution with parameters (0.1,0.1, . . . ,0.1),

meaning that with a high chance the transition probability distribution is concentrated on a single state. The

sparsity design is to control the occurrence that sub-optimal policies can obtain rewards by chance.

We compare O-TS-MDP, O-TS-MDP+, SSR-Bernstein [Xiong et al., 2022], and TS-MDP, a Thomp-

son Sampling-based learning algorithm without clipping the posterior distributions, meaning the episode-

dependent model are constructed as M̃ =
{
S,A,H, P̂k−1, µ̃k, p0

}
. We set T = 107 and compare the cumu-

lative average rewards of each episode.
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Figure 5.1: Empirical performance for 5, 20 and 50 states
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As shown in Figure 5.1, the rewards for all algorithms steadily increase as the learning agent gains a

better estimation of the parameters of the true MDP over time. When the number of states is small (S = 5),

O-TS-MDP+ performs slightly better than O-TS-MDP. TS-MDP demonstrates a similar trend as O-TS-MDP

since they are both Thompson Sampling-based algorithms. Despite the lack of theoretical analysis, TS-MDP

does achieve better empirical performance. The gap between O-TS-MDP and TS-MDP comes from the fact

that clipping the left side of the posterior distributions increases the chance to visit a sub-optimal (s,a, t),

just as implied in the design of MOTS [Jin et al., 2021]. It is not surprising that SSR-Bernstein outperforms

the remaining algorithms as it is theoretically optimal.1 Similar trends exist for Thomson-sampling-based

methods in larger state space, but SSR-Bernstein still performs the best.
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Figure 5.2: Empirical performance for 5, 20 and 50 states, and UCB-VI

It is important to note that SSR-Bernstein uses a single random seed for all (s,a, t) in each episode. In

contrast, in our proposed algorithms, each (s,a, t) has its own randomness within an episode. In other words,

our proposed algorithms inject more randomness than SSR-Bernstein. Additionally, SSR-Bernstein needs

1SSR-Bernstein [Xiong et al., 2022] is a concurrent work published in 2022.
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to construct confidence intervals to tune the magnitude of the variance, whereas our algorithms are simpler

and easier to implement and enjoy good regret bounds.

We also implement UCB-VI [Azar et al., 2017]. From Figure 5.2, we can see that SSR-Bernstein still

performs the best. All three Thompson Sampling-like algorithms perform similarly and better than UCB-VI.

All experimental results share similar trends across random initialization.

5.4 Discussion
Both of our algorithms O-TS-MDP and O-TS-MDP+ are based on the idea of modifying the Gaussian

distribution in Thompson sampling to be more optimistic. In both algorithms, we encourage exploration by

carefully choosing the variance of the distribution and making sure the sampled parameter is optimistic to

some extent. O-TS-MDP is both computationally efficient and space efficient, as it improved on existing

work and only draws one sample per round for each (s,a, t) pair. The one-sided distribution helps to avoid

upper bounding the absolute value of the estimation error and therefore simplifies the theoretical analysis.

O-TS-MDP+ is a more optimistic clipping of the posterior distribution and therefore enjoys (near)-optimal

regret bound. In the next Chapter, we will discuss future directions and practical modifications of the

proposed algorithms.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion and Limitations
Balancing between exploration and exploitation is a fundamental challenge in both multi-armed bandit

(MAB) problems and reinforcement learning (RL). Exploration involves gathering new information about

uncertain actions to make better decisions in the long run, while exploitation involves maximizing the im-

mediate reward based on the current knowledge. Striking the right balance is crucial: too much exploration

might lead to unnecessary resource wastage, while too much exploitation could result in missing out on

potentially more rewarding actions. Various strategies, such as epsilon-greedy, Thompson sampling (TS)

[Agrawal and Goyal, 2017], and upper confidence bound (UCB) [Auer et al., 2002a], have been devised

to tackle this dilemma. These methods intelligently allocate resources to explore new actions and exploit

known good actions, adapting their behaviour over time to optimize the trade-off between learning and

performance, ultimately driving effective decision-making and learning in dynamic environments.

In this work, we discuss various types of regret and optimality in theoretical analysis. We then draw

inspiration from TS and UCB and propose the optimistic Thompson sampling (O-TS) algorithm for both

bandits and RL. Chapelle and Li [2011] have demonstrated the empirical performance of O-TS for stochas-

tic bandits. We derive regret analysis to fill in the gap theory. In addition, we propose O-TS-Bandit+,

an optimism-based learning algorithm, for stochastic bandits. Both O-TS and O-TS-Bandit+ achieve the

(order)-optimal problem-dependent regret bound. We demonstrate the performance of our algorithms with

a simple numerical experiment.

Next, we extend the ideas of optimistic Thompson sampling to MDPs, a common framework for RL.

We first consider various assumptions of MDPs that appear frequently in related works and justify our

choices of assumptions. Then, we propose O-TS-MDP, a computationally efficient and theoretically elegant

model-based learning algorithm with randomized value functions for episodic MDPs. O-TS-MDP uses a

modified Gaussian distribution to model the reward distributions and drive exploration. The clipping of

the left side of the posterior distribution simplifies its theoretical analysis. We also propose O-TS-MDP+,

a model-based, optimistic algorithm with randomized value functions. O-TS-MDP+ achieves the (near)-
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optimal regret bound with a more aggressive clipping strategy of the posterior distribution. It boosts the

value of the random sample to the upper confidence bound if the random sample is smaller than the upper

confidence bound. The aggressive clipping contributes to reducing the variance of the reshaped posterior

distribution as compared to O-TS-MDP. We evaluated our algorithms in a randomized MDP experiment and

compared them to the existing methods.

There are some limitations to our work. Firstly, both our theoretical analysis and experimental results

are restricted to the tabular setting, with discrete states and actions and a finite time horizon. The tabular

assumptions offer simplicity for the theoretical analysis, but they are constrained by their scalability. Storing

and updating the values for each state-action pair becomes computationally expensive and memory-intensive

when faced with large state and action spaces. In addition, our work is mostly concerned with sample

complexity, as backward planning in finite tabular settings is affordable. However, computational efficiency

in planning becomes crucial going beyond small MDPs. In the next session, we propose a few future

directions for addressing these limitations.

6.2 Future Work
This work opens up many interesting questions and future directions:

Practical Approaches Extending our exploration algorithms to practical applications faces several chal-

lenges. One major challenge is the computational efficiency and the memory storage especially when deal-

ing with large state and action spaces. As the number of entries in the Q-table grows exponentially, we can’t

afford to keep track of the entire history, the exact observations and all possible state transitions. Some ap-

proximation methods are needed to make our methods scalable. Another important practical consideration is

the robustness of the misspecification of the parameterized value function. Algorithms need to perform well

even when the underlying model of the environment is inaccurate, such as when function approximations

like neural networks are used.

Many existing approaches aim to extend the idea of exploration via randomization in practice. Bootstrap

DQN [Osband et al., 2016a] uses randomized value functions to carry out deep exploration and allows

algorithms to learn efficiently. Ensemble sampling [Lu and Roy, 2023] uniformly samples a model from

a set of models, acts greedily according to that model, and updates all models to approximate Thompson

sampling. Ash et al. [2022] extends UCB-style exploration to deep learning by taking a maximum of a few

samples. The idea of random dropout or initialization can also be used for exploration [Burda et al., 2018].

More recently, Mei et al. [2023] showed that noise in stochastic gradient descent can be used for exploration

in bandits.

It is interesting to study how our optimistic Thompson sampling style of methods can be approximated

and used for exploration in large-scale RL. As a direct extension of our work, one can perhaps use random

samples for the transition dynamics in addition to the rewards. With careful analysis and adjustment, noise

in optimization and planning procedures may be helpful in exploration as well. Exploration in distributional
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RL such as directly injecting noise into policies for policy iteration could also be examined.

Greedy Q updates Most of our work concerns sample efficiency, but it is also important to optimize the

computational efficiency in the planning step, especially in practice. The time complexity per episode of our

algorithms and many other classical model-based RL algorithms is O
(
AS2H

)
, but it is possible to have fast

algorithms. Inspired by Efroni et al. [2019], we propose a rule of greedy updates that can potentially speed

up the planning phase in our exploration algorithm.

Algorithm 6.1 Fast-TS
1: Input: MDP instance M, number of episodes T
2: Initialization:

Set n0
s,a,h← 0, P̂0

s,a,h← 0⃗, R̂0
s,a,h← 0,∀(s,a,h) % Empirical estimates

Set Ṽ 0
h (s)← H− (h−1), ∀(s,h) % Global value functions; initialized to the support

3: for episode k = 1,2, . . . ,T do
4: Draw sk

1 ∼ p0 % Draw the initial state in episode k from distribution p0
5: for h = 1,2, . . . ,H do
6: for a ∈ A do

7: Draw R̃k
sk

h,a,h
∼Nclipped

(
R̂k−1

sk
h,a,h

, Õ

(
SH(H−h+1)2

nk−1
sk
h ,a,h

))
8: Compute Q̃k

sk
h,a,h

= R̃k
sk

h,a,h
+
〈

P̂k−1
sk

h,a,h
,Ṽ k−1

h+1

〉
% Only compute Q values of all the actions for the

visited state
9: end for

10: Find ak
h← argmax

a∈A
Q̃k

sk
h,a,h

11: Update Ṽ k
h (s

k
h)←min

{
Ṽ k−1

h (sk
h), Q̃

k
sk

h,a
k
h,h

}
12: Play ak

h and transition to sk
h+1

13: end for
14: Observe a trajectory

(
sk

1,a
k
1,r

k
sk

1,a
k
1,1

)
,
(

sk
2,a

k
2,r

k
sk

2,a
k
2,2

)
, . . . ,

(
sk

h,a
k
h,r

k
sk

h,a
k
h,h

)
, . . . ,

(
sk

H ,a
k
H ,r

k
sk

H ,a
k
H ,H

)
15: Update the empirical estimates of the visited states and actions.
16: end for

In our fast algorithm, the time complexity per episode is O(ASH) instead of O(AS2H). We use a global

value function to keep track of previous estimates instead of computing this estimation for each state-action-

time pair at every round. This algorithm avoids computing the Q values of all the states for all the actions

in each round. We only compute the Q values for all the actions associated with the visited trajectory.

Preliminary experimental results confirm this speedup, but further analysis is needed to evaluate whether

the convergence to optimality is sacrificed. We suspect that by adding less noise to the model, the practical

performance might be improved. Then, the next step would be a possible extension to the infinite horizon.

Connection to DP Differential privacy (DP) [Dwork et al., 2014] is a framework for enhancing the privacy

of individuals in data analysis by introducing controlled noise to the results while still providing meaningful
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insights. It aims to prevent the disclosure of specific information about any individual’s data in a dataset.

Privacy is crucial in machine learning to safeguard sensitive information, prevent unintended disclosure of

personal data, and ensure ethical and secure deployment of AI agents in real-world environments.

One common technique within differential privacy is the Gaussian mechanism [Dong et al., 2019],

which involves adding noise sampled from a Gaussian (normal) distribution to the output of a computation.

The amount of noise added is calibrated to achieve a balance between privacy and accuracy. The Gaussian

mechanism is widely used due to its mathematical properties and ease of implementation, offering a practical

way to achieve differential privacy in various data analysis and machine learning tasks, thereby safeguarding

individual privacy while permitting useful data analysis.

There are a lot of connections between the Gaussian noises added for differential privacy, and the Gaus-

sian noises added for exploration in bandits and RL. The key ingredient is the variance of the noise. In DP,

too much noise would lead to loss of information, but too little noise might leak private information. In RL,

too much noise would cause divergence from the optimal policy, but too little noise prevents exploration and

therefore might be stuck at sub-optimal solutions. We believe further studies of this connection could pro-

vide insights into both fields. It is our ongoing project to design practical exploration methods by perturbing

or injecting noise into the training data and at the same time guarantee privacy.
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