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Abstract

Parallel tempering (PT) methods are a popular class of Markov chain Monte Carlo schemes used

to sample complex high-dimensional probability distributions. They rely on a collection of N

interacting auxiliary chains targeting tempered versions of the target distribution to improve the

exploration of the state-space. We provide here a new perspective on these highly parallel algorithms

and their tuning by identifying and formalizing a sharp divide in the behaviour and performance of

reversible versus non-reversible PT schemes.

We show theoretically and empirically that a class of non-reversible PT methods dominates its

reversible counterparts. These results are exploited to identify the optimal annealing schedule for

non-reversible PT and to develop an iterative scheme approximating this schedule. The proposed

methodology is applicable to sample from a distribution π1 with respect to a reference distribution π0,

and to compute normalizing constants. We provide a wide range of numerical examples supporting

our theoretical and methodological contributions.

The performance of non-reversible PT depends on how quickly a sample from the reference

distribution makes its way to the target, which in turn depends on the particular path of annealing

distributions. Traditionally PT has used only simple paths constructed from convex combinations

of the reference and target log-densities; we demonstrate that this path performs poorly in the

setting where the reference and target are nearly mutually singular. To address this issue, we

expand the framework of PT to general families of paths, formulate the choice of a path as an

optimization problem that admits tractable gradient estimates, and propose a flexible new family of

spline interpolation paths for use in practice. We show that PT induces a geometry on the space

of probability distributions and characterize these optimal paths as length minimizing geodesics

between π0 and π1. Theoretical and empirical results demonstrate that our proposed methodology

breaks previously-established upper-performance limits for traditional linear paths.

Finally, we identify distinct scaling limits for the non-reversible and reversible schemes, the
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former being a piecewise-deterministic Markov process and the latter a diffusion.

iv



Lay Summary

Markov Chain Monte Carlo (MCMC) is a powerful tool to model and simulate probabilistic

systems. In practice, MCMC methods can fail to efficiently explore the entirety of a given model

space of parameters and become trapped in local regions of high probability, limiting their use

when tackling complex problems. Parallel tempering (PT) improves the accuracy of MCMC by

deploying multiple interacting copies of MCMC simultaneously and encouraging better exploration

of the parameters. The current paradigm for PT presumes a notion called reversibility, where the

performance deteriorates when too many additional copies are introduced. Reversibility makes PT

notoriously sensitive to tune and renders it unsuitable for the challenging problems we are faced

with today. We propose a new non-reversible PT paradigm that dominates its reversible counterpart

and improves performance with increased parallelism. We develop an efficient, general-purpose

methodology around non-reversibility that scales to modern computational resources and can tackle

large-scale problems.
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Chapter 1

Introduction

If one ox could not do the job they did not try to grow a bigger ox, but used two oxen.

When we need greater computer power, the answer is not to get a bigger computer, but...

to build systems of computers and operate them in parallel.

— Admiral Grace Hopper

1.1 Markov Chain Monte Carlo

Monte Carlo methods are a set of tools used to numerically simulate random systems and used to

solve a large class of challenging problems in statistics and science. Monte Carlo methods gamble

the accuracy of the solution at the expense of a fixed computational budget. They were born

during the Manhattan Project in Los Alamos, New Mexico, by physicists Stanislaw Ulam and

John von Neumann to compute the probability of winning solitaire and study thermonuclear fission

(Metropolis and Ulam, 1949).

Markov Chain Monte Carlo (MCMC) is a general-purpose class of Monte Carlo methods to

simulate from general probability distributions. The first MCMC algorithm was also developed by

physicists at Los Alamos to simulate statistical mechanical systems (Metropolis et al., 1953). It was

later generalized and introduced to statisticians by Keith W. Hastings as the famous “Metropolis-

Hastings” algorithm (Hastings, 1970). Due to limitations in theoretical knowledge and computing

power at the time, it was not easy to realize the potential of MCMC algorithms and they were

subsequently largely ignored by statisticians.

Simultaneously, statisticians were developing a theory of statistical modelling using Bayes

theorem as an alternative to the frequentist philosophy prevalent at the time. The central object

in Bayesian statistics is the posterior distribution π1 defined over some state-space of statistical

models X . It is generally possible to evaluate the posterior density of π1(x) up to a normalizing
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constant but one cannot simulate from the posterior directly. The computational challenges in

simulating from the posterior were one of the limitations inhibiting the adoption of the Bayesian

philosophy. As computing power became cheaper, Bayesian statisticians saw the potential MCMC

as a tool for posterior inference (Gelfand and Smith, 1990). The discovery that MCMC could

enable posterior inference led to a revolution in statistics. In the words of McGrayne (2011): “The

combination of Bayes and MCMC has been called ‘arguably the most powerful mechanism ever

created for processing data and knowledge.’ Almost instantaneously, MCMC changed statisticians’

entire method of attacking problems. MCMC solved real problems, used computer algorithms

instead of theorems, and led statisticians and scientists into a world where ‘exact’ meant ‘simulated’

and repetitive computer operations replaced mathematical equations.”

Formally, the goal in Bayesian statistics is to make inferences using the posterior distribution π1

by computing quantities in the form of an expectation,

E[f ] :=

∫
X
f(x)π1(x)dx, (1.1)

where π1 is the posterior distribution over some space of statistical models X , and f : X → R is some

quantity of interest about the model. The main idea behind MCMC is to construct a π1-stationary

Markov chain Xt that efficiently explores the state-space X while preserving the statistics of the

target π1. We then take an average over the trajectory of the path in X to approximate (1.1) at the

price of a statistical error, by invoking the law of large numbers for Markov chains,

E[f ]
a.s.
= lim

T→∞

1

T

T∑
t=1

f(Xt). (1.2)

Unfortunately, the rate of convergence for (1.2) can often be poor for challenging problems

where π1 has multiple well-separated modes with highly varying curvature, or when X is high

dimensional with topological constraints. In these situations, the chain gets trapped exploring a

local region of high probability, failing to mix within the computational budget and resulting in

a poor reconstruction of the target π1 (see Figure 1.1 (top)). In practice, a practitioner does not

know the structure of the posterior for challenging problems, making it difficult to assess when the

Markov chain has converged or has gotten stuck due to poor exploration. Designing efficient and
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robust MCMC methodology where (1.2) reliably converges within the computational constraints is

of fundamental importance to the adoption of Bayesian statistics.

Figure 1.1: Trace plots (left) and density estimates (right) of MCMC versus PT when π1 is a mixture
of N(−10, 1) and N(10, 1) with well-separated modes at x = −10 and 10. (Top) The trajectory of
a single MCMC chain built using random walk Metropolis algorithm gets trapped exploring one
mode and fails to converge. (Bottom) PT trajectories used the same local exploration moves with
N = 10 chains and a standard Gaussian reference. Not only did the PT chain discover both modes,
but it also easily traversed between them.

One natural direction to handle these complex problems is using multiple processors or distribut-

ing the computation. Since the demise of Moore’s law in the past decade, MCMC methods must be

designed to take advantage of modern computational architectures such as GPUs and distributed

computing. There have been attempts made to improve the scalability of MCMC using parallel

computing in the “big data” regime by exploiting parallel processors within each iteration (e.g. see

Jacob et al. (2011); Brockwell (2006); Lee et al. (2010); Calderhead (2014); Scott et al. (2016); Wang

et al. (2015); Wu and Robert (2017); Bardenet et al. (2017); Jacob et al. (2020)). Most of these

methods are motivated by applications, where memory is constrained, or the size of the data and

model make the computation cost of MCMC is prohibitively expensive. Still, they do not address

the challenges faced with problems involving “big models,” where the bottleneck is not memory
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but rather the complexity of the target π1 and the state-space X which we have to explore. We

are interested here in this latter category which includes challenging problems such as cosmological

modelling, phylogenetic inference, spin glasses, space-time random effect models, protein folding, or

multiple sequence alignment.

1.2 Parallel tempering

A popular approach for multi-core and distributed exploration of complex distributions is Parallel

Tempering (PT) (also known as the Replica Exchange Method (REM), and Metropolis-Coupled

Markov Chain Monte Carlo (MC3)) which was introduced independently in statistics (Geyer, 1991)

and physics (Hukushima and Nemoto, 1996); see also Swendsen and Wang (1986) for an earlier

related proposal. To sample from the target distribution π1, PT introduces a sequence of auxiliary

tempered or annealed probability distributions with densities

πβn(x) ∝ π0(x)1−βnπ1(x)βn , n = 0, 1, ..., N,

where π0 is an easy-to-sample reference distribution, and the sequence

0 = β0 < β1 < · · · < βN = 1,

defines the annealing schedule. This bridge of auxiliary distributions πβ0 , πβ1 , . . . , πβN is used to

progressively transform samples from the reference distribution (β = 0) into samples from the target

distribution (β = 1), for which only poorly mixing MCMC kernels may be available (see Figure 1.2).

For example, in the Bayesian setting where the target distribution is the posterior, we can choose

the reference distribution as the prior, from which we can often obtain independent samples.

More precisely, PT algorithms construct a Markov chain Xt = (X0
t , . . . , X

N
t ) in which the states

are (N + 1)-tuples, x = (x0, x1, x2, . . . , xN ) ∈ XN+1, and whose stationary distribution is given

by π(x) =
∏N
n=0 πβn(xn) (Geyer, 1991). At each iteration, PT proceeds by applying in parallel

N + 1 MCMC kernels targeting πβn for n = 0, ..., N . We call these model-specific kernels the local

exploration kernels (Figure 1.3 (middle)). The chains closer to the reference chain (i.e. those with

annealing parameter βn close to zero) can typically traverse regions of low probability mass under πβn
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Figure 1.2: Example of an annealing path πβ ∝ π1−β
0 πβ1 of distributions when the target π1 is a

mixture of Gaussian N(−10, 1) and N(10, 1), and the reference π0 is the standard Gaussian N(0, 1).
(Left) The density of πβ continuously changes from π0 to π1 as β increases from 0 to 1. The
annealing distributions uses the reference distribution to create a tunnel between the two modes of
the target. (Right) The annealing distributions discretize this transition between the reference and
target.

while the chain βN = 1 ensures that asymptotically we obtain samples from the target distribution.

Frequent communication between the chains at the two ends of the spectrum is therefore critical for

good performance and achieved by proposing to swap the states of chains at adjacent annealing

parameters. These proposals are accepted or rejected according to a Metropolis mechanism. A

communication move corresponds to a collection of swap moves (Figure 1.3 (right)). A maximal

collection of non-interfering swaps are the Even and Odd swaps, which propose to exchange states

at chains with index n and n+ 1 with an even and odd index n respectively. We will refer to a local

exploration move followed by a communication move as a scan which can be visualized in Figure

1.3.

Based on the assumption that the reference distribution π0 can be sampled efficiently, PT uses

the swap-based interactions between neighbouring chains to propagate the exploration done in π0

into improved exploration in the chain of interest π1. PT guarantees that the marginal distribution

of the N th chain converges to π1. By using the law of large numbers for Markov chains on the N -th

component of Xt, we can recover almost surely,

E[f ]
a.s.
= lim

T→∞

1

T

T∑
t=1

f(XN
t ).

In practice, the rate of convergence is often much faster compared to running a single chain (Woodard
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πβn
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πβn
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Communication
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Figure 1.3: Visualization of a scan consisting of a local exploration move (middle) and a communi-
cation move (right). (Left) The states are initialized from πβn and πβn+1 , respectively. (Middle)
Each state independently explores the state-space during the local exploration move according to
its corresponding annealing distribution. The states traverse modes relatively easily for πβn and
struggle for πβn+1 . (Right) Nearest neighbour chains communicate through a proposed swap of their
states. In this case, the final state for chain n+ 1 after a successful swap is located in a different
mode of πβn+1 than initialized.

et al., 2009). In particular, Woodard et al. (2009) showed that when a single chain targeting π1

mixes poorly, the global PT chain will mix rapidly if the follow reasonable conditions are met: (1)

the exploration kernel mixes well at the reference, (2) the exploration kernel mixes well within a

mode for each βn, and (3) πβn−1 and πβn have sufficient overlap in their modes for n = 1, . . . , N .

Therefore, parallel tempering can be seen as a “meta-algorithm” that uses parallel computing

to transform a locally well-mixing target chain into a globally well-mixing chain. In particular,

it does not presume any structural assumption on the state-space or the target π1, making it a

general-purpose tool for Bayesian inference. PT remains to this day a widely used MCMC method to

sample from complex multimodal target distributions arising in physics, chemistry, biology, statistics,

and machine learning; see, for example, Issaoun et al. (2021); Ballnus et al. (2017); Chandra et al.

(2019); Cho et al. (2010); Desjardins et al. (2014); Diaz et al. (2020); Dorri et al. (2020); Kamberaj

(2020); Müller and Bouckaert (2020).

1.2.1 Non-reversible parallel tempering

A key notion used to analyze the behaviour of PT is the index process. To provide intuition on this

process, it is helpful to discuss briefly how PT is distributed over several machines. An important

point is that instead of having pairs of machines exchanging high-dimensional states when a swap is

accepted (which could be detrimental due to network latency), the machines should just exchange
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Figure 1.4: Index process for reversible (top) and non-reversible (bottom) PT for N = 8 (left)
and N = 30 auxiliary chains (right) using equally spaced annealing parameters on a Bayesian
change-point detection model (Davidson-Pilon, 2015) where π0 is the prior, π1 the posterior. The
even and odd swaps moves are labeled “E”, and “O” respectively. The sequence of swap moves
forms N + 1 index process trajectories (paths formed by the red and green edges). We show one
such path in bold. The reversible and non-reversible PT clearly exhibit different scaling behaviour
which we formalize in Section 5.2.

the annealing parameters. Suppose now we initialize machine m with annealing parameter βm.

Then after t scans, the annealing parameters are permuted among the N + 1 machines according to

the permutation It = (I0
t , . . . , I

N
t ) of {0, . . . , N}, so that machine m has annealing parameter βImt

at iteration t of PT. Each index process (Imt )∞t=1, formally introduced in Section 2.3, is initialized

using Im0 = m and tracks how the state of the corresponding chain evolves over the annealing

schedule thanks to the swap moves; see Figure 1.4. The index process Imt thus monitors the

information transfer between the reference and target on machine m and as such determines partly

the effectiveness of PT.

There have been many proposals made to improve this information transfer by adjusting the

annealing schedule; see, e.g., Kone and Kofke (2005); Atchadé et al. (2011); Miasojedow et al. (2013).

These proposals are useful but do not address a crucial limitation of standard PT algorithms. In

a distributed context, one can select randomly at each iteration whether to apply Even or Odd

swap moves from Section 1.2 in parallel . The resulting stochastic even-odd swap (SEO) scheme

(Lingenheil et al., 2009), henceforth referred to as reversible PT as it admits a reversible scaling

limit (see Section 5.2), yields index processes exhibiting a diffusive behaviour; see top row of Figure
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1.4. Hence we can expect that when N is large it takes roughly O(N2) swap attempts for a state at

β0 = 0 to reach β = 1 (Diaconis et al., 2000). The user thus faces a trade-off. If N is too large,

the acceptance probabilities of the swap moves are high but it takes a time of order O(N2) for the

reference and target to communicate. If N is too low, the acceptance probabilities of swap moves

deteriorate resulting in poor mixing between the different chains. Informally, even in a multi-core

or distributed setting, for N large, the O(N) gains in being able to harness more cores do not

offset the O(N2) cost of the diffusion (see Section 3.1.4 where we formalize this argument). As a

consequence, the general consensus is that the temperatures should be chosen to allow for about a

20–40% acceptance rate to maximize the squared jump distance travelled per swap in the space of

annealing parameters [0, 1] (Rathore et al., 2005; Kone and Kofke, 2005; Lingenheil et al., 2009;

Atchadé et al., 2011). Adding more chains past this threshold actually deteriorates the performance

of reversible PT and there have even been attempts to adaptively reduce the number of additional

chains ( Lacki and Miasojedow, 2016). This is a lost opportunity, since PT is otherwise particularly

suitable to implementation on multi-core or distributed architectures.

An alternative to the SEO scheme is the deterministic even-odd swap (DEO) scheme introduced

in Okabe et al. (2001); Lingenheil et al. (2009) where one deterministically alternates Even and

Odd swap moves. We refer to DEO as non-reversible PT as it admits a non-reversible scaling limit

(see Section 5.2). In particular, the resulting index processes do not appear to exhibit a diffusive,

i.e. random walk type, behaviour, illustrated by the bottom row of Figure 1.4. This non-diffusive

behaviour of non-reversible PT explains its excellent empirical performance when compared to

alternative reversible PT schemes observed in practice (Lingenheil et al., 2009) for any given schedule.

However non-reversible PT, like reversible PT, is sensitive to the choice of the schedule. All the

aforementioned tuning strategies developed for PT implicitly assume a reversible framework and do

not apply to non-reversible PT (as empirically verified in Lingenheil et al. (2009)).

1.3 Outline of thesis

The purpose of this thesis is to identify some of the theoretical properties of non-reversible PT

so as to establish optimal tuning guidelines for this algorithm and propose novel methodology for

implementation.
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1.3.1 Chapter 2

In chapter 2, we formally introduce the PT algorithm with both reversible and non-reversible

communication and provide the relevant background information for the remaining chapters. In

particular, we introduce a dual perspective of parallel tempering in a distributed computing

framework, which motivates the construction of the index process. The index process tracks the

communication between the reference and target on each machine and will be the focus of both the

theoretical and methodological development of PT. Finally, we motivate the round trip rate as the

natural the notion of optimality for PT, which quantifies how often information from the reference

distribution percolates to the target through the index process.

1.3.2 Chapter 3

Our first contribution is a non-asymptotic result showing that the non-reversible DEO scheme

is guaranteed to outperform its reversible SEO counterpart. The non-asymptotic analysis of the

round trip rate is based on a simplifying assumption called Efficient Local Exploration (ELE) and

shows that the round trip rate for non-reverible PT dominates its reversible counterpart in all

scenarios (see Corrollary 2). We do not expect ELE to hold exactly in real scenarios, however we

show empirically that there are practical methods to approximate it. Even when ELE is violated

the key predictions made by the theory closely match empirical behaviour. In this sense ELE can

be thought of as a useful model for understanding PT algorithms.

In Section 3.2 we introduce the local and global communication barriers λ(β),Λ which encode

the local and global efficiency of PT respectively. We then show that for non-reversible PT the

round trip rate converges to (2 + 2Λ)−1, in contrast to the reversible counterpart for which it decays

to zero. To provide some intuition on how the small algorithmic difference between SEO and DEO

can have such a profound impact, consider the scenario where PT would use the same distributions

at the two end-points, π0 = π1, as well as for all intermediate distributions so that Λ = 0. Clearly

this is not a realistic scenario, but in this simple context the index processes of DEO and SEO are

easy to describe and contrast. In both DEO and SEO, π0 = π1 implies that all proposed swaps will

be accepted. For DEO, this makes the index process fully deterministic, performing direct trips

from index 0 to N and back. Such a process could be compared to a “conveyor belt” with the
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property that no matter what is the value of N , one novel trip from chain 0 reaches chain N every

two iterations, i.e. the round trip rate is (2 + 2Λ)−1 = 1/2 as Λ = 0. For SEO, even when π0 = π1

the index process is still random and can be readily seen to be a simple discrete random walk. This

implies that as N increases, the round trip rate decreases to zero.

In practice, achieving high round trip rates requires careful tuning of the annealing schedule. In

Section 3.3 we combine the analysis from Section 3.1 and Section 3.2 to develop a novel methodology

to optimize the annealing parameters and optimally allocate of computational resource. The optimal

tuning guidelines we provide are different from existing (reversible) PT guidelines and the novel

methodology is highly parallel as its performance does not collapse when a very large number of

chains is used. However using a large number of chains does have a diminishing return, therefore

we propose a mechanism to determine the optimal trade-off between the number of chains and the

number of independent PT algorithms one should use.

Finally in Section 3.4, we present a variety of experiments validating our theoretical analysis and

novel methodology. These examples include nine Bayesian models ranging from simple foundational

models such as generalized linear models and Bayesian mixture, to complex ones such as cancer

copy-number calling, ODE parameter estimations, spike-and-slab classification and two types of

phylogenetic models. This is complemented by three popular models in statistical mechanics and

four artificial models. These experiments also include eight real datasets spanning diverse data-types

and size including modern types of measurements such as whole-genome single-cell sequencing

data (494 individual cells from two types of cancer, triple negative breast cancer and high-grade

serous ovarian) and mRNA transfection time series (Dorri et al., 2020; Leonhardt et al., 2014),

as well as more conventional ones such as primate mitochondrial DNA data and various feature

selection/classification datasets.

The method is implemented in an open source Bayesian modelling language available at https:

//github.com/UBC-Stat-ML/blangSDK. Our software implementation allows the user to specify the model

in a BUGS-like language (Lunn et al., 2000). From this model declaration, a suitable sequence of

annealed distributions is instantiated and a schedule optimized using our iterative method.
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1.3.3 Chapter 4

Chapter 3 showed that the optimal performance of PT is a governed by the communication barrier

Λ, which depends on the path between the reference and target. In particular, increasing the number

of chains or tuning the annealing parameters cannot improve the optimal round trip rate. So far in

our analysis, we have presumed πβ ∝ π1−β
0 πβ1 is the linear annealing path constructed from convex

combinations of the reference and target log-densities. The linear annealing path has deep roots in

physics and information theory via Gibbs distributions and is traditionally used in computational

statistics for its simplicity (Neal, 2001; Del Moral et al., 2006); however, it can be sub-optimal for

PT (Tawn et al., 2020).

Chapter 4 begins by demonstrating that the linear path performs poorly in the setting where the

reference and target are nearly mutually singular. To address this issue, in Section 4.2 we expand

the framework of PT to general non-linear annealing paths πβ and show that the non-asymptotic

and asymptotic analysis from Chapter 3 naturally extends to PT on general annealing paths. In

particular, the asymptotic round trip rate still converges to (2+2Λ)−1, where now the communication

barrier Λ is a function of the path (see Section 4.3). In Section 4.4 we formulate the choice of the

annealing path as an optimization problem that admits tractable gradient estimates.

In Section 4.5, we explore the geometric properties of annealing in the context of PT. When

annealing paths take values in a parametric family of distributions, we show that PT induces a

natural geometry where the local and global communication barriers are the speed and length of

the path, respectively. This geometric view provides intuition for tuning PT: the optimal schedule

as a constant speed reparameterization, and the optimal path as the geodesic minimizing the length

between π0 and π1. When π0 and π1 are nearly-mutually singular, we show that appropriately

tuning the path can lead to exponential reductions in Λ compared to the traditional path.

We propose a natural parametric family constructed from π0 and π1 that is compatible with

parallel tempering. It admits a flexible new family of spline interpolation paths for use in practice.

We provide theoretical and empirical results to demonstrate that our proposed methodology breaks

the previously-established upper-performance limits for the linear path.
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1.3.4 Chapter 5

In Chapter 5.2 we identify the scaling limit of the index processes for both reversible and non-

reversible PT as the number of parallel chains goes to infinity. We characterize the scaled index

processes through their infinitesimal generators, and we show rigorously that the scaling limit is

a piecewise-deterministic Markov process for non-reversible PT. In contrast, it is a diffusion for

reversible PT as suggested by the dynamics of the bold paths in Figure 1.4. This divergence in

scaling laws helps explain how such an innocuous change between the reversible and non-reversible

PT algorithms can substantially impact performance.
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Chapter 2

Parallel Tempering

We stand at the threshold of a many core world.

The hardware community is ready to cross this threshold.

The parallel software community is not.

— Tim Mattson

2.1 Annealing

Let (X ,F) be a measurable space. Denote P(X ) be the set of probability densities with full support

on a state space X with respect to a common dominating measure dx. For each p ∈ P(X ), we

will assume p(x) the density with respect to dx can be evaluated up to a normalizing constant.

Specifically, we presume the existence of W : X → R that we can efficiently evaluated W (x) for

each x and,

p(x) =
1

Z
exp(W (x)),

where Z =
∫
X exp(W (x))dx <∞. Given f : X → R is integrable with respect to p ∈ P(X ), we will

define the expectation of Ep[f ] to be the expectation of f with respect to p,

Ep[f ] =

∫
X
f(x)p(x)dx.

With the aid of a reference distribution π0 ∈ P(X ) which we can efficiently sample from and

evaluate π0(x), our goal will be to compute Eπ1 [f(X)] for some target distribution π1 ∈ P(X ) with

log likelihood W1(x).

13



2.1.1 The linear annealing path

We define the linear annealing path between π0 ∝ exp(W0) and π1 ∝ exp(W1) as π : [0, 1]→ P(X )

denoted β 7→ πβ ∝ exp(Wβ), with log-densities Wβ = (1 − β)W0 + βW1 linearly interpolating

between W0 and W1. The annealing distribution πβ for the linear path satisfy,

πβ(x) =
1

Z(β)
exp(W0 + βV (x)), x ∈ X

where Z(β) =
∫
X exp (Wβ(x)) dx is the normalizing constant and V (x) = W1(x) −W0(x) is the

log-likelihood ratio between π1 and π0 modulo a constant factor. We will assume we can efficiently

evaluate V (x) for x ∈ X but not Z(β) for β > 0. See Figure 1.2 for an example of a linear path.

To simplify notation, given f : X → R integrable with respect to πβ, define Eβ[f ] := Eπβ [f ] to

be the expectation of f with respect to πβ,

Eβ[f ] =

∫
X
f(x)πβ(x)dx. (2.1)

In particular, we are interested in approximating (2.1) at β = 1.

In the statistical physics literature the πβ commonly referred to as the Gibbs distribution

at inverse-temperature β and −V (x) and Z(β) are the potential energy and partition function

respectively.

2.1.2 Annealing schedule

We denote the annealing schedule as a partition BN = (β0, . . . , βN ) of [0, 1] where

0 = β0 < β1 < · · · < βN = 1,

with mesh size ‖BN‖ = supn |βn − βn−1|.

Suppose γ : [0, 1]→ [0, 1] is a strictly increasing differentiable function satisfying γ(0) = 0 and

γ(1) = 1. We say that γ is a schedule generator for BN = (β0, . . . , βN ) if βn = γ(n/N). In particular
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Figure 2.1: Estimates of the schedule generator γ for 16 models (see Section 3.4.1 for details). The
abscissa denotes the normalized chain indices n/N , the ordinates, parameters β. The function γ is
such that the schedule βn = γ(n/N) approximates equi-acceptance.

this implies,

‖BN‖ ≤
‖γ̇‖∞
N

, (2.2)

where γ̇(w) = dγ(w)
dw and ‖γ̇‖∞ = supw |γ̇(w)| is the infinity norm.

Without loss of generality, we can always assume that BN is generated by γ for all N . This is not

as strict as it seems, since for a fixed N such a γ always exists. Moreover, most annealing schedules

commonly used fall within this framework: for example, the uniform schedule BN = (0, 1
N , . . . , 1) is

generated by γ(w) = w. If π0(x) ∝ π(x)β∗ for some β∗ ∈ (0, 1), then γ(w) = β1−w
∗ −β∗
1−β∗ generates the

geometric schedule.

In Section 3.3 in the next chapters we will determine what constitutes an optimal schedule BN

and how to efficiently learn its generator γ. We show in Figure 2.1 examples of schedule generators

γ corresponding to estimated optimal schedule from various models. Figure 2.1 shows that in real

world inference scenarios, the optimal schedule often qualitatively differs from the simple geometric

schedule commonly used.
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2.2 Parallel Tempering algorithm

We define the PT state x ∈ XN+1 where x = (x0, . . . , xN ) ∈ XN+1. The PT algorithm involves

constructing a Markov chain Xt = (X0
t , . . . , X

N
t ) over XN+1 invariant with respect to

π(x) =

N∏
n=0

πβn(xn).

In particular, Xn
t tracks the states associated with annealing parameter βn at scan t. In the

literature it is common to refer to the sequence of states associated with βn as the n-th chain.

2.2.1 Local exploration kernels

The local exploration kernels are defined in the same way for Stochastic Even Odd (SEO) and

Deterministic Even Odd (DEO) communication schemes from Section 1.2.1. They are also model

specific, so we assume we are given one πβn-invariant kernel Kβn for each annealing parameter

βn ∈ B. These can be based on texpl steps of Hamiltonian Monte Carlo, Metropolis–Hastings, Gibbs

sampling, slice sampling, etc. We construct the overall local exploration kernel by applying the

annealing parameter specific kernels to each component independently from each other:

Kexpl(x,dx′) =

N∏
n=0

Kβn(xn,dx′n).

See Figure 1.3 (middle) for a visualization of the local exploration kernel Kexpl.

In our computational model, we implicitly assume that the local exploration kernel at β = 0 is spe-

cial in that it can provide independent exact samples from π0. Mathematically, K0(x,A0) = π0(A0).

This assumption is satisfied in most Bayesian models equipped with proper prior distributions, but

also in other situations such as Markov random fields (see Section 3.4.1).

2.2.2 Communication kernels.

Swaps

Before defining the communication scheme, we first construct its fundamental building block, a

swap. A swap is a Metropolis–Hastings move with a deterministic proposal x(n,n+1) for some
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n = 0, . . . , N − 1 where

x(n,n+1) = (x0, . . . , xn−1, xn+1, xn, xn+2, . . . , xN ),

consists of swapping n and n + 1-th components of x. The Metropolis-Hastings kernel K(n,n+1)

corresponding to this update is given by

K(n,n+1)(x, dx′) = (1− α(n,n+1)(x))δx(dx′) + α(n,n+1)(x)δx(n,n+1)(dx′).

The function α(n,n+1)(x) is the corresponding acceptance probability equal to

α(n,n+1)(x) = 1 ∧ π(x(n,n+1))

π(x)

= 1 ∧ exp(∆Wn+1(xn)−∆Wn+1(xn+1)), (2.3)

where ∆Wn = Wβn(x) −Wβn−1(x) is the change in log-density between πβn and πβn−1 . For the

linear path, ∆Wn simplifies to

∆Wn = (βn − βn−1)V (x). (2.4)

See Figure 1.3 (right) for a visualization of the swap kernel K(n,n+1).

Odd/Even swaps

The maximal collection of adjacent swap kernels that can be proposed in parallel without interference

are

Keven :=
∏
n even

K(n,n+1), Kodd :=
∏
n odd

K(n,n+1),

which we call the even and odd kernels respectively.

For SEO, the kernel Kcomm
t = KSEO is given by a mixture of the even and odd kernels in equal

proportion while for DEO the kernel Kcomm
t = KDEO

t is given by a deterministic alternation between
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even and odd kernels, that is

KSEO :=
1

2
Keven +

1

2
Kodd,

KDEO
t :=


Keven if t is even,

Kodd if t is odd.

2.2.3 PT kernel

For both SEO and DEO, the overall π-invariant Markov kernel KPT
t describing the algorithm is

obtained by the composition of a π-invariant local exploration kernel Kexpl and communication

kernel Kcomm
t ,

KPT
t (x, A) = Kcomm

t Kexpl(x, A) :=

∫
Kcomm
t (x, dx′)Kexpl(x′, A).

The difference between SEO and DEO is in the communication phase, namely Kcomm
t = KSEO in

the former case and Kcomm
t = KDEO

t in the latter. Markov kernels corresponding to the reversible

(SEO) and non-reversible (DEO) PT algorithms are described informally in the introduction and

illustrated in Figure 1.4. We define a scan to be one application of the PT kernel corresponding to

one local exploration and communication kernel (see Figure 1.3).

We provide pseudo-code for the DEO scheme in Algorithm 1. The pseudo-code also estimates

the average rejection probabilities r(n,n+1) of swap moves between chains n − 1 and n which are

used to optimize the annealing schedule in Section 3.3. When the schedule is fixed, lines 1, 14, 22

can be omitted, and one should use “for n ∈ P” on line 12. For simplicity, the swap in line 17 is

shown for a parallel computing context, where several cores have a shared memory, and hence line

17 is simply an exchange of pointers in an array, which is efficient thanks to memory sharing.

2.3 Distributed PT

For a distributed computing implementation, where several machines do not share memory and instead

need to communicate over the network, it becomes advantageous to swap annealing parameters

instead of states. This motivates an alternative but equivalent view of PT by describing the dynamics
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Algorithm 1 DEO

Input: Initial state x0, annealing path π, annealing schedule BN , number of scans tscan

1: r(n,n+1) ← 0 for all n ∈ {0, . . . , N − 1}
. Initialize chain

2: x← x0

3: for t in 1, 2, . . . , tscan do
. Non-reversibility inducing alternation

4: if t is even then
5: P ← {n : 0 ≤ n < N, n is even}
6: else
7: P ← {n : 0 ≤ n < N, n is odd}
8: end if

. Local exploration phase (parallelizable)
9: for n in 0, . . . , N do

10: xn ∼ Kβn(xnt−1, ·)
11: end for

. Communication phase (parallelizable)
12: for n in 1, . . . , N do

. Compute acceptance probability using Equation (2.3).
13: α← α(n,n+1)

14: r(n,n+1) ← r(n,n+1) + (1− α)
15: A ∼ Bern(α)

. Chains swap states
16: if n ∈ P and A = 1 then
17: (xn−1, xn)← (xn, xn−1)
18: end if
19: end for
20: xt ← x
21: end for

. Compute mean rejection rate using Equation (3.18)
22: r(n,n+1) ← r(n,n+1)/tscan for all n ∈ {0, . . . , N − 1}
23: return (x1, . . . ,xtscan), (r(0,1), . . . , r(N−1,N))

taking place on each machine. Define the replica process for machine m as

(Y m
t , Imt , ε

m
t ) ∈ X × {0, . . . , N} × {−1, 1},

where at time t machine m stores state Y m
t , annealing parameter βImt and proposes a swap with

the machine storing annealing parameter βImt +εmt
. In particular Yt = (Y 0

t , . . . , Y
N
t ) is equivalent

to Xt shuffled according to the indices It = (I0
t , . . . , I

N
t ) which permute {0, . . . , N}. The proposed

evolution of the indices are governed by the lifting parameters εt = (ε0, . . . , εNt ). We can interpret

Imt and εmt as the “position” and “momentum” of the trajectory of the annealing parameters on
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Figure 2.2: Illustration of the proposal, acceptance and swap indicators.

machine m.

In general the replica process for a given machine m is not Markovian, but (Yt, It, εt) is and

provides an alternative but equivalent view of the PT Markov chain. We let P
(n,n+1)
t ∈ {0, 1} denote

an indicator that a swap is proposed between chains n and n + 1 at scan t. The realized swaps

are then defined from the proposal indicators as S
(n,n+1)
t = P

(n,n+1)
t A

(n,n+1)
t , where A

(n,n+1)
t |Xt ∼

Bern(α(n,n+1)(Xt)) are acceptance indicator variables (Figure 2.2). The proposal indicators define

the communication kernel from the previous section. Equipped with this notation, we can show

that for each m = 0, . . . , N , the replica process (Y m
t , Imt , ε

m
t ) for machine m satisfies the following

recursive relation: initialize Im0 = m and εm0 = 1 if P
(m,m+1)
0 = 1 and −1 otherwise. For t > 0, we

have

Y m
t+1 ∼ KβImt

(Y m
t , ·),

Imt+1 =


Imt + εmt if S

(Imt ,I
m
t +εmt )

t = 1,

Imt otherwise,

,

εmt+1 =


1 if P

(Imt+1,I
m
t+1+1)

t = 1.

−1 otherwise.

.

This is summarized in Algorithm 2. Note that for a fixed m, the replica process (Y m
t , Imt , ε

m
t ) is not

Markovian since different machines must communicate through the swaps.
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Algorithm 2 DistributedDEO

Input: Initial state x0, annealing path π, annealing schedule BN , number of scans tscan

. Initialize chain
1: x← x0

. For a machine m, nm gives the annealing parameter index for that machine. Initialized with
the identity map.

2: n← (0, 1, 2, . . . , N)
. Initialize index process. For an annealing parameter index n, in gives the machine processing

the corresponding chain. This is the inverse of the above mapping.
3: i← (0, 1, 2, . . . , N)
4: for t in 1, 2, . . . , tscan do

. Non-reversibility inducing alternation
5: if t is even then
6: P ← {n : 0 ≤ n < N, n is even}
7: else
8: P ← {n : 0 ≤ n < N, n is odd}
9: end if

. Distributed local exploration phase
10: for m in 0, . . . , N do

. Fetch current annealing parameter for machine m
11: β ← βnm

12: xm ∼ Kβ(xmt−1, ·)
13: end for
14: for n in 0, . . . , N − 1 do

. Distributed communication phase
15: α← α(n,n+1)

. Compute acceptance probability using Equation (2.3)
16: A ∼ Bern(α)
17: if n ∈ P and A = 1 then

. Machines swap annealing parameters indices
18: (in, in+1)← (in+1, in)
19: end if
20: end for

. Recompute n from i such that in = m⇐⇒ nm = n
21: for n in 0, . . . , N do
22: m← in

23: nm ← n
24: end for
25: xt ← x
26: it ← i
27: end for
28: return (x1, . . . ,xtscan), (i0, . . . , itscan)
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2.3.1 Index process

This distributed view of parallel tempering is useful to analyze the efficiency of the algorithm. We

can study how efficiently the reference and target can communicate, by measuring how quickly a

state traverses from the reference to the target on each machine m. Recall from Section 1.2.1, that

Imt for t = 1, 2, . . . is the sequence of the indices of the annealing parameters stored on machine

m, and encodes the flow of information between the reference and target on machine m. We will

refer to the index process for machine m as (Imt , ε
m
t ). Refer to the bold paths illustrating a single

index process for N = 8, N = 30 in Figure 1.4. We will use the dynamics of the index process to

explain the differences between SEO and DEO communication. The only difference between the

two is in the proposal indicators. Define Pt = (P
(0,1)
t , P

(1,2)
t , . . . , P

(N−1,N)
t ), Pt is deterministic for

DEO, i.e. Pt = Peven = (1, 0, 1, . . . ) for even t and Pt = Podd = (0, 1, 0, . . . ) for odd t. In SEO, we

have Pt ∼ Unif{Peven,Podd}.

For SEO, the variables εmt ∼ Unif{−1, 1} are i.i.d. for a fixed m, and consequently the index

process exhibits a random walk behaviour on each machine. In contrast, for DEO, we have εmt+1 = εmt

so long as Imt+1 = Imt + εmt and εmt+1 = −εmt otherwise. Therefore the index processes for DEO persist

in direction as εt+1 is only reversed when a swap involving machine m is rejected or if the boundary

is reached. This means DEO facilitates a more systematic communication between the reference

and target. The qualitative differences between the two regimes can be seen in Figure 1.4, and in

Figure 2.3. In particular the index process for DEO in these figures behaves very differently as N

increases. We will explore this relation formally in Chapter 5 by formally deriving the scaling limit

for the index process.

As mentioned in the introduction, we refer to the PT algorithm with SEO and DEO communica-

tion as reversible PT and non-reversible PT respectively. Our terminology is somewhat abusive but

is justified by the analysis in Section 3.1.3 and Section 5.2, where it is shown that, under certain

assumptions, the index process is reversible for SEO while it is non-reversible for DEO.
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Figure 2.3: Sample trajectories of the index process for machine m = 0 for a Gaussian model with
Λ = 5 with the optimal schedule derived in Section 3.3 for N = 5, 10, 30, 100. The trajectories are
run over 100N scans for reversible PT (left) and non-reversible PT (right).

2.4 Performance metrics for PT methods

2.4.1 Effective sample size

The performance of PT is sensitive to both the local exploration and communication moves. The

quantity commonly used to evaluate the performance of MCMC algorithms is the effective sample size

(ESS); however, ESS measures the combined performance of local exploration and communication,

and is not able to distinguish between the two. Since the major difference between PT and standard
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Figure 2.4: The round trip rate and ESS for a 5× 5 Ising Model with a magnetic moment 0.1 and
texpl 1-bit flips between scans ranging from 1 to 400, and N ranging from 3 to 320. The schedule is
tuned using Algorithm 5 with ttune = 25000 scans for tuning, tsample = 25000 scans for sampling.
(Left) Round trip rate versus N for different swap attempt frequency (1/texpl). The dotted line is
the optimal round trip rate τ̄ predicted by Theorem 6. (Right) The ESS per unit cost versus round
trip rate per unit cost for each run, with a correlation coefficient of 0.81.

MCMC is the presence of a communication step, we require a way to measure communication

performance in isolation such that we can compare PT methods without dependence on the details of

the problem specific local exploration move. We will show that the round trip rate is an alternative

performance measure from the PT literature (Katzgraber et al., 2006; Lingenheil et al., 2009) that

is designed to assess communication efficiency alone.

2.4.2 Round trip rate

We are motivated by the Bayesian context where it is typically possible to obtain one independent

sample from the reference distribution π0 (i.e. from the prior distribution) at each iteration. We say

that an annealed restart has occurred on machine m when Imt goes from 0 to N (i.e. β goes from 0

to 1), which corresponds to a sample generated from π0 propagating to the target π1. Informally an

annealed restart can be thought of as a sampling equivalent to what is known in optimization as a

random restart. We say a round trip has occurred on machine m when Imt goes from 0 to N and

then goes back to 0 (i.e. β goes from 0 to 1 to 0).

Formally, we recursively define Tm↓,0 = inf{t : (Imt , ε
m
t ) = (0,−1)} and for i ≥ 1,

Tm↑,i = inf{n > Tm↓,i−1 : (Imt , ε
m
t ) = (N, 1)},

Tm↓,i = inf{n > Tm↑,i : (Imt , ε
m
t ) = (0,−1)}.
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The i-th annealed restart and round trip for machine m occurs at scan Tm↑,i and Tm↓,i respectively.

Let Tt and Rt be the total number of annealed restarts and round trips respectively during the first

t scans of PT.

We wish to optimize for the percentage of iterations that result in an annealed restart, i.e.

τ := limt→∞ E[Tt]/t, where we use abusively the same random variables for SEO and DEO but

differentiate these schemes by using the probability measures PSEO and PDEO with associated

expectation operators ESEO and EDEO. We use P and E for statements that hold for both algorithms.

If T m and Rm are the total number of annealed restarts and round trips during the first t scans on

machine m respectively, then we have

Rmt ≤ T mt ≤ Rmt + 1. (2.5)

Consequently, by summing (2.5) from m = 0, . . . , N , we have

Rt ≤ Tt ≤ Rt +N + 1.

By taking limit as t→∞ and using the squeeze theorem we have

τ = lim
t→∞

E[Rt]
t

.

In the PT literature, τ is commonly referred to as the round trip rate and has been used to

compare the effectiveness of various PT algorithms (Katzgraber et al., 2006; Lingenheil et al., 2009;

Jacka and Hernández-Hernández, 2019). Empirically we observed that round trips per unit cost

strongly correlate with ESS per unit cost as seen in Figure 2.4, making the round trip rate a natural

objective function to compare and tune parallel tempering algorithms.

2.4.3 Expected square jump distance

Another performance metric commonly used in the PT literature is the expected square jump distance

(ESJD) (Atchadé et al., 2011; Kone and Kofke, 2005). While this criterion is useful within the

context of reversible PT for selecting the optimal number of parallel chains, the ESJD is too coarse

to compare reversible to non-reversible PT methods as, for any given annealing schedule, the ESJD
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is identical in both cases. Moreover, it is not well motivated for non-reversible PT since the annealing

parameter process does not exhibit diffusive behaviour (see Figure 1.4 and Section 5.2).
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Chapter 3

Non-reversible parallel tempering

The hammers must be swung in cadence, when more than one is hammering the iron.

— Giordano Bruno

In this chapter, we will analyze the non-asymptotic and asymptotic performance for both

reversible and non-reversible PT with the assumption that π is the linear annealing path between

reference π0 and target π1 constructed in Section 2.1.1. We will expand this theory to more general

annealing paths in Chapter 4.

3.1 Non-asymptotic analysis of PT algorithms

3.1.1 Model of compute time

We start with a definition of what we model as one unit of compute time: throughout the paper, we

assume a massively parallel or distributed computational setup and sampling once from each of the

local exploration kernel Kβ has cost O(texpl) which dominates the cost of the swap kernel K(n−1,n).

Consequently a scan of PT has cost O(texpl) and for a fixed computational budget ttotal, the total

number of scans is tscan = O(ttotal/texpl).

The assumption that the per-iteration cost of PT is independent of the number of chains is

reasonable in GPU and parallel computing scenarios, since the communication cost for each swap

does not increase with the dimension of the problem (by swapping annealing parameters instead

of states). We also assume that the number of PT scans will dominate the number of parallel

cores available, i.e. tscan � N . This is reasonable when addressing challenging sampling problems.

Although there are numerous empirical studies on multi-core and distributed implementation of PT

(Altekar et al., 2004; Mingas and Bouganis, 2012; Fang et al., 2014), we are not aware of previous

theoretical work investigating such a computational model.

27



3.1.2 Model assumptions

The analysis of the round trip times is in general intractable because the index process is not

Markovian. Indeed, simulating a transition depends on the swap indicators from Section 2.3). Recall

a swap indicator for a proposed swap move is S
(n−1,n)
t ∼ Bern(α(n−1,n)(X)) where the acceptance

probability equals

α(n−1,n)(X) = 1 ∧ exp((βn − βn−1)(V (Xn−1)− V (Xn)). (3.1)

Notice this implies the swap indicator depend on the state configuration X through V (Xn−1)

and V (Xn). To simplify the analysis, we will make in the remainder of the chapter the following

simplifying assumptions:

(A1) Stationarity : X0 ∼ π and thus Xt ∼ π for all t as the kernel KPT
t is π-invariant.

(A2) Efficient Local Exploration (ELE): For X ∼ π and X̄|X ∼ Kexpl(X, dx̄), the random variables

V (Xn) and V (X̄n) are independent for all n = 1, . . . , N .

It follows from Assumptions (A1)–(A2) and (2.3) that the behaviour of the communication

scheme only depends on the distribution of the state Xt via the N + 1 univariate distributions of

the chain-specific log-likelihood V (Xn), n ∈ {0, 1, 2, . . . , N}. This allows us to build a theoretical

analysis which makes no structural assumption on the state space X or the target π1 as typically

done in the literature: for example, Atchadé et al. (2011) assume a product space X = X d for

large d, and Predescu et al. (2004) assume πβ satisfies a constant heat capacity (i.e. β−2Varβ [V ] is

constant).

Admittedly the ELE assumption (A2) does not hold in practical applications. ELE can be

approximated by increasing the number of local exploration kernels applied between consecutive

swap (texpl). However one may worry that to achieve a good approximation in challenging problems,

texpl would have to be set to a value so large as to defy the practicality of our analysis. Surprisingly,

we have observed empirically that this was not the case in the multimodal problems we considered.

Figure 3.1 displays results in four models where a local exploration kernel alone induces good mixing

of the energy chain V (XN
t ) (hence ELE can be approximated) yet the local exploration kernel

alone is insufficient to achieve good mixing on the full state space, Xt (so that PT is justified and
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Figure 3.1: Four multimodal examples (described in Section 3.4.1) where a local exploration kernel
provides a reasonable approximation of the ELE assumption. For each inference problem, we show
trace plots for MCMC based on single chain (i.e. the local exploration kernel alone; left facet), and
for a non-reversible PT algorithm based on the same local exploration kernel (right facet). The top
facets each show a component of chain XN

t , and the bottom facets, the energy −V (XN
t ) for the

chain targeting π1.

indeed yields efficient exploration of the configuration space). This gap is possible since V (X) is

1-dimensional and potentially unimodal even when X is not. This is the motivation for ELE since

the independence of V (X) and V (X̄) is weaker than assuming the independence of X and X̄ (as

hypothesized e.g. in Section 5.1 of Atchadé et al. (2011)) defeating the need for PT in the first

place. Obviously ELE is still expected to be a somewhat crude simplifying assumption in very

complex problems; e.g. for the highly challenging high-dimensional copy number inference problem

illustrated in Figure 3.1.

In Section 3.4.2, we describe additional empirical results supporting that ELE is a useful model

for the purpose of designing and analyzing PT algorithms. In the severe ELE violation regime, we

show that the key quantities used in our analysis are either well approximated, or approached as N

increases.

Assumptions (A1)-(A2) allow us to express the swap indicators as independent Bernoulli random
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variables S
(n−1,n)
t ∼ Bern(s(n−1,n)) where s(n−1,n) is given by the expectation of Equation (3.1),

s(n−1,n) := Eπ
[
α(n−1,n)(X)

]
= E

[
1 ∧ exp

(
(βn − βn−1)(V (Xn−1)− V (Xn))

)]
.

where the second expectation is over two independent random variables Xn ∼ πβn and Xn+1 ∼ πβn+1 .

3.1.3 Reversibility and non-reversibility of the index process

Under assumptions (A1)-(A2), each machine’s index process (Imt , ε
m
t ) is Markovian for m = 0, . . . , N

with transition kernel KSEO and KDEO for reversible and non-reversible PT respectively. We drop

the superscript m when the particular machine is not relevant.

For PT with SEO communication and index process initialized at (I0, ε0), we can construct the

Markov transition kernel KSEO satisfying (It+1, εt+1) ∼ KSEO((It, εt), ·) in two steps. In the first

step, simulate It+1|(It, εt),

It+1|(It, εt) ∼


(It + εt) ∧N ∨ 0 with probability s(It,It+εt),

It otherwise,

(3.2)

where the expression “∧N ∨ 0” enforces the annealing parameter boundaries. In the second step,

independently sample

εt+1 ∼ Unif{−1,+1}.

Similarly for DEO, initialize the index process at (I0, ε0). Analogous to the SEO construction, we

construct KDEO satisfying (It+1, εt+1) ∼ KDEO((It, εt), ·) in two steps. We first update It+1|(It, εt)

as in (3.2), but apply the deterministic update in the second step,

εt+1 =


εt if It+1 = It + εt,

−εt otherwise.

The kernel P SEO defines a reversible Markov chain on {0, . . . , N} × {−1, 1} with uniform
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stationary distribution while KDEO satisfies the skew-detailed balance condition with respect to the

same distribution,

KDEO((i, ε), (i′, ε′)) = KDEO((i′,−ε′), (i,−ε)),

and is thus non-reversible. It falls within the generalized Metropolis–Hastings framework, see, e.g.,

Lelièvre et al. (2010, Section 2.1.4).

Reversibility necessitates that the Markov chain must be allowed to backtrack its movements.

This leads to inefficient exploration of the state space. As a consequence, non-reversibility is

typically a favourable property for MCMC chains. A common recipe to design non-reversible

sampling algorithms consists of expanding the state space to include a “lifting” parameter that

allows for a more systematic exploration of the state space (Chen et al., 1999; Diaconis et al., 2000;

Turitsyn et al., 2011; Vucelja, 2016).

The index process (It, εt) for non-reversible PT can be interpreted as a “lifted” version of the

index process for reversible PT with lifting parameter εt. Under DEO communication, It travels in

the direction εt and only reverses direction when It reaches a boundary or when a swap rejection

occurs. This “lifting” construction helps explain the qualitatively different behaviour between

reversible and non-reversible PT and will be further explored when identifying the scaling limit of

(It, εt) in Section 5.2. The lifted PT of Wu (2017) exploits a similar construction but only one of

the N + 1 index processes is lifted instead of all of them for DEO. A lifted version of simulated

tempering has also been proposed by Sakai and Hukushima (2016).

3.1.4 Non-asymptotic domination of non-reversible PT

Assumptions (A1)-(A2) ensure that for each m = 0, . . . , N , Rmt is a delayed renewal processes where

the renewal event is a round trip occurring at time Tmi . The corresponding inter-arrival times

is Tmi = Tm↓,i − Tm↓,i−1 for i ≥ 1 and m = 0, . . . , N . In particular, for a fixed m, the {Tmi }∞i=1 are

independent and identically distributed. By the key renewal theorem, we have

τ =
N∑
m=0

lim
t→∞

E[Rmt ]

t
=
N + 1

E[T ]
, (3.3)
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where T
d
= Tmi .

An analytical expression for E[T ] for reversible PT was first derived by Nadler and Hansmann

(2007). We derive an alternative proof for reversible PT and extend it to non-reversible PT in

Theorem 1.

Theorem 1. For any annealing schedule BN = (β0, . . . , βN ),

ESEO[T ] = 2(N + 1)N + 2(N + 1)Λ(BN ), (3.4)

EDEO[T ] = 2(N + 1) + 2(N + 1)Λ(BN ), (3.5)

where Λ(BN ) equals

Λ(BN ) :=
N∑
n=1

r(n−1,n)

1− r(n−1,n)
, (3.6)

and r(n−1,n) := 1− s(n−1,n) is the probability of rejecting a swap between chains n− 1 and n.

The proof can be found in Appendix A.1.1.

Intuitively, Theorem 1 implies E[T ] can be decomposed as the independent influence of commu-

nication scheme Kcomm
t and schedule BN respectively. When all proposed swaps are accepted (i.e.

π = π0), the index process for reversible PT reduces to a simple random walk on {0, . . . , N}, whereas

for non-reversible PT, the index processes takes a direct path from 0 to N and back. Therefore, the

first term in (3.4) and (3.5) represents the expected time for a round trip to occur in this idealized,

rejection-free setting. In particular this suggests that DEO is the optimal communication scheme

since it achieves the minimal round trip time of 2N .

The second term of (3.4) and (3.5) are identical and represent the additional time required to

account for rejected swaps under schedule BN . To understand the intuition behind this term we

remark that rn
1−rn is the expectation of geometric random variable with failure probability rn and

represents number of failures before a replica moves from βn−1 to βn. We can interpret Λ(BN ) in

(3.6) as the total number of rejections per chain required for π0 to communicate with π1 through

the annealing distributions πβ1 , πβ2 , . . . , πβN−1
.

Motivated by Theorem 1, we will refer to Λ(BN ) as the non-asymptotic communication barrier.

By applying Theorem 1 to Equation (3.3), we get a non-asymptotic formula for the round trip rate
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in terms of Λ(BN ).

Corollary 2. For any annealing schedule BN we have

τSEO(BN ) =
N + 1

ESEO[T ]
=

1

2N + 2Λ(BN )
, (3.7)

τDEO(BN ) =
N + 1

EDEO[T ]
=

1

2 + 2Λ(BN )
. (3.8)

Consequently, τDEO(BN ) > τSEO(BN ) for N > 1.

Note that (3.7) implies that τSEO ≤ 1
2N regardless of the chosen schedule BN and so reversible

PT penalizes the user for choosing a large number of chains N . However if N is chosen to be too

small, then we should expect the rejection probabilities rn to be high which will lead to a large

Λ(BN ). We will see in the following section that for hard problems, controlling Λ(BN ) requires a

potentially large N , rendering reversible PT useless. This makes reversible PT extremely sensitive

to the choice of N as well as the schedule.

In contrast, Corollary 2 implies that non-reversible PT dominates reversible PT for any N > 1

and any annealing schedule BN . Moreover, (3.8) does not suffer from the same deterioration in

performance for choosing a large N . We will see in Theorem 6 in Section 3.2.4 that the round trip

rate actually improves with N and is robust to the choice of schedule.

3.2 Asymptotic analysis of PT algorithms

3.2.1 Rejection rate as divergence

Corollary 2 informs us that the performance of parallel tempering can be studied through Λ(BN )

which depends on the swap statistics. We begin our analysis by studying the dynamics of the swaps

between two distributions p, p′ ∈ P(X ) independent of annealing paths. We define the swap and

rejection rates s, r : P(X )× P(X )→ [0, 1] respectively as,

s(p, p′) := E
[
1 ∧ p(X

′)p′(X)

p(X)p′(X ′)

]
, (3.9)

r(p, p′) := 1− s(p, p′), (3.10)
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where the expectation in (3.9) is taken with respect to independent random variables X ∼ p,X ′ ∼ p′.

The swap rate corresponds to the Metropolis-Hastings acceptance probability for a swap occurring

between distributions p, p′ ∈ P(X ). In particular, note that s(n−1,n) = s(πβn−1 , πβn) for all n =

1, . . . , N . By computing the expectation in (3.9) we can find an alternative representation for the

rejection rate,

r(p, p′) = 1−
∫
p(x)p′(x′) ∧ p′(x)p(x′)dxdx′

=
∥∥p× p′ − p′ × p∥∥

TV
.

This implies that the rejection rate r(p, p′) is equal to the total variation distance between the

product measures p× p′ and p′ × p and measures the similarity of p and p′ in terms of overlap of

their densities (see Neklyudov et al. (2018)[Theorem 1] for details). In general, r(p, p′) is equal to

zero if and only if p = p′ and thus defines a symmetric divergence but is not a metric since the

triangle inequality does not hold in general. By applying Pinsker’s inequality, we obtain a bound

for the square rejection rate

r(p, p′)2 ≤ SKL(p, p′), (3.11)

where SKL(p, p′) is the symmetric Kullback-Leibler (SKL) divergence defined as,

SKL(p, p′) :=
1

2
(KL(p, p′) + KL(p′, p)),

and KL(p, p′) :=
∫
X log

(
p(x)
p′(x)

)
p(x)dx is the Kullback-Leibler (KL) divergence.

Given p(x) ∝ exp(W (x)) and p′(x) ∝ exp(W ′(x)) ∈ P(X ), define W̄ (x) = 1
2(W (x) + W ′(x))

and p̄(x) ∝ exp(W̄ (x)) ∈ P(X ) as corresponding to the midpoint of the linear path connecting p, p′.

Then it follows from the computation in Predescu et al. (2004, Equation (6)), that we can rewrite

the rejection rate in terms of an expectation of X,X ′
i.i.d.∼ p̄,

r(p, p′) = 1−
Ep̄[exp(−1

2 |∆W (X)−∆W (X ′)|]
Ep̄[exp(−1

2(∆W (X)−∆W (X ′))]
, (3.12)

where ∆W (x) = W ′(x)−W (x) is the log-likelihood ratio between p and p′. By applying a Taylor
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expansion to (3.12) we extend Proposition 1 in Predescu et al. (2004) and arrive at the following

theorem.

Theorem 3. If ∆W 3 is integrable with respect to p and p′, then Ep̄[|∆W |3] < ∞ and for some

C > 0 independent of p, p′

∣∣∣∣r(p, p′)− 1

2
Ep̄
[
|∆W (X)−∆W (X ′)|

]∣∣∣∣ ≤ CEp̄[|∆W |3],

where X,X ′
i.i.d.∼ p̄.

See Appendix A.1.2 for the proof.

A subtle but important point to make is that the rejection rate r(p, p′) is defined independently

of the path connecting p and p′, however Theorem 3 suggests that the rejection rate r(p, p′) is

implicitly interpolating along a linear annealing path between p, p′. This motivates a deep connection

of parallel tempering to the linear path, which we will see in the next section and also gives insights

into how we can expand the PT framework to non-linear paths, which we will explore in Chapter 4.

3.2.2 The local communication barrier

Now we return out attention to the linear path πβ interpolating between π0 and π1. We define

the swap and rejection rate s, r : [0, 1]2 → [0, 1] respectively by s(β, β′) = s(πβ, πβ′) and r(β, β′) =

r(πβ, πβ′). In this case (3.9) and (3.10) simplify to an expectation with respect to independent

one-dimensional random variables V (X), V (X ′),

s(β, β′) = E
[
1 ∧ exp((β′ − β)(V (X)− V (X ′))

]
,

r(β, β′) = 1− s(β, β′),

where X ∼ πβ and X ′ ∼ πβ′ are independent.

To study the dynamics of the parallel tempering as N → ∞ or equivalent as ‖BN‖ → 0, we

need to study the behaviour of r(β, β′) when β ≈ β′. The key quantity that drives this asymptotic

35



regime is given by a function λ : [0, 1]→ [0,∞)

λ(β) := lim
∆β→0

r(β, β + ∆β)

|∆β|
.

Using Theorem 3, we can show that the rejection rate is approximated up to second order by λ.

Theorem 4. Suppose V 3 is integrable with respect to π0 and π1 and 0 ≤ β < β′ ≤ 1, then for some

C > 0 independent of πβ∣∣∣∣∣r(β, β′)−
∫ β′

β
λ(u)du

∣∣∣∣∣ ≤ C sup
u∈[β,β′]

Eu[|V |3]|β′ − β|3,

where λ is twice continuously differentiable and equal to

λ(β) =
1

2
Eβ[|V (X)− V (X ′)|], X,X ′

i.i.d.∼ πβ. (3.13)

See Appendix A.1.3 for the proof.

We can interpret λ as the instantaneous rate of rejection of a proposed swap at annealing

parameter β. When λ(β) is high, swaps are much more likely to be rejected, implying λ(β) measures

how sensitive πβ to small perturbations in β. Motivated by Theorem 4 we will henceforth refer

to λ as the local communication barrier, since a large λ(β) makes communicating with a chain at

annealing parameter β difficult. See Figure 3.7 (center) for examples of estimated λ from various

models.

3.2.3 The global communication barrier

By summing the rejection rate for any annealing schedule BN Theorem 4 tells us that the sum of

the rejection rates is approximately constant and equal to Λ :=
∫ 1

0 λ(β)dβ up to an O(1/N2) error.

Corollary 5. Suppose V 3 is integrable with respect to π0 and π1, and BN is generated by γ, then

∣∣∣∣∣
N∑
n=1

r(βn−1, βn)− Λ

∣∣∣∣∣ ≤ C‖V 3‖π‖γ̇‖2∞
N2

,

where ‖V 3‖π = supβ∈[0,1] Eβ[|V |3] <∞.

36



See Appendix A.1.4 for the proof.

Corollary 5 tells us that when N is large, the sum of the rejection rates is approximately invariant

to any choice of BN . This approximate invariance is a surprising and non-trivial fact that will

have significant consequences for both the theoretical and methodological advancements of the PT

algorithm, which we will explore in Sections 3.2.4 and 3.3.

Since λ is a measure of much πβ deforms for small changes in β, we can interpret Λ as total

deformation occuring between π0 and π1 along the path πβ . Motivated by Corollary 5 we will refer

to Λ as the global communication barrier.

Notice that Λ ≥ 0 with equality if and only if λ(β) = 0 for all β ∈ [0, 1]. It can be easily

verified from (3.13) that λ = 0 if and only if V is constant πβ-a.s. for all β ∈ [0, 1] which happens

precisely when π0 = π. So Λ defines a natural symmetric divergence measuring the difficulty of

communication between π0 and π. It can be interpreted as the “total rejection” along the linear

path πβ between π0 and π1.

3.2.4 Asymptotic domination of non-reversible PT

In the previous section, we performed an asymptotic swap analysis and discovered the communication

barrier. We will now use the communication barrier to analyze the asymptotic performance of

parallel tempering when the number of parallel chains N is large. Recall from Corollary 2 in Section

3.1.4 that the round trip rate is controlled by the non-asymptotic communication barrier Λ(BN ).

By Corollary 5 the non-asymptotic communication barrier is bounded below by Λ up to an

O(1/N2) error,

Λ(BN ) =
N∑
n=1

r(βn−1, βn)

1− r(βn−1, βn)
≥

N∑
n=1

r(βn−1, βn) = Λ +O

(
1

N2

)
.

This combined with Corollary 2 implies as N →∞, round trip rate for non-reversible PT satisfies

lim sup
N→∞

τDEO(BN ) ≤ τ∞,

where τ∞ := (2 + 2Λ)−1 as N →∞. Theorem 6 shows that as N →∞, the limit of the round trip

rate for both reversible and non-reversible PT exists, and converges to an upper bound as N →∞
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unlike reversible PT which decays to zero. This can be empirically observed in Figure 2.4 (left).

Theorem 6. Suppose V 3 is integrable with respect to π0 and π1 and BN is generated by a schedule

generator γ. Then as N →∞ we have:

(a) The non-asymptotic communication barrier Λ(BN ) converges to Λ and satisfies,

|Λ(BN )− Λ| ≤ ‖V ‖π‖γ̇‖∞
N

+O

(
1

N2

)
,

where ‖V ‖π = supβ Eβ[|V |].

(b) The round trip rate for reversible PT, τSEO, goes to zero:

τSEO(BN ) ∼ 1

2N + 2Λ
−→ 0.

(c) The round trip rate for non-reversible PT, τDEO satisfies

τDEO(BN ) −→ τ∞ > 0,

where τ∞ = (2 + 2Λ)−1, and the convergence occurs with the same rate as Λ(BN ).

See Appendix A.1.5 for the proof.

We remark that when N is large, the round trip rate for reversible PT decays to zero regardless

of the choice of schedule and is very sensitive to the choice of schedule for low values of N . In

contrast, τDEO(BN ) converges to τ∞ for any schedule BN as long as ‖BN‖ → 0. This shows that

when N is large, τDEO is robust to the choice of schedule. We can see this behaviour in Figure

3.2 (right) comparing reversible and non-reversible PT for both a uniform schedule generated by

γ(w) = w and the (approximately) optimal schedule derived in Section 3.3.1. We will explore how

to overcome this limitation in Chapter 4.

In general, Λ is large when π0 deviates significantly from π1 and defines the problem’s difficulty.

Since Λ is problem-specific, this identifies a limitation of PT present even in its non-reversible

flavour. Adding more cores to the task will never be harmful but does have a diminishing return.

The bound τ∞ = (2 + 2Λ)−1 could indeed be very small for complex problems. Moreover, it is
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Figure 3.2: (Left) Optimal annealing schedule for the Ising model with M = 20, Λ = 13.33 with
N = 30 (see Section 3.2.6 for details). The vertical line is at the critical inverse-temperature βc.
(Right) The round trip rates for the Ising model with M = 20 as a function of N with uniform
schedule (dashed) and the optimal schedule (solid) for both non-reversible PT (blue) and reversible
PT (red). The dotted horizontal line represents the approximation of the optimal round trip rate
τ̂∞ = (2 + 2Λ̂)−1.

independent of the choice of annealing schedule, and hence it cannot be improved by the schedule

optimization procedure described in Section 3.3.

3.2.5 High-dimensional scaling of communication barrier

We notice that the asymptotic performance of parallel tempering is entirely controlled by Λ. It is

known that parallel tempering suffers from the curse of dimensionality (Atchadé et al., 2011), which

should be accounted for by Λ. We determine here the asymptotic behaviour of λ and Λ when the

dimension d of X is large. To make the analysis tractable, we assume that the reference and target

distributions factorize as d identical copies of π0 and π1 respectively as in Atchadé et al. (2011);

Roberts and Rosenthal (2014),

π
(d)
0 (x(d)) =

d∏
i=1

π0(xi), π
(d)
1 (x(d)) =

d∏
i=1

π1(xi),

where x(d) = (x1, . . . , xd) ∈ X d. This provides a model for weakly dependent high-dimensional

distributions. We only make this structural assumption on the state space and distribution to

establish Proposition 7 below.
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The corresponding linear annealing path is given by

π
(d)
β (x(d)) =

d∏
i=1

π
(d)
β (xi). (3.14)

Let λ(d) and Λ(d) be the local and global communication barriers for π
(d)
β respectively. It follows

from Proposition 7 that λ(d) and Λ(d) increase at a O(d1/2) rate as d→∞.

Proposition 7 (High Dimensional Scaling). If V 3 is integrable with respect to π0 and π1, then

d→∞,

λ(d)(β) ∼
√
d

π̂
I(β) , Λ(d) ∼

∫ 1

0

√
d

π̂
I(β) dβ,

where I(β) = Varβ[V ] is the Fisher information of πβ, and π̂ in the denominator is the constant

3.141 . . . .

See Appendix A.1.6 for the proof.

We remark dI(β) is the Fisher information for the annealing path π
(d)
β . In particular, Proposition

7 implies that in the high-dimensional limit, λ2 scales to a constant multiple of the Fisher information.

This fact will be exploited when studying the geometric properties of PT in Chapter 4.

Multimodal decomposition of the communication barrier

Since PT is often used to sample from multimodal targets, it is natural to ask how the communication

barrier behaves under the presence of modes. Similar to Woodard et al. (2009), we partition X into

the disjoint union X =
⋃K
k=1Xk where Xk represents region corresponding to the k-th mode of π

and the target decomposes as a mixture of its modes π1(x) =
∑K

k=1 pkπ1(x|Xk) where pk = π(Xk)

and π1(x|Xk) = p−1
k π1(x)IXk(x) are the probability mass and distribution of the k-th mode. If we

assume that the reference distribution puts the same relative mass on each mode as the target,

π0(Xk) = π1(Xk), then πβ decomposes as

πβ(x) ∝
K∑
i=1

pkπβ(x|Xk).
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Similarly V (x) =
∑K

k=1 Vk(x)IXk(x) where Vk(x) = − log(π1(x|Xk)/π0(x|Xk)). Define λk,k′(β) and

Λk,k′ as the local and global communication barrier between mode k and k′ by

λk,k′(β) =
1

2
E [|Vk(Xk)− Vk′(Xk′)|] , Λk,k′ =

∫ 1

0
λk,k′(β)dβ,

where Xk ∼ πβ(x|Xk) and Xk′ ∼ πβ(x|Xk′) are independent. An immediate consequence of (3.13)

in Theorem 4 implies the following decomposition of the communication barrier.

Proposition 8 (Multimodal decomposition). Suppose V 3 is integrable with respect to π0 and π1.

If π0(Xk) = π1(Xk) then,

λ(β) =
K∑
k=1

K∑
k′=1

pkpk′λk,k′(β), Λ =
K∑
k=1

K∑
k′=1

pkpk′Λk,k′ , (3.15)

In particular (3.15) implies Λ is a weighted average over the communication barriers between

modes. For the specific case where the modes are symmetric under a change of labels, we have

Λk,k′ = Λ and thus Λ is invariant to K. We remark that the meta-model used in this section is not

realistic for practical problems as we do not know apriori the location of the modes. This meta-model

is only used to obtain intuition on the multimodal scalability of the method. Section 3.4.1 illustrates

the empirical behaviour of the method in several genuinely challenging multimodal problems.

The takeaway is that parallel tempering is stable if the reference overlaps the modes of the

target. If the reference distribution fails to capture the target mass, which is often the case for

complex problems in practice, one should expect to see severe deterioration in performance. In

Chapter 4, we still discuss how to improve the performance of PT when the reference and target

distributions are nearly mutually singular.

3.2.6 Examples

Gaussian model

Suppose π1 ∼ N(0, σ2
1Id), and π0 ∼ N(0, σ2

0Id) with σ0 > σ1. It can be shown that πβ ∼

N(0, σ(β)2Id) where σ(β)−2 = (1− β)σ−2
0 + βσ−2. Theorem 1 in Predescu et al. (2004) implies the
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following closed form expressions for λ(β) and Λ(β),

λ(β) =
21−d(σ−2

1 − σ
−2
0 )

B
(
d
2 ,

d
2

) σ(β)2, Λ =
22−d

B
(
d
2 ,

d
2

) log

(
σ0

σ1

)
, (3.16)

where B(a, b) is the beta function. As d→∞, we have Λ ∼
√

2d
π log

(
σ0
σ1

)
, which is consistent with

Proposition 7.

Ising model

We now estimate the communication barrier for the Ising model on a 2-dimensional lattice of size

M ×M with magnetic moment µ. Using the notation xi ∼ xj to indicate sites that are nearest

neighbours on the lattice, the target distribution is annealed by the inverse temperature β and the

tempered distributions are given by

πβ(x) =
1

Z(β)
exp

β ∑
xi∼xj

xixj + µ
∑
i

xi

 .

This is an M2 dimensional model which undergoes an approximate phase transition as M →∞ at

some critical inverse-temperature βc. When µ = 0 it is known that βc = log(1 +
√

2 )/2 (Baxter,

2007). We consider experiments with µ = 0 and with µ = 0.1, the latter denoted “Ising with

magnetic field” and abbreviated “magnetic” in composite figures.

We observe that λ exhibits very different characteristics in this scenario compared to the Gaussian

model: it is not monotonic and is maximized at the critical temperature. Consequently, the optimal

annealing schedule is denser near the phase transition. We also note from Figure 3.3 that both λ and

Λ increase roughly linearly with respect to M , similarly to the conclusion of Proposition 7, however

here the conditions of Proposition 7 do not apply. In Section 3.3.1, we will see as N increases, the

round trip rate of reversible PT decays to zero and non-reversible PT increases towards (2 + 2Λ)−1

(see Figure 3.2). This is consistent with Theorem 6.

Discrete-multimodal problem

Consider a discrete state space X = {1, . . . , 2k}, and let 1Even : X → {0, 1} denote the indicator

function for even numbers. Define π1(x) = 1
ka1+ka

1even(x)
1 and π0(x) = 1

ka0+ka
1even(x)
0 with a0, a1 > 0.
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Figure 3.3: Estimate of the local communication barrier (left) and global communication barrier
(right) for the Ising model with µ = 0 and M = 5, 10, 20, 30. The vertical line is at the phase
transition.

In this example ai represents the relative mass placed on the even sites relative to the odd sites.

The log likelihood is V (x) = 1even(x) log a1
a0

with annealing path,

πβ(x) =
1

Z(β)
a

1even(x)
β ,

where aβ = a1−β
0 aβ1 and Z(β) = k(1 + aβ). A simple computation using (3.13) shows that the local

communication barrier is,

λ(β) =
aβ log(a)

(1 + aβ)2
,

where a = |a1a0 |. By integrating we obtain the global communication barrier between π and π0,

Λ =
a− 1

2(a+ 1)
.

Notice this is consistent with Proposition 8 and is independent of the number of modes.
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3.3 Tuning non-reversible PT

So far we have established that non-reversible PT dominates reversible PT both non-asymptically

and asymptotically for any BN for a fixed N and as N →∞. In practice the performance of PT is

very sensitive to the choice of schedule. We will establish in this section practical tuning guidelines

for non-reversible PT.

3.3.1 Optimal annealing schedule

We first discuss how to optimize the annealing schedule BN to maximize τDEO when N is fixed,

which is equivalent to minimizing the non-asymptotic communication barrier inefficiency, Λ(BN ) =∑N
n=1 rn/(1− rn) where rn = r(βn−1, βn). To get a tractable approximate characterization of the

feasible region of r1, r2, . . . , rN , we use Corollary 5, which implies
∑N

n=1 rn ≈ Λ for all schedules BN .

Therefore assuming ‖BN‖ is small enough to ignore the error term, finding the optimal schedule B∗N

is approximately equivalent to solving the constrained optimization problem:

minimize

N∑
n=1

rn
1− rn

,

s.t.

N∑
n=1

rn = Λ,

rn ≥ 0.

Using Lagrange multipliers this leads to a solution where the rejection probabilities r∗n are constant

in n, with a shared value denoted by r∗.

Consequently, the optimal schedule B∗N = (β∗0 , . . . , β
∗
N ) satisfies r(β∗n−1, β

∗
n) = r∗ for all n.

Theorem 4 and Corollary 5 imply that r∗ must satisfy r∗ ≈
∫ β∗n
β∗n−1

λ(β)dβ for all n and r∗ ≈ Λ/N

with an O(N−3) error. By equating these two estimates for r∗ and summing from n = 1, . . . , N we

get

∫ β∗n

0
λ(β)dβ ≈ n

N
Λ, n = 0, . . . , N, (3.17)

with an error of O(N−2). If we ignore error terms, (3.17) implies that β∗n ≈ γ(n/N) where
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Algorithm 3 UpdateSchedule

Input: Communication barrier λ, schedule size N
1: Λ←

∫ 1
0 λ(β)dβ

2: for n in 0, 1, 2, ..., N do
3: Find β∗n that solves Equation (3.17) using e.g. bisection.
4: end for
5: return B∗N = (β∗0 , β

∗
1 , β
∗
2 , . . . , β

∗
N )

γ(w) = F−1(w) and F (β) = Λ(β)/Λ (see Figure 3.4(2)). In general λ is not known but instead

estimated from the MCMC output.

The “equi-acceptance” result in (3.17) is consistent with other theoretical frameworks and

notions of efficiency (Atchadé et al., 2011; Lingenheil et al., 2009; Kofke, 2002; Predescu et al., 2004).

However implementing this equi-acceptance recommendation in practice is non-trivial. Previous

work relied on Robbins-Monro schemes (Atchadé et al., 2011; Miasojedow et al., 2013), which

introduce sensitive tuning parameters. In contrast, provided the integral of λ can be estimated

reliably (which we establish with Algorithm 4 in the next section), (3.17) provides the basis for a

straightforward and effective schedule optimization scheme, described in Algorithm 3.

Example: Gaussian

Substituting (3.16) into (3.17) we have that β∗n satisfies

σβ∗n = σ
1− n

N
0 σ

n
N
1 .

This is the same spacing obtained (based on a different theoretical approach) in Atchadé et al.

(2011) and Predescu et al. (2004) for the Gaussian model. This combined with Proposition 8 also

justifies why the geometric schedule works for Gaussian mixture models with well-separated modes.

Example: Ising model

The Gaussian model is a rare case where the optimal schedule can be analytically determined. In

practice, we need to approximate it using an estimate of the communication barrier. For example,

in Figure 3.2 we compute the optimal schedule for the Ising model using Algorithm 3 and using the

local communication barrier from Section 3.3. Notice that the optimal schedule is not a geometric
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schedule often used in the literature and our algorithm automatically increases the density of

annealing parameters near the critical temperature.

3.3.2 Estimation of the communication barrier

The goal of this section is to find an approximation to the communication barrier, or equivalently

approximate the cumulative communication barrier

Λ(β) :=

∫ β

0
λ(u)du.

Assume we have access to a collection of samples (X1,X2, . . . ,XT ) from a non-reversible PT scheme

based on an arbitrary annealing schedule BN . These samples may come from a short pilot run,

or, as described in the next section, from the previous round of an iterative scheme. For a given

schedule BN , when the central limit theorem for Markov chains holds, the Monte Carlo estimates

for the rejection rates satisfy

r̂(n−1,n) =
1

T

T∑
t=1

α(n−1,n)(Xt) = r(n−1,n) +Op(T
−1/2). (3.18)

Next, using Theorem 4 we obtain
∑n

i=1 r
(i−1,i) = Λ(βn) + O(N−2). This motivates the following

approximation for Λ(βn),

Λ̂(βn) =
n∑
i=1

r̂(i−1,i), (3.19)

which has an error of order Op(
√
N/T +N−2) (see Figure 3.4 (left)).

Given Λ̂(β0), . . . , Λ̂(βN ), we estimate the function Λ̂(β) via interpolation, with the constraint

that the interpolated function should be monotone increasing since λ(β) ≥ 0. Specifically, we use

the Fritsch-Carlson monotone cubic spline method (Fritsch and Carlson, 1980) and denote the

monotone interpolation by Λ̂(β). While we only use Λ̂(β) in our schedule optimization procedure, it

is still useful to estimate λ(β) for visualization purposes. We use the derivative of our interpolation,

λ̂(β) = d
dβ Λ̂(β), which is a piecewise quadratic function.

The ideas described in this section so far are summarized in Algorithm 4, which given rejection
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Algorithm 4 CommunicationBarrier

Input: Rejection rate {r(n−1,n)}, schedule BN
1: For each βn ∈ BN , compute Λ(βn) using Equation (3.19)
2: S ← {(β0,Λ(β0)), (β1,Λ(β1)), . . . , (βN ,Λ(βN ))}
3: Compute a monotone increasing interpolation Λ(·) of the points S

. e.g. using Fritsch and Carlson (1980)
4: Λ← Λ(1)
5: λ(β)← d

dβΛ(β)
6: return λ(·),Λ

statistics collected for a fixed annealing schedule provides an estimate of the communication barrier.

As a byproduct of Algorithm 4 we also obtain a consistent estimator τ̂ = (2 + 2Λ̂)−1 for the optimal

round trip rate τ∞, where Λ̂ = Λ̂(1). We show in Figure 3.8 an example where the ELE assumption

(A2) is severely violated, yet λ is still reliably estimated. This allows us to compare the empirically

observed round trip rate against τ̂ , and hence estimate how far an implementation deviates from

optimal performance.

3.3.3 Tuning N

Theorem 6 shows that non-reversible PT does not deteriorate in performance as we increase N

unlike reversible PT, however the gains in round trip rate eventually become marginal. When N is

very large we expect to accumulate more round trips by running k > 1 parallel copies of PT. As we

shall see, the large N asymptotic is still useful however in order to determine the optimal number

k∗ of PT copies.

Suppose there are k copies of PT running in parallel consisting of N + 1 chains with optimal

annealing schedule BN . If N̄ is the total number of cores available then k and N satisfy the

constraint k(N + 1) = N̄ . By Corollary 2 the total round trip rate across all k copies of PT is

τ = kτDEO(BN ) =
N̄

2(N + 1)(1 + Λ(BN ))
. (3.20)

From Section 3.3.1, the optimal schedule B∗N has a corresponding swap rejection rate r∗ =

Λ/N +O(N−3). Substituting this into (3.20) we get τ = τΛ(N) +O(N−1), where

τΛ(N) =
N̄(1− Λ/N)

2(N + 1)(1− Λ/N + Λ)
.
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Ignoring error terms, τΛ(·) is optimized when we run k∗ = N̄/(1 +N∗) copies of PT with N∗ + 1 =

2Λ + 1 chains to achieve an optimum round trip rate

τ∗ =
k∗

2 + 4Λ
=

N̄

2(1 + 2Λ)2
.

Optimal rejection rate

Note that when τ is optimized, we have r∗ ≈ 1/2, which differs from the 0.77 optimal rejection

rate from the reversible PT literature (Atchadé et al., 2011; Kofke, 2002; Predescu et al., 2004). In

Section 3.4.2, we show empirically that when the ELE assumption (A2) is severely violated, the

recommendation in the present section is turned into a bound, r∗ < 1/2, as increasing N appears to

alleviate ELE violations.

3.3.4 Iterative schedule optimization

Suppose we have N̄ cores available and a computational budget of tscan scans of PT, one scan

consisting in one application of KPT. The first ttune scans are used to find an accurate estimate

of the communication barrier λ̂(·) and the remaining tsample = tscan − ttune scans to sample from

the target. Algorithm 5 approximates Λ̂ with error Op(
√
N̄/ttune + N̄−2) by iteratively using

Algorithms 3 and 4 for maxRound= log2 ttune rounds until the tuning budget is depleted. Equipped

with Λ̂(·), we can use the remaining tsample scans to run k∗ = N̄/(N∗+1) copies of non-reversible PT

with N∗ = 2Λ̂ chains with optimal schedule B∗N∗ from Algorithm 3. In cases where it is suspected

that (A2) may be severely violated (as evidenced for example by a large gap between τ̄ and the

estimated τ as described in Section 3.3.2), it may be advantageous to also attempt N∗ = N̄ in line

10 of Algorithm 5. We show empirically in Figure 3.7 (top) that in a range of synthetic and real

world problems our scheme converges using a small number of iterations, in the order of maxRound

= 10. In our experiments we used ttune = tscan/2 and discarded the samples from the first ttune

scans as burn-in.

3.3.5 Normalizing constant computation

Algorithm 5 can be easily modified to obtain an asymptotically unbiased estimators for quantities of

the form
∫ 1

0 Eβ[f(V (X), β)]dβ with an error of Op(
√
N̄/ttune + N̄−1) for sufficiently well-behaved
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<latexit sha1_base64="wVzriNZiV6g6xVY/rtet6smPAvU=">AAAB6HicbZDLSgNBEEVr4ivGV9Slm8YguAozkhjdBdy4TMA8IBlCT6cmadPzoLtHCCFf4MaFIm79JHf+jT3JgBq90HC4VUVXXS8WXGnb/rRya+sbm1v57cLO7t7+QfHwqK2iRDJssUhEsutRhYKH2NJcC+zGEmngCex4k5u03nlAqXgU3ulpjG5ARyH3OaPaWE17UCzZZduu1qrXJIVU3+BkUIJMjUHxoz+MWBJgqJmgSvUcO9bujErNmcB5oZ8ojCmb0BH2DIY0QOXOFovOyZlxhsSPpHmhJgv358SMBkpNA890BlSP1WotNf+r9RLtX7kzHsaJxpAtP/ITQXRE0qvJkEtkWkwNUCa52ZWwMZWUaZNNwYTgrJ78F9oXZeeyXGlWSvVKFkceTuAUzsGBGtThFhrQAgYIj/AML9a99WS9Wm/L1pyVzRzDL1nvX549jMk=</latexit>

0

<latexit sha1_base64="UnZ43ihn6SboXduyrBzUA8I7ing=">AAAB7nicbVDLSsNAFL2pr1pfVZduBovgqiTSh+4Kbly4qGAf0IYymUzaoZNJmJkIJfQj3LhQxK3f486/cdIG1OqBgcM55zL3Hi/mTGnb/rQKa+sbm1vF7dLO7t7+QfnwqKuiRBLaIRGPZN/DinImaEczzWk/lhSHHqc9b3qd+b0HKhWLxL2exdQN8ViwgBGsjdQb3pqoj0flil217XqzfoUykuGbODmpQI72qPwx9COShFRowrFSA8eOtZtiqRnhdF4aJorGmEzxmA4MFTikyk0X687RmVF8FETSPKHRQv05keJQqVnomWSI9UStepn4nzdIdHDppkzEiaaCLD8KEo50hLLbkc8kJZrPDMFEMrMrIhMsMdGmoZIpwVk9+S/pXlSdRrV2V6u0ankdRTiBUzgHB5rQghtoQwcITOERnuHFiq0n69V6W0YLVj5zDL9gvX8BMMmPcg==</latexit>

⇤

<latexit sha1_base64="wVzriNZiV6g6xVY/rtet6smPAvU=">AAAB6HicbZDLSgNBEEVr4ivGV9Slm8YguAozkhjdBdy4TMA8IBlCT6cmadPzoLtHCCFf4MaFIm79JHf+jT3JgBq90HC4VUVXXS8WXGnb/rRya+sbm1v57cLO7t7+QfHwqK2iRDJssUhEsutRhYKH2NJcC+zGEmngCex4k5u03nlAqXgU3ulpjG5ARyH3OaPaWE17UCzZZduu1qrXJIVU3+BkUIJMjUHxoz+MWBJgqJmgSvUcO9bujErNmcB5oZ8ojCmb0BH2DIY0QOXOFovOyZlxhsSPpHmhJgv358SMBkpNA890BlSP1WotNf+r9RLtX7kzHsaJxpAtP/ITQXRE0qvJkEtkWkwNUCa52ZWwMZWUaZNNwYTgrJ78F9oXZeeyXGlWSvVKFkceTuAUzsGBGtThFhrQAgYIj/AML9a99WS9Wm/L1pyVzRzDL1nvX549jMk=</latexit>

0
<latexit sha1_base64="asp5Ky5YVovAMQXrI4d9Y5wIdaA=">AAAB6HicbZDLSgNBEEVr4ivGV9Slm8YguAozkhjdBdy4TMA8IBlCT6cmadPzoLtHCCFf4MaFIm79JHf+jT3JgBq90HC4VUVXXS8WXGnb/rRya+sbm1v57cLO7t7+QfHwqK2iRDJssUhEsutRhYKH2NJcC+zGEmngCex4k5u03nlAqXgU3ulpjG5ARyH3OaPaWE1nUCzZZduu1qrXJIVU3+BkUIJMjUHxoz+MWBJgqJmgSvUcO9bujErNmcB5oZ8ojCmb0BH2DIY0QOXOFovOyZlxhsSPpHmhJgv358SMBkpNA890BlSP1WotNf+r9RLtX7kzHsaJxpAtP/ITQXRE0qvJkEtkWkwNUCa52ZWwMZWUaZNNwYTgrJ78F9oXZeeyXGlWSvVKFkceTuAUzsGBGtThFhrQAgYIj/AML9a99WS9Wm/L1pyVzRzDL1nvX5/BjMo=</latexit>
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<latexit sha1_base64="etQQloJIoqHXxhKAwVt84OWn9fs=">AAAB7nicbVDLSsNAFL2pr1pfVZduBqvgqiTSWt0V3LhwUcE+oA1lMpm0QyeTMDMRSuhHuHGhiFu/x51/46QNqNUDA4dzzmXuPV7MmdK2/WkVVlbX1jeKm6Wt7Z3dvfL+QUdFiSS0TSIeyZ6HFeVM0LZmmtNeLCkOPU673uQ687sPVCoWiXs9jakb4pFgASNYG6k7uDVRHw/LFbtq2/VG/QplJMM3cXJSgRytYflj4EckCanQhGOl+o4dazfFUjPC6aw0SBSNMZngEe0bKnBIlZvO152hU6P4KIikeUKjufpzIsWhUtPQM8kQ67Fa9jLxP6+f6ODSTZmIE00FWXwUJBzpCGW3I59JSjSfGoKJZGZXRMZYYqJNQyVTgrN88l/SOa86F9XaXa3SPMnrKMIRHMMZONCAJtxAC9pAYAKP8AwvVmw9Wa/W2yJasPKZQ/gF6/0LK/mPYg==</latexit>

⇤
<latexit sha1_base64="etQQloJIoqHXxhKAwVt84OWn9fs=">AAAB7nicbVDLSsNAFL2pr1pfVZduBqvgqiTSWt0V3LhwUcE+oA1lMpm0QyeTMDMRSuhHuHGhiFu/x51/46QNqNUDA4dzzmXuPV7MmdK2/WkVVlbX1jeKm6Wt7Z3dvfL+QUdFiSS0TSIeyZ6HFeVM0LZmmtNeLCkOPU673uQ687sPVCoWiXs9jakb4pFgASNYG6k7uDVRHw/LFbtq2/VG/QplJMM3cXJSgRytYflj4EckCanQhGOl+o4dazfFUjPC6aw0SBSNMZngEe0bKnBIlZvO152hU6P4KIikeUKjufpzIsWhUtPQM8kQ67Fa9jLxP6+f6ODSTZmIE00FWXwUJBzpCGW3I59JSjSfGoKJZGZXRMZYYqJNQyVTgrN88l/SOa86F9XaXa3SPMnrKMIRHMMZONCAJtxAC9pAYAKP8AwvVmw9Wa/W2yJasPKZQ/gF6/0LK/mPYg==</latexit>

⇤

<latexit sha1_base64="etQQloJIoqHXxhKAwVt84OWn9fs=">AAAB7nicbVDLSsNAFL2pr1pfVZduBqvgqiTSWt0V3LhwUcE+oA1lMpm0QyeTMDMRSuhHuHGhiFu/x51/46QNqNUDA4dzzmXuPV7MmdK2/WkVVlbX1jeKm6Wt7Z3dvfL+QUdFiSS0TSIeyZ6HFeVM0LZmmtNeLCkOPU673uQ687sPVCoWiXs9jakb4pFgASNYG6k7uDVRHw/LFbtq2/VG/QplJMM3cXJSgRytYflj4EckCanQhGOl+o4dazfFUjPC6aw0SBSNMZngEe0bKnBIlZvO152hU6P4KIikeUKjufpzIsWhUtPQM8kQ67Fa9jLxP6+f6ODSTZmIE00FWXwUJBzpCGW3I59JSjSfGoKJZGZXRMZYYqJNQyVTgrN88l/SOa86F9XaXa3SPMnrKMIRHMMZONCAJtxAC9pAYAKP8AwvVmw9Wa/W2yJasPKZQ/gF6/0LK/mPYg==</latexit>

⇤
<latexit sha1_base64="etQQloJIoqHXxhKAwVt84OWn9fs=">AAAB7nicbVDLSsNAFL2pr1pfVZduBqvgqiTSWt0V3LhwUcE+oA1lMpm0QyeTMDMRSuhHuHGhiFu/x51/46QNqNUDA4dzzmXuPV7MmdK2/WkVVlbX1jeKm6Wt7Z3dvfL+QUdFiSS0TSIeyZ6HFeVM0LZmmtNeLCkOPU673uQ687sPVCoWiXs9jakb4pFgASNYG6k7uDVRHw/LFbtq2/VG/QplJMM3cXJSgRytYflj4EckCanQhGOl+o4dazfFUjPC6aw0SBSNMZngEe0bKnBIlZvO152hU6P4KIikeUKjufpzIsWhUtPQM8kQ67Fa9jLxP6+f6ODSTZmIE00FWXwUJBzpCGW3I59JSjSfGoKJZGZXRMZYYqJNQyVTgrN88l/SOa86F9XaXa3SPMnrKMIRHMMZONCAJtxAC9pAYAKP8AwvVmw9Wa/W2yJasPKZQ/gF6/0LK/mPYg==</latexit>

⇤

<latexit sha1_base64="p8zrI4MVi9E2q50feveLHeXA1Rc=">AAAB6HicbZDLSgNBEEVrfMb4irp00xgFV2FGEqO7gBuXCZgHJEPo6VSSNj0PunuEMOQL3LhQxK2f5M6/sScZUKMXGg63quiq60WCK23bn9bK6tr6xmZuK7+9s7u3Xzg4bKkwlgybLBSh7HhUoeABNjXXAjuRROp7Atve5Cattx9QKh4Gd3oaoevTUcCHnFFtrIbdLxTtkm1XqpVrkkKqb3AyKEKmer/w0RuELPYx0ExQpbqOHWk3oVJzJnCW78UKI8omdIRdgwH1UbnJfNEZOTPOgAxDaV6gydz9OZFQX6mp75lOn+qxWq6l5n+1bqyHV27CgyjWGLDFR8NYEB2S9Goy4BKZFlMDlEludiVsTCVl2mSTNyE4yyf/hdZFybkslRvlYu00iyMHx3AC5+BAFWpwC3VoAgOER3iGF+veerJerbdF64qVzRzBL1nvX5ltjLk=</latexit>

0

<latexit sha1_base64="p8zrI4MVi9E2q50feveLHeXA1Rc=">AAAB6HicbZDLSgNBEEVrfMb4irp00xgFV2FGEqO7gBuXCZgHJEPo6VSSNj0PunuEMOQL3LhQxK2f5M6/sScZUKMXGg63quiq60WCK23bn9bK6tr6xmZuK7+9s7u3Xzg4bKkwlgybLBSh7HhUoeABNjXXAjuRROp7Atve5Cattx9QKh4Gd3oaoevTUcCHnFFtrIbdLxTtkm1XqpVrkkKqb3AyKEKmer/w0RuELPYx0ExQpbqOHWk3oVJzJnCW78UKI8omdIRdgwH1UbnJfNEZOTPOgAxDaV6gydz9OZFQX6mp75lOn+qxWq6l5n+1bqyHV27CgyjWGLDFR8NYEB2S9Goy4BKZFlMDlEludiVsTCVl2mSTNyE4yyf/hdZFybkslRvlYu00iyMHx3AC5+BAFWpwC3VoAgOER3iGF+veerJerbdF64qVzRzBL1nvX5ltjLk=</latexit>

0
<latexit sha1_base64="p8zrI4MVi9E2q50feveLHeXA1Rc=">AAAB6HicbZDLSgNBEEVrfMb4irp00xgFV2FGEqO7gBuXCZgHJEPo6VSSNj0PunuEMOQL3LhQxK2f5M6/sScZUKMXGg63quiq60WCK23bn9bK6tr6xmZuK7+9s7u3Xzg4bKkwlgybLBSh7HhUoeABNjXXAjuRROp7Atve5Cattx9QKh4Gd3oaoevTUcCHnFFtrIbdLxTtkm1XqpVrkkKqb3AyKEKmer/w0RuELPYx0ExQpbqOHWk3oVJzJnCW78UKI8omdIRdgwH1UbnJfNEZOTPOgAxDaV6gydz9OZFQX6mp75lOn+qxWq6l5n+1bqyHV27CgyjWGLDFR8NYEB2S9Goy4BKZFlMDlEludiVsTCVl2mSTNyE4yyf/hdZFybkslRvlYu00iyMHx3AC5+BAFWpwC3VoAgOER3iGF+veerJerbdF64qVzRzBL1nvX5ltjLk=</latexit>

0

<latexit sha1_base64="p8zrI4MVi9E2q50feveLHeXA1Rc=">AAAB6HicbZDLSgNBEEVrfMb4irp00xgFV2FGEqO7gBuXCZgHJEPo6VSSNj0PunuEMOQL3LhQxK2f5M6/sScZUKMXGg63quiq60WCK23bn9bK6tr6xmZuK7+9s7u3Xzg4bKkwlgybLBSh7HhUoeABNjXXAjuRROp7Atve5Cattx9QKh4Gd3oaoevTUcCHnFFtrIbdLxTtkm1XqpVrkkKqb3AyKEKmer/w0RuELPYx0ExQpbqOHWk3oVJzJnCW78UKI8omdIRdgwH1UbnJfNEZOTPOgAxDaV6gydz9OZFQX6mp75lOn+qxWq6l5n+1bqyHV27CgyjWGLDFR8NYEB2S9Goy4BKZFlMDlEludiVsTCVl2mSTNyE4yyf/hdZFybkslRvlYu00iyMHx3AC5+BAFWpwC3VoAgOER3iGF+veerJerbdF64qVzRzBL1nvX5ltjLk=</latexit>

0
<latexit sha1_base64="p8zrI4MVi9E2q50feveLHeXA1Rc=">AAAB6HicbZDLSgNBEEVrfMb4irp00xgFV2FGEqO7gBuXCZgHJEPo6VSSNj0PunuEMOQL3LhQxK2f5M6/sScZUKMXGg63quiq60WCK23bn9bK6tr6xmZuK7+9s7u3Xzg4bKkwlgybLBSh7HhUoeABNjXXAjuRROp7Atve5Cattx9QKh4Gd3oaoevTUcCHnFFtrIbdLxTtkm1XqpVrkkKqb3AyKEKmer/w0RuELPYx0ExQpbqOHWk3oVJzJnCW78UKI8omdIRdgwH1UbnJfNEZOTPOgAxDaV6gydz9OZFQX6mp75lOn+qxWq6l5n+1bqyHV27CgyjWGLDFR8NYEB2S9Goy4BKZFlMDlEludiVsTCVl2mSTNyE4yyf/hdZFybkslRvlYu00iyMHx3AC5+BAFWpwC3VoAgOER3iGF+veerJerbdF64qVzRzBL1nvX5ltjLk=</latexit>

0
<latexit sha1_base64="p8zrI4MVi9E2q50feveLHeXA1Rc=">AAAB6HicbZDLSgNBEEVrfMb4irp00xgFV2FGEqO7gBuXCZgHJEPo6VSSNj0PunuEMOQL3LhQxK2f5M6/sScZUKMXGg63quiq60WCK23bn9bK6tr6xmZuK7+9s7u3Xzg4bKkwlgybLBSh7HhUoeABNjXXAjuRROp7Atve5Cattx9QKh4Gd3oaoevTUcCHnFFtrIbdLxTtkm1XqpVrkkKqb3AyKEKmer/w0RuELPYx0ExQpbqOHWk3oVJzJnCW78UKI8omdIRdgwH1UbnJfNEZOTPOgAxDaV6gydz9OZFQX6mp75lOn+qxWq6l5n+1bqyHV27CgyjWGLDFR8NYEB2S9Goy4BKZFlMDlEludiVsTCVl2mSTNyE4yyf/hdZFybkslRvlYu00iyMHx3AC5+BAFWpwC3VoAgOER3iGF+veerJerbdF64qVzRzBL1nvX5ltjLk=</latexit>

0

<latexit sha1_base64="p8zrI4MVi9E2q50feveLHeXA1Rc=">AAAB6HicbZDLSgNBEEVrfMb4irp00xgFV2FGEqO7gBuXCZgHJEPo6VSSNj0PunuEMOQL3LhQxK2f5M6/sScZUKMXGg63quiq60WCK23bn9bK6tr6xmZuK7+9s7u3Xzg4bKkwlgybLBSh7HhUoeABNjXXAjuRROp7Atve5Cattx9QKh4Gd3oaoevTUcCHnFFtrIbdLxTtkm1XqpVrkkKqb3AyKEKmer/w0RuELPYx0ExQpbqOHWk3oVJzJnCW78UKI8omdIRdgwH1UbnJfNEZOTPOgAxDaV6gydz9OZFQX6mp75lOn+qxWq6l5n+1bqyHV27CgyjWGLDFR8NYEB2S9Goy4BKZFlMDlEludiVsTCVl2mSTNyE4yyf/hdZFybkslRvlYu00iyMHx3AC5+BAFWpwC3VoAgOER3iGF+veerJerbdF64qVzRzBL1nvX5ltjLk=</latexit>

0
<latexit sha1_base64="p8zrI4MVi9E2q50feveLHeXA1Rc=">AAAB6HicbZDLSgNBEEVrfMb4irp00xgFV2FGEqO7gBuXCZgHJEPo6VSSNj0PunuEMOQL3LhQxK2f5M6/sScZUKMXGg63quiq60WCK23bn9bK6tr6xmZuK7+9s7u3Xzg4bKkwlgybLBSh7HhUoeABNjXXAjuRROp7Atve5Cattx9QKh4Gd3oaoevTUcCHnFFtrIbdLxTtkm1XqpVrkkKqb3AyKEKmer/w0RuELPYx0ExQpbqOHWk3oVJzJnCW78UKI8omdIRdgwH1UbnJfNEZOTPOgAxDaV6gydz9OZFQX6mp75lOn+qxWq6l5n+1bqyHV27CgyjWGLDFR8NYEB2S9Goy4BKZFlMDlEludiVsTCVl2mSTNyE4yyf/hdZFybkslRvlYu00iyMHx3AC5+BAFWpwC3VoAgOER3iGF+veerJerbdF64qVzRzBL1nvX5ltjLk=</latexit>

0

<latexit sha1_base64="4qmyKINq+VuBI0YX6hxyHIAGEkk=">AAAB6HicbZDLSgNBEEVrfMb4irp00xgFV2FGEqO7gBuXCZgHJEPo6VSSNj0PunuEMOQL3LhQxK2f5M6/sScZUKMXGg63quiq60WCK23bn9bK6tr6xmZuK7+9s7u3Xzg4bKkwlgybLBSh7HhUoeABNjXXAjuRROp7Atve5Cattx9QKh4Gd3oaoevTUcCHnFFtrIbTLxTtkm1XqpVrkkKqb3AyKEKmer/w0RuELPYx0ExQpbqOHWk3oVJzJnCW78UKI8omdIRdgwH1UbnJfNEZOTPOgAxDaV6gydz9OZFQX6mp75lOn+qxWq6l5n+1bqyHV27CgyjWGLDFR8NYEB2S9Goy4BKZFlMDlEludiVsTCVl2mSTNyE4yyf/hdZFybkslRvlYu00iyMHx3AC5+BAFWpwC3VoAgOER3iGF+veerJerbdF64qVzRzBL1nvX5rxjLo=</latexit>

1
<latexit sha1_base64="4qmyKINq+VuBI0YX6hxyHIAGEkk=">AAAB6HicbZDLSgNBEEVrfMb4irp00xgFV2FGEqO7gBuXCZgHJEPo6VSSNj0PunuEMOQL3LhQxK2f5M6/sScZUKMXGg63quiq60WCK23bn9bK6tr6xmZuK7+9s7u3Xzg4bKkwlgybLBSh7HhUoeABNjXXAjuRROp7Atve5Cattx9QKh4Gd3oaoevTUcCHnFFtrIbTLxTtkm1XqpVrkkKqb3AyKEKmer/w0RuELPYx0ExQpbqOHWk3oVJzJnCW78UKI8omdIRdgwH1UbnJfNEZOTPOgAxDaV6gydz9OZFQX6mp75lOn+qxWq6l5n+1bqyHV27CgyjWGLDFR8NYEB2S9Goy4BKZFlMDlEludiVsTCVl2mSTNyE4yyf/hdZFybkslRvlYu00iyMHx3AC5+BAFWpwC3VoAgOER3iGF+veerJerbdF64qVzRzBL1nvX5rxjLo=</latexit>

1

<latexit sha1_base64="4qmyKINq+VuBI0YX6hxyHIAGEkk=">AAAB6HicbZDLSgNBEEVrfMb4irp00xgFV2FGEqO7gBuXCZgHJEPo6VSSNj0PunuEMOQL3LhQxK2f5M6/sScZUKMXGg63quiq60WCK23bn9bK6tr6xmZuK7+9s7u3Xzg4bKkwlgybLBSh7HhUoeABNjXXAjuRROp7Atve5Cattx9QKh4Gd3oaoevTUcCHnFFtrIbTLxTtkm1XqpVrkkKqb3AyKEKmer/w0RuELPYx0ExQpbqOHWk3oVJzJnCW78UKI8omdIRdgwH1UbnJfNEZOTPOgAxDaV6gydz9OZFQX6mp75lOn+qxWq6l5n+1bqyHV27CgyjWGLDFR8NYEB2S9Goy4BKZFlMDlEludiVsTCVl2mSTNyE4yyf/hdZFybkslRvlYu00iyMHx3AC5+BAFWpwC3VoAgOER3iGF+veerJerbdF64qVzRzBL1nvX5rxjLo=</latexit>

1
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Figure 3.4: Proposed annealing schedule optimization method: example on the Bayesian mixture
model of Section 3.4. (1) The cumulative barrier Λ(·) is estimated using (3.19) at each point βk of
an initial partition. (2) The cumulative barrier is interpolated using monotonic cubic interpolation,
and a new schedule (shown beside the abscissa axis) is obtained by computing the inverse under
Λ(·) of a regular grid (shown beside the ordinate). (3) The process 1–2 is repeated iteratively. (4)
The sequence of annealing schedules obtained as a function of the round (colours represent different
grid points in the schedule).

Figure 3.5: A demonstration of the tuning phase in Algorithm 5 ran on a hierarchical Bayesian model
applied to the historical failure rates of 5 667 launches for 367 types of rockets (a 369 dimensional
problem, see Section 3.4.3 for details). We use N̄ = 30 cores and 11 schedule optimization rounds,
the last one consisting of ttune = 5 000 and Λ̂ = 12.03. (Left) Progression of the annealing schedule
(colours index parallel chains, y-axis, the values βn for each schedule optimization round, in log
scale). (Centre) Progression of the sample mean and standard deviation of empirical rejection
probabilities {r̂(n−1,n)}Nn=1. The mean stabilizes quickly, and as the schedule optimization rounds
increase, the rejection probabilities converge to the mean as desired. (Right) Progression of the
estimated λ̂(β) as a function of the schedule optimization round.
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Algorithm 5 NRPT

Input: Initial state x0, annealing path π, maximum chains N̄ , tuning budget ttune, sampling budget
tsample

. Tuning phase

. Initialize annealing schedule of size N̄ + 1 (e.g. uniform)
1: BN̄ ← (0, 1/N̄, . . . , 1)

. Total number of adaptive rounds
2: maxRound← log2(ttune)
3: t← 1
4: for round in 1, 2, . . . , maxRound do

. Approximate rejection rate using Algorithm 1
5: {r(n−1,n)} ← DEO(π,BN , t)

. Approximate communication barrier using Algorithm 4
6: λ,Λ← CommunicationBarrier({r(n−1,n)},BN̄ )

. Approximate optimal schedule using Algorithm 3
7: BN̄ ← UpdateSchedule(λ, N̄)

. Rounds use an exponentially increasing number of scans
8: t← 2t
9: end for

. Sampling phase

. Optimal number of chains
10: N ← 2Λ

. Optimal schedule
11: BN ← UpdateSchedule(λ,N)

. Optimal number of copies
12: k ← N̄/(N + 1)
13: for 1,. . . , k do
14: (x1, . . . ,xtsample

)← DEO(π,BN , tsample)
15: return (x1, . . . ,xtsample

)
16: end for

functions f . Examples of such quantities include log-normalizing constants (Kirkwood, 1935; Gelman

and Meng, 1998; Xie et al., 2011), KL-divergence (Dabak and Johnson, 2002), and the Fisher-Rao

length (Amari, 2016) between π0 and π1.

For example, by taking a Riemann sum in the thermodynamic integration identity (Kirkwood,

1935; Gelman and Meng, 1998), the log-normalizing constant logZ(1) of π can be approximated

using

logZ(1) = logZ(0)−
∫ 1

0
µ(β)dβ

= logZ(0)−
N∑
n=1

µ(βn−1)(βn − βn−1) +O(N−1), (3.21)
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where Z(0) the normalizing constant of π0 assumed to be known and µ(β) = Eβ [V ]. For each round

of Algorithm 5 with schedule BN for n scans we substitute a Monte Carlo estimate µ̂(βk) for µ(βk)

into (3.21) to get a consistent estimator log Ẑ(1) for logZ(1)

log Ẑ(1) ≈ logZ(0)−
N∑
n=1

µ̂(βn−1)(βn − βn−1),

with error Op(
√
N/T + N−1). Figure 3.6 (bottom) in Section 3.4.1 shows how the estimate for

log Ẑ(1) evolves with the number of rounds in Algorithm 5 for 16 different models.
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7
<latexit sha1_base64="ufkOwcETVAnCJse/QgRUjverNL4=">AAAB6HicbZDLSsNAFIYn9VbrrerSzWAVXJVEWmt3BTcuW7AXaEOZTE/asZNJmJkIJfQJ3LhQxK2P5M63cdIG1OoPAx//OYc55/cizpS27U8rt7a+sbmV3y7s7O7tHxQPjzoqjCWFNg15KHseUcCZgLZmmkMvkkACj0PXm96k9e4DSMVCcadnEbgBGQvmM0q0sVr1YbFkl227WqvWcQqpvsHJoIQyNYfFj8EopHEAQlNOlOo7dqTdhEjNKId5YRAriAidkjH0DQoSgHKTxaJzfG6cEfZDaZ7QeOH+nEhIoNQs8ExnQPRErdZS879aP9b+tZswEcUaBF1+5Mcc6xCnV+MRk0A1nxkgVDKzK6YTIgnVJpuCCcFZPfkvdC7LzlW50qqUGmdZHHl0gk7RBXJQDTXQLWqiNqII0CN6Ri/WvfVkvVpvy9aclc0co1+y3r8ApxGMwg==</latexit>

9
<latexit sha1_base64="ar4xl6OTTBifQoIQBwn2J4n9aCo=">AAAB6XicbZDLSsNAFIZP6q3WW9Slm8EquCqJtFZ3BTcuq9gLtKFMppN26GQSZiZCCX0DNy4UcesbufNtnLQBtfrDwMd/zmHO+f2YM6Ud59MqrKyurW8UN0tb2zu7e/b+QVtFiSS0RSIeya6PFeVM0JZmmtNuLCkOfU47/uQ6q3ceqFQsEvd6GlMvxCPBAkawNtad6w7sslNxnFq9doUyyPQNbg5lyNUc2B/9YUSSkApNOFaq5zqx9lIsNSOczkr9RNEYkwke0Z5BgUOqvHS+6QydGmeIgkiaJzSauz8nUhwqNQ190xliPVbLtcz8r9ZLdHDppUzEiaaCLD4KEo50hLKz0ZBJSjSfGsBEMrMrImMsMdEmnJIJwV0++S+0zyvuRaV6Wy03TvI4inAEx3AGLtShATfQhBYQCOARnuHFmlhP1qv1tmgtWPnMIfyS9f4FClmM9Q==</latexit>

11
<latexit sha1_base64="4qmyKINq+VuBI0YX6hxyHIAGEkk=">AAAB6HicbZDLSgNBEEVrfMb4irp00xgFV2FGEqO7gBuXCZgHJEPo6VSSNj0PunuEMOQL3LhQxK2f5M6/sScZUKMXGg63quiq60WCK23bn9bK6tr6xmZuK7+9s7u3Xzg4bKkwlgybLBSh7HhUoeABNjXXAjuRROp7Atve5Cattx9QKh4Gd3oaoevTUcCHnFFtrIbTLxTtkm1XqpVrkkKqb3AyKEKmer/w0RuELPYx0ExQpbqOHWk3oVJzJnCW78UKI8omdIRdgwH1UbnJfNEZOTPOgAxDaV6gydz9OZFQX6mp75lOn+qxWq6l5n+1bqyHV27CgyjWGLDFR8NYEB2S9Goy4BKZFlMDlEludiVsTCVl2mSTNyE4yyf/hdZFybkslRvlYu00iyMHx3AC5+BAFWpwC3VoAgOER3iGF+veerJerbdF64qVzRzBL1nvX5rxjLo=</latexit>

1
<latexit sha1_base64="mW9AIHYz3HJbytZV31x3YosYFac=">AAAB6HicbZDLSsNAFIZP6q3WW9Wlm8EquCqJtlZ3BTcuW7AXaEOZTCft2MkkzEyEEvoEblwo4tZHcufbOGkDavWHgY//nMOc83sRZ0rb9qeVW1ldW9/Ibxa2tnd294r7B20VxpLQFgl5KLseVpQzQVuaaU67kaQ48DjteJObtN55oFKxUNzpaUTdAI8E8xnB2ljNi0GxZJdtu1qrXqMUUn2Dk0EJMjUGxY/+MCRxQIUmHCvVc+xIuwmWmhFOZ4V+rGiEyQSPaM+gwAFVbjJfdIZOjTNEfijNExrN3Z8TCQ6Umgae6QywHqvlWmr+V+vF2r9yEyaiWFNBFh/5MUc6ROnVaMgkJZpPDWAimdkVkTGWmGiTTcGE4Cyf/Bfa52XnslxpVkr1kyyOPBzBMZyBAzWowy00oAUEKDzCM7xY99aT9Wq9LVpzVjZzCL9kvX8BnfmMvA==</latexit>

3
<latexit sha1_base64="vyL8uW3a3tngXpOMnTa+n088uAE=">AAAB6HicbZBNS8NAEIYnftb6VfXoJVgFTyWR1uqt4MVjC/YD2lA222m7drMJuxuhhP4CLx4U8epP8ua/cdMG1OoLCw/vzLAzrx9xprTjfForq2vrG5u5rfz2zu7efuHgsKXCWFJs0pCHsuMThZwJbGqmOXYiiSTwObb9yU1abz+gVCwUd3oaoReQkWBDRok2VqPSLxSdkuNUqpVrO4VU3+BmUIRM9X7hozcIaRyg0JQTpbquE2kvIVIzynGW78UKI0InZIRdg4IEqLxkvujMPjPOwB6G0jyh7bn7cyIhgVLTwDedAdFjtVxLzf9q3VgPr7yEiSjWKOjio2HMbR3a6dX2gEmkmk8NECqZ2dWmYyIJ1SabvAnBXT75L7QuSu5lqdwoF2unWRw5OIYTOAcXqlCDW6hDEyggPMIzvFj31pP1ar0tWlesbOYIfsl6/wKhAYy+</latexit>

5
<latexit sha1_base64="EYwbH/spU01xSpMGUOBNeVhjGrw=">AAAB6HicbZBNS8NAEIYnftb6VfXoJVgFTyWR1uqt4MVjC/YD2lA222m7drMJuxuhhP4CLx4U8epP8ua/cdMG1OoLCw/vzLAzrx9xprTjfForq2vrG5u5rfz2zu7efuHgsKXCWFJs0pCHsuMThZwJbGqmOXYiiSTwObb9yU1abz+gVCwUd3oaoReQkWBDRok2VqPaLxSdkuNUqpVrO4VU3+BmUIRM9X7hozcIaRyg0JQTpbquE2kvIVIzynGW78UKI0InZIRdg4IEqLxkvujMPjPOwB6G0jyh7bn7cyIhgVLTwDedAdFjtVxLzf9q3VgPr7yEiSjWKOjio2HMbR3a6dX2gEmkmk8NECqZ2dWmYyIJ1SabvAnBXT75L7QuSu5lqdwoF2unWRw5OIYTOAcXqlCDW6hDEyggPMIzvFj31pP1ar0tWlesbOYIfsl6/wKkCYzA</latexit>

7
<latexit sha1_base64="ufkOwcETVAnCJse/QgRUjverNL4=">AAAB6HicbZDLSsNAFIYn9VbrrerSzWAVXJVEWmt3BTcuW7AXaEOZTE/asZNJmJkIJfQJ3LhQxK2P5M63cdIG1OoPAx//OYc55/cizpS27U8rt7a+sbmV3y7s7O7tHxQPjzoqjCWFNg15KHseUcCZgLZmmkMvkkACj0PXm96k9e4DSMVCcadnEbgBGQvmM0q0sVr1YbFkl227WqvWcQqpvsHJoIQyNYfFj8EopHEAQlNOlOo7dqTdhEjNKId5YRAriAidkjH0DQoSgHKTxaJzfG6cEfZDaZ7QeOH+nEhIoNQs8ExnQPRErdZS879aP9b+tZswEcUaBF1+5Mcc6xCnV+MRk0A1nxkgVDKzK6YTIgnVJpuCCcFZPfkvdC7LzlW50qqUGmdZHHl0gk7RBXJQDTXQLWqiNqII0CN6Ri/WvfVkvVpvy9aclc0co1+y3r8ApxGMwg==</latexit>

9
<latexit sha1_base64="ar4xl6OTTBifQoIQBwn2J4n9aCo=">AAAB6XicbZDLSsNAFIZP6q3WW9Slm8EquCqJtFZ3BTcuq9gLtKFMppN26GQSZiZCCX0DNy4UcesbufNtnLQBtfrDwMd/zmHO+f2YM6Ud59MqrKyurW8UN0tb2zu7e/b+QVtFiSS0RSIeya6PFeVM0JZmmtNuLCkOfU47/uQ6q3ceqFQsEvd6GlMvxCPBAkawNtad6w7sslNxnFq9doUyyPQNbg5lyNUc2B/9YUSSkApNOFaq5zqx9lIsNSOczkr9RNEYkwke0Z5BgUOqvHS+6QydGmeIgkiaJzSauz8nUhwqNQ190xliPVbLtcz8r9ZLdHDppUzEiaaCLD4KEo50hLKz0ZBJSjSfGsBEMrMrImMsMdEmnJIJwV0++S+0zyvuRaV6Wy03TvI4inAEx3AGLtShATfQhBYQCOARnuHFmlhP1qv1tmgtWPnMIfyS9f4FClmM9Q==</latexit>

11
<latexit sha1_base64="4qmyKINq+VuBI0YX6hxyHIAGEkk=">AAAB6HicbZDLSgNBEEVrfMb4irp00xgFV2FGEqO7gBuXCZgHJEPo6VSSNj0PunuEMOQL3LhQxK2f5M6/sScZUKMXGg63quiq60WCK23bn9bK6tr6xmZuK7+9s7u3Xzg4bKkwlgybLBSh7HhUoeABNjXXAjuRROp7Atve5Cattx9QKh4Gd3oaoevTUcCHnFFtrIbTLxTtkm1XqpVrkkKqb3AyKEKmer/w0RuELPYx0ExQpbqOHWk3oVJzJnCW78UKI8omdIRdgwH1UbnJfNEZOTPOgAxDaV6gydz9OZFQX6mp75lOn+qxWq6l5n+1bqyHV27CgyjWGLDFR8NYEB2S9Goy4BKZFlMDlEludiVsTCVl2mSTNyE4yyf/hdZFybkslRvlYu00iyMHx3AC5+BAFWpwC3VoAgOER3iGF+veerJerbdF64qVzRzBL1nvX5rxjLo=</latexit>

1
<latexit sha1_base64="mW9AIHYz3HJbytZV31x3YosYFac=">AAAB6HicbZDLSsNAFIZP6q3WW9Wlm8EquCqJtlZ3BTcuW7AXaEOZTCft2MkkzEyEEvoEblwo4tZHcufbOGkDavWHgY//nMOc83sRZ0rb9qeVW1ldW9/Ibxa2tnd294r7B20VxpLQFgl5KLseVpQzQVuaaU67kaQ48DjteJObtN55oFKxUNzpaUTdAI8E8xnB2ljNi0GxZJdtu1qrXqMUUn2Dk0EJMjUGxY/+MCRxQIUmHCvVc+xIuwmWmhFOZ4V+rGiEyQSPaM+gwAFVbjJfdIZOjTNEfijNExrN3Z8TCQ6Umgae6QywHqvlWmr+V+vF2r9yEyaiWFNBFh/5MUc6ROnVaMgkJZpPDWAimdkVkTGWmGiTTcGE4Cyf/Bfa52XnslxpVkr1kyyOPBzBMZyBAzWowy00oAUEKDzCM7xY99aT9Wq9LVpzVjZzCL9kvX8BnfmMvA==</latexit>

3
<latexit sha1_base64="vyL8uW3a3tngXpOMnTa+n088uAE=">AAAB6HicbZBNS8NAEIYnftb6VfXoJVgFTyWR1uqt4MVjC/YD2lA222m7drMJuxuhhP4CLx4U8epP8ua/cdMG1OoLCw/vzLAzrx9xprTjfForq2vrG5u5rfz2zu7efuHgsKXCWFJs0pCHsuMThZwJbGqmOXYiiSTwObb9yU1abz+gVCwUd3oaoReQkWBDRok2VqPSLxSdkuNUqpVrO4VU3+BmUIRM9X7hozcIaRyg0JQTpbquE2kvIVIzynGW78UKI0InZIRdg4IEqLxkvujMPjPOwB6G0jyh7bn7cyIhgVLTwDedAdFjtVxLzf9q3VgPr7yEiSjWKOjio2HMbR3a6dX2gEmkmk8NECqZ2dWmYyIJ1SabvAnBXT75L7QuSu5lqdwoF2unWRw5OIYTOAcXqlCDW6hDEyggPMIzvFj31pP1ar0tWlesbOYIfsl6/wKhAYy+</latexit>

5
<latexit sha1_base64="EYwbH/spU01xSpMGUOBNeVhjGrw=">AAAB6HicbZBNS8NAEIYnftb6VfXoJVgFTyWR1uqt4MVjC/YD2lA222m7drMJuxuhhP4CLx4U8epP8ua/cdMG1OoLCw/vzLAzrx9xprTjfForq2vrG5u5rfz2zu7efuHgsKXCWFJs0pCHsuMThZwJbGqmOXYiiSTwObb9yU1abz+gVCwUd3oaoReQkWBDRok2VqPaLxSdkuNUqpVrO4VU3+BmUIRM9X7hozcIaRyg0JQTpbquE2kvIVIzynGW78UKI0InZIRdg4IEqLxkvujMPjPOwB6G0jyh7bn7cyIhgVLTwDedAdFjtVxLzf9q3VgPr7yEiSjWKOjio2HMbR3a6dX2gEmkmk8NECqZ2dWmYyIJ1SabvAnBXT75L7QuSu5lqdwoF2unWRw5OIYTOAcXqlCDW6hDEyggPMIzvFj31pP1ar0tWlesbOYIfsl6/wKkCYzA</latexit>

7
<latexit sha1_base64="ufkOwcETVAnCJse/QgRUjverNL4=">AAAB6HicbZDLSsNAFIYn9VbrrerSzWAVXJVEWmt3BTcuW7AXaEOZTE/asZNJmJkIJfQJ3LhQxK2P5M63cdIG1OoPAx//OYc55/cizpS27U8rt7a+sbmV3y7s7O7tHxQPjzoqjCWFNg15KHseUcCZgLZmmkMvkkACj0PXm96k9e4DSMVCcadnEbgBGQvmM0q0sVr1YbFkl227WqvWcQqpvsHJoIQyNYfFj8EopHEAQlNOlOo7dqTdhEjNKId5YRAriAidkjH0DQoSgHKTxaJzfG6cEfZDaZ7QeOH+nEhIoNQs8ExnQPRErdZS879aP9b+tZswEcUaBF1+5Mcc6xCnV+MRk0A1nxkgVDKzK6YTIgnVJpuCCcFZPfkvdC7LzlW50qqUGmdZHHl0gk7RBXJQDTXQLWqiNqII0CN6Ri/WvfVkvVpvy9aclc0co1+y3r8ApxGMwg==</latexit>

9
<latexit sha1_base64="ar4xl6OTTBifQoIQBwn2J4n9aCo=">AAAB6XicbZDLSsNAFIZP6q3WW9Slm8EquCqJtFZ3BTcuq9gLtKFMppN26GQSZiZCCX0DNy4UcesbufNtnLQBtfrDwMd/zmHO+f2YM6Ud59MqrKyurW8UN0tb2zu7e/b+QVtFiSS0RSIeya6PFeVM0JZmmtNuLCkOfU47/uQ6q3ceqFQsEvd6GlMvxCPBAkawNtad6w7sslNxnFq9doUyyPQNbg5lyNUc2B/9YUSSkApNOFaq5zqx9lIsNSOczkr9RNEYkwke0Z5BgUOqvHS+6QydGmeIgkiaJzSauz8nUhwqNQ190xliPVbLtcz8r9ZLdHDppUzEiaaCLD4KEo50hLKz0ZBJSjSfGsBEMrMrImMsMdEmnJIJwV0++S+0zyvuRaV6Wy03TvI4inAEx3AGLtShATfQhBYQCOARnuHFmlhP1qv1tmgtWPnMIfyS9f4FClmM9Q==</latexit>

11
<latexit sha1_base64="4qmyKINq+VuBI0YX6hxyHIAGEkk=">AAAB6HicbZDLSgNBEEVrfMb4irp00xgFV2FGEqO7gBuXCZgHJEPo6VSSNj0PunuEMOQL3LhQxK2f5M6/sScZUKMXGg63quiq60WCK23bn9bK6tr6xmZuK7+9s7u3Xzg4bKkwlgybLBSh7HhUoeABNjXXAjuRROp7Atve5Cattx9QKh4Gd3oaoevTUcCHnFFtrIbTLxTtkm1XqpVrkkKqb3AyKEKmer/w0RuELPYx0ExQpbqOHWk3oVJzJnCW78UKI8omdIRdgwH1UbnJfNEZOTPOgAxDaV6gydz9OZFQX6mp75lOn+qxWq6l5n+1bqyHV27CgyjWGLDFR8NYEB2S9Goy4BKZFlMDlEludiVsTCVl2mSTNyE4yyf/hdZFybkslRvlYu00iyMHx3AC5+BAFWpwC3VoAgOER3iGF+veerJerbdF64qVzRzBL1nvX5rxjLo=</latexit>

1
<latexit sha1_base64="mW9AIHYz3HJbytZV31x3YosYFac=">AAAB6HicbZDLSsNAFIZP6q3WW9Wlm8EquCqJtlZ3BTcuW7AXaEOZTCft2MkkzEyEEvoEblwo4tZHcufbOGkDavWHgY//nMOc83sRZ0rb9qeVW1ldW9/Ibxa2tnd294r7B20VxpLQFgl5KLseVpQzQVuaaU67kaQ48DjteJObtN55oFKxUNzpaUTdAI8E8xnB2ljNi0GxZJdtu1qrXqMUUn2Dk0EJMjUGxY/+MCRxQIUmHCvVc+xIuwmWmhFOZ4V+rGiEyQSPaM+gwAFVbjJfdIZOjTNEfijNExrN3Z8TCQ6Umgae6QywHqvlWmr+V+vF2r9yEyaiWFNBFh/5MUc6ROnVaMgkJZpPDWAimdkVkTGWmGiTTcGE4Cyf/Bfa52XnslxpVkr1kyyOPBzBMZyBAzWowy00oAUEKDzCM7xY99aT9Wq9LVpzVjZzCL9kvX8BnfmMvA==</latexit>

3
<latexit sha1_base64="vyL8uW3a3tngXpOMnTa+n088uAE=">AAAB6HicbZBNS8NAEIYnftb6VfXoJVgFTyWR1uqt4MVjC/YD2lA222m7drMJuxuhhP4CLx4U8epP8ua/cdMG1OoLCw/vzLAzrx9xprTjfForq2vrG5u5rfz2zu7efuHgsKXCWFJs0pCHsuMThZwJbGqmOXYiiSTwObb9yU1abz+gVCwUd3oaoReQkWBDRok2VqPSLxSdkuNUqpVrO4VU3+BmUIRM9X7hozcIaRyg0JQTpbquE2kvIVIzynGW78UKI0InZIRdg4IEqLxkvujMPjPOwB6G0jyh7bn7cyIhgVLTwDedAdFjtVxLzf9q3VgPr7yEiSjWKOjio2HMbR3a6dX2gEmkmk8NECqZ2dWmYyIJ1SabvAnBXT75L7QuSu5lqdwoF2unWRw5OIYTOAcXqlCDW6hDEyggPMIzvFj31pP1ar0tWlesbOYIfsl6/wKhAYy+</latexit>

5
<latexit sha1_base64="EYwbH/spU01xSpMGUOBNeVhjGrw=">AAAB6HicbZBNS8NAEIYnftb6VfXoJVgFTyWR1uqt4MVjC/YD2lA222m7drMJuxuhhP4CLx4U8epP8ua/cdMG1OoLCw/vzLAzrx9xprTjfForq2vrG5u5rfz2zu7efuHgsKXCWFJs0pCHsuMThZwJbGqmOXYiiSTwObb9yU1abz+gVCwUd3oaoReQkWBDRok2VqPaLxSdkuNUqpVrO4VU3+BmUIRM9X7hozcIaRyg0JQTpbquE2kvIVIzynGW78UKI0InZIRdg4IEqLxkvujMPjPOwB6G0jyh7bn7cyIhgVLTwDedAdFjtVxLzf9q3VgPr7yEiSjWKOjio2HMbR3a6dX2gEmkmk8NECqZ2dWmYyIJ1SabvAnBXT75L7QuSu5lqdwoF2unWRw5OIYTOAcXqlCDW6hDEyggPMIzvFj31pP1ar0tWlesbOYIfsl6/wKkCYzA</latexit>

7
<latexit sha1_base64="ufkOwcETVAnCJse/QgRUjverNL4=">AAAB6HicbZDLSsNAFIYn9VbrrerSzWAVXJVEWmt3BTcuW7AXaEOZTE/asZNJmJkIJfQJ3LhQxK2P5M63cdIG1OoPAx//OYc55/cizpS27U8rt7a+sbmV3y7s7O7tHxQPjzoqjCWFNg15KHseUcCZgLZmmkMvkkACj0PXm96k9e4DSMVCcadnEbgBGQvmM0q0sVr1YbFkl227WqvWcQqpvsHJoIQyNYfFj8EopHEAQlNOlOo7dqTdhEjNKId5YRAriAidkjH0DQoSgHKTxaJzfG6cEfZDaZ7QeOH+nEhIoNQs8ExnQPRErdZS879aP9b+tZswEcUaBF1+5Mcc6xCnV+MRk0A1nxkgVDKzK6YTIgnVJpuCCcFZPfkvdC7LzlW50qqUGmdZHHl0gk7RBXJQDTXQLWqiNqII0CN6Ri/WvfVkvVpvy9aclc0co1+y3r8ApxGMwg==</latexit>

9
<latexit sha1_base64="ar4xl6OTTBifQoIQBwn2J4n9aCo=">AAAB6XicbZDLSsNAFIZP6q3WW9Slm8EquCqJtFZ3BTcuq9gLtKFMppN26GQSZiZCCX0DNy4UcesbufNtnLQBtfrDwMd/zmHO+f2YM6Ud59MqrKyurW8UN0tb2zu7e/b+QVtFiSS0RSIeya6PFeVM0JZmmtNuLCkOfU47/uQ6q3ceqFQsEvd6GlMvxCPBAkawNtad6w7sslNxnFq9doUyyPQNbg5lyNUc2B/9YUSSkApNOFaq5zqx9lIsNSOczkr9RNEYkwke0Z5BgUOqvHS+6QydGmeIgkiaJzSauz8nUhwqNQ190xliPVbLtcz8r9ZLdHDppUzEiaaCLD4KEo50hLKz0ZBJSjSfGsBEMrMrImMsMdEmnJIJwV0++S+0zyvuRaV6Wy03TvI4inAEx3AGLtShATfQhBYQCOARnuHFmlhP1qv1tmgtWPnMIfyS9f4FClmM9Q==</latexit>

11
<latexit sha1_base64="4qmyKINq+VuBI0YX6hxyHIAGEkk=">AAAB6HicbZDLSgNBEEVrfMb4irp00xgFV2FGEqO7gBuXCZgHJEPo6VSSNj0PunuEMOQL3LhQxK2f5M6/sScZUKMXGg63quiq60WCK23bn9bK6tr6xmZuK7+9s7u3Xzg4bKkwlgybLBSh7HhUoeABNjXXAjuRROp7Atve5Cattx9QKh4Gd3oaoevTUcCHnFFtrIbTLxTtkm1XqpVrkkKqb3AyKEKmer/w0RuELPYx0ExQpbqOHWk3oVJzJnCW78UKI8omdIRdgwH1UbnJfNEZOTPOgAxDaV6gydz9OZFQX6mp75lOn+qxWq6l5n+1bqyHV27CgyjWGLDFR8NYEB2S9Goy4BKZFlMDlEludiVsTCVl2mSTNyE4yyf/hdZFybkslRvlYu00iyMHx3AC5+BAFWpwC3VoAgOER3iGF+veerJerbdF64qVzRzBL1nvX5rxjLo=</latexit>

1
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Figure 3.6: Progression of the log normalization constant estimates for 16 different models. Estimates
are derived from Section 3.3.5 produced during each NRPT adaptation round.

3.4 Experiments

3.4.1 Empirical behaviour of the schedule optimization method

We applied the proposed NRPT algorithm to 16 models from the statistics and physics literature

to demonstrate its versatility. They include 9 Bayesian models ranging from simple standard

models such as generalized linear models and Bayesian mixtures, to complex ones such as cancer

copy-number calling, ODE parameter estimation, spike-and-slab classification and two types of

phylogenetic models. This is complemented by three models from statistical mechanics and four

artificial models. The datasets considered include eight real datasets spanning diverse data-types

and size, e.g. state-of-the-art measurements such as whole-genome single-cell sequencing data (494

individual cells from two types of cancer, triple negative breast cancer and high-grade serous ovarian

(Dorri et al., 2020)) and mRNA transfection time series (Leonhardt et al., 2014), as well as more
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conventional ones such as mtDNA data and various feature selection/classification datasets. See

Table 3.1 and references therein for details. All models and algorithms are implemented in the

Blang modelling language (Bouchard-Côté et al., 2021).

In each of the 16 models and for each round of Algorithm 5 (line 4), we computed the mean swap

acceptance probability across all neighbour chains. We then summarized these means across chains

using a box plot. The equi-acceptance objective function of Section 3.3.1 can be visually understood

as collapsing this box plot into a single point. We show in Figure 3.7 (top) the progression of these

swap acceptance probabilities. In all examples considered, equi-acceptance is well approximated

within 10 rounds.

Within the range of models considered, we observed a diversity of local barriers λ estimated

by Algorithm 5 (Figure 3.7 (bottom)). Most statistical models exhibit a high but narrow peak

in the neighbourhood of the reference (β = 0). However, a subset of models including statistical

models (mixture, ode, phylo-cancer, spike-slab) and physics models (Ising, magnetic, rotor) exhibit

additional peaks away from β = 0. See Figure 2.1 for the corresponding global barriers Λ estimates

as a function of the rounds, and the resulting schedule generator.

Reproducibility.

To make our NRPT method easy to use we implemented it as an inference engine in the open

source probabilistic programming language (PPL) Blang https://github.com/UBC-Stat-ML/blangSDK. A full

description of the models used in the paper are available at https://github.com/UBC-Stat-ML/blangDemos, see

in particular https://github.com/UBC-Stat-ML/blangDemos/blob/master/src/main/resources/demos/models.csv for a

list of command line options and data paths used for each model. All methods use the same

local exploration kernels, namely slice sampling with exponential doubling followed by shrinking

(Neal, 2003). Scripts documenting replication of our experiments are available at https://github.com/

UBC-Stat-ML/ptbenchmark.

Multi-core implementation.

We use lightweight threads (Friesen, 2015) to parallelize both the local exploration and communication

phases, as shown in Algorithm 1. We use the algorithm of Leiserson et al. (2012) as implemented

in Steele and Lea (2013) to allow each PT chain to have its own random stream. This technique
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Model (and dataset when applicable) n d Λ̂ N

Change point detection (text message data, Davidson-Pilon (2015)) 74 3 4.0 20
Copy number inference (whole genome ovarian cancer data, Section 3.4.5) 6 206 30 13.0 50
Discrete multimodal distribution (Section 3.2.6) N/A 3 0.4 30
Weakly identifiable elliptic curve (Section 3.4.3) N/A 2 4.4 30
General Linear Model (GLM ) (Challenger O-ring dataset, Dalal et al. (1989)) 23 2 3.3 15
Bayesian hierarchical model (historical rocket failure data, Section 3.4.3) 5 667 369 12.0 30
Ising model (Section 3.2.6) N/A 25 3.1 30
Ising model with magnetic field (Section 3.2.6) N/A 25 2.3 30
Bayesian mixture model (Section 3.4.4) 300 305 8.2 30
Bayesian mixture model (subset of 150 datapoints) 150 155 5.5 20
Isotropic normal distribution N/A 5 1.4 30
ODE parameters (mRNA data, Leonhardt et al. (2014)) 52 5 6.4 50
Phylogenetic inference (single cell breast cancer data, Dorri et al. (2020)) 192 763 192 765 88 300
Phylogenetic species tree inference (mtDNA, Hayasaka et al. (1988)) 249 10 395 7.1 30
Unidentifiable product parameterization (Section 3.4.3) 100 000 2 3.7 15
Rotor (XY) model, Hsieh et al. (2013) N/A 25 3.3 40
Spike-and-slab classification (RMS Titanic passengers data (Hind, 2019)) 200 19 4.7 30

Table 3.1: Summary of models used in the experiments, with the number of observations n (when
applicable), the number of latent random variables d, estimated Λ̂, and the default number of chains
used. An abbreviation for each is shown in italic. The model-specific command line options used
for all experiments is available at https://github.com/UBC-Stat-ML/blangDemos/blob/master/src/main/resources/

demos/models.csv. The same file also documents the location of the probabilistic programming source
code and precise command line arguments for the 16 models.

avoids any blocking across threads and hence makes the inner loop of our algorithm embarrassingly

parallel in N . Moreover, the method of Leiserson et al. (2012) combined with the fact that we fix

random seeds means that the numerical value output by the algorithm is not affected by the number

of threads used. Increasing the number of threads simply makes the algorithm run faster. In all

experiments unless noted otherwise we use the maximum number of threads available in the host

machine, by default an Intel i5 2.7 GHz (which supports 8 threads via hyper-threading) except for

Section 3.4.3 where we use an Amazon EC2 instance of type c4.8xlarge, which is backed by a 2.9

GHz Intel Xeon E5-2666 v3 Processor (20 threads).

Selection of π0

In our experiments all Bayesian models considered have proper priors, and hence we set π0 to the

prior in all these situations. The local exploration kernel in this case consists in an independent

draw from the prior (performed by sorting the latent random variables according to a linearization

of the partial order induced by the directed graphical model, and sampling their values according to

these sorted laws).
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Figure 3.7: Empirical behaviour of NRPT on 16 models. Top: distribution of acceptance rates
observed at each round of Algorithm 5. Middle: estimates of the global communication barrier Λ.
The abscissa denotes the schedule optimization round. Bottom: estimates of the local communication
barrier λ̂ in the final round.

For the Ising model, we let π0 denote a product of independent and identically distributed

Bernoulli(1/2) random variables, one for each node in the Ising grid. It is then straightforward

to interpolate between this product distribution and the Ising model of interest using a geometric

average. Independent sampling from π0 is used for the local exploration kernel at β = 0.

Similarly, for the rotor (XY) model, we take π0 to be a product of independent and identically

distributed Uniform(−π, π) random variables, and we use a geometric interpolation between π0 and

the target distribution.
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Multimodality of the examples considered

Figures 3.1 (bottom left), 3.11 and 3.12 support the multimodality of two of the examples considered

in Section 3.4.3, namely the Ising and Spike-and-Slab examples. Multimodality of other examples

considered in Section 3.4.1, 3.4.2, 3.4.4 and 3.4.5 is demonstrated in Figures 3.1, 3.18, 3.15, 3.17,

and 3.18. Moreover, Figures 3.1, 3.15, 3.17, and 3.18 demonstrate that using standard MCMC is

insufficient to explore these multimodal distributions.

3.4.2 Robustness to ELE violation

To investigate empirically whether the NRPT methodology is robust to the violation of the ELE

assumption, we ran NRPT with a range of values for texpl on the models shown in Figure 3.8. Let

dvar denote the number of variables in each model. We run experiments with texpl = 0, (1/2)dvar,

dvar, 2dvar, 4dvar, . . . , 32dvar (the only exception is the reference chain (β = 0), where we always use

texpl = 1 since we can get exact samples from π0). The key quantity used by the NRPT algorithm for

schedule optimization is the communication barrier λ. The results shown in Figure 3.8 demonstrate

that in all models considered the function λ is reliably estimated even when ELE is severely violated,

provided texpl > 0. Similarly, since the estimates of Λ and τ̄ are derived from λ, these quantities

can be accurately estimated even when ELE is severely violated. The results shown in Figure 2.4

support that increasing texpl reduces the difference between the theoretical and observed round trip

rate. Moreover, Figure 2.4 also demonstrate a second strategy to alleviate ELE violation, which is

to increase N while fixing texpl.

In the next experiment shown in Figure 3.9, we compare the two mechanisms available for

alleviating ELE violation, namely increasing N and increasing texpl. First consider the black line in

Figure 3.9 showing the regime where ELE is best approximated in these experiments. This is in

close agreement with the theoretical guidelines developed in Section 3.3.3. At the same time, the

light blue lines in Figure 3.9 show that in situations where the local exploration kernel is not easy

to parallelize, it can be advantageous to increase texpl and to compensate with a number of chains

N higher than 2Λ, leading to an average swap rejection rate r < 1/2.
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Figure 3.9: Trade-off between number of chains N , number of independent PT algorithms, k, and
the frequency at which swaps are attempted (∝ 1/texpl). Each model uses a constant number of cores
and set N + 1 = N̄/k chains per independent PT algorithm. Insets: swap acceptance probability
for each k. The results in the black lines (where ELE is best approximated) agree with the theory
of Section 3.3.3. For the ODE model, Λ ≈ 6.4, N∗ ≈ 12.8 in agreement with k∗ = 3 observed. For
the Ising model, Λ ≈ 3.1, N∗ ≈ 6.2 in agreement with k∗ = 4 observed. For the Bayesian mixture
model, Λ ≈ 5.5, N∗ ≈ 11, in agreement with k∗ = 2 observed. These results also show that in
the context of local exploration moves that are not easily parallelized, it is better to use higher
swap attempt frequencies (light blue lines) which achieve their optima at N > 2Λ and average swap
rejection rate r < 1/2.

3.4.3 Comparison with other parallel tempering schemes

We benchmarked the empirical running time of Algorithm 5 compared to previous adaptive PT

methods (Atchadé et al., 2011; Miasojedow et al., 2013). The methods we considered are: (1) the

stochastic optimization adaptive method for reversible schemes proposed in Atchadé et al. (2011);

56



(2), a second stochastic optimization scheme, which still selects the optimal number of chains using

the 23% rule but uses an improved update scheme from Miasojedow et al. (2013); (3) our non

reversible schedule optimization scheme (NRPT); and finally, (4) our scheme, combined with a

better initialization based on a preliminary execution of a sequential Monte Carlo algorithm (more

precisely, based on a “sequential change of measure,” labelled SCM, as described in Del Moral et al.

(2006)), we use this to investigate the effect on the violation of the stationarity assumption, and

for fairness, we use this sophisticated initialization method for all the methods except (3). We

benchmarked the methods on four models: (a) a 369-dimensional hierarchical model applied to a

dataset of rocket launch failure/success indicator variables (McDowell, 2019); (b) a 19-dimensional

Spike-and-Slab variable selection model applied to the RMS Titanic Passenger Manifest dataset

(Hind, 2019); (c) A 25-dimensional Ising model from Section 3.2.6 (M = 5); (d) a 9-dimensional

model for an end-point conditioned Wright-Fisher stochastic differential equation (see, e.g., Tataru

et al. (2017)).

All baseline methods are implemented in Blang (https://github.com/UBC-Stat-ML/blangSDK), the same

probabilistic programming language used to implement our method. The code for the baseline

adaption methods are available at https://github.com/UBC-Stat-ML/blangDemos. All methods therefore run

on the Java Virtual Machine, so their wall clock running times are all comparable.

Stochastic optimization methods.

Both Atchadé et al. (2011) and Miasojedow et al. (2013) are based on reversible PT together with

two different flavours of stochastic optimization to adaptively select the annealing schedule. In

Atchadé et al. (2011), the chains are added one by one, each chain targeting a swap acceptance

rate of 23% from the previous one. In Miasojedow et al. (2013), this scheme is modified in two

ways: first, all annealing parameters are optimized simultaneously, and second, a different update

for performing the stochastic optimization is proposed. To optimize all chains simultaneously, the

authors assume that both the number of chains and the equi-acceptance probability are specified.

Since this information is not provided to the other methods, in order to perform a fair comparison,

for the method we label as “Miasojedow, Moulines, Vihola” we implemented a method which

adds the chain one at the time while targeting the swap acceptance rate of 23% but based on the

improved stochastic optimization update of Miasojedow et al. (2013). Specifically, both Atchadé
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et al. (2011) and Miasojedow et al. (2013) rely on updates of the form ρn+1 = ρn + γn(αn+1 − 0.23)

where γn is an update schedule and ρn is a re-parameterization of difference in annealing parameter

from the previous chain β to the one being added β′. The work of Atchadé et al. (2011) uses

the update β′n = β(1 + exp(ρn))−1, whereas the work of Miasojedow et al. (2013) specifies the

explicit parameterization used for ρ, namely ρ = log(β′−1 − β−1), from which the update becomes

β′n = β(1 + β exp(ρn))−1. Moreover, while Atchadé et al. (2011) use γn = (n+ 1)−1, Miasojedow

et al. (2013) suggest to use γn = (n+ 1)−0.6. The experiments confirm that the latter algorithm is

more stable.

Description of models and datasets

We benchmark the methods described above on the following four models. First, a hierarchical

model applied to a dataset of rocket launch failure/success indicator variables (McDowell, 2019).

We organized the data by types of launcher, obtaining 5, 667 launches for 367 types of rockets

(processed data available at https://github.com/UBC-Stat-ML/blangDemos/blob/master/data/failure_counts.csv).

Each type is associated with a Beta-distributed parameter with parameters tied across rocket

types, with the likelihood given by a Binomial distribution (full model specification available at

https://github.com/UBC-Stat-ML/blangDemos/blob/master/src/main/java/hier/HierarchicalRockets.bl). The second

model is a Spike-and-Slab variable selection model applied to the RMS Titanic Passenger Manifest

dataset (Hind, 2019). The preprocessed data is available at https://github.com/UBC-Stat-ML/blangDemos/

tree/master/data/titanic. The data consist in binary classification indicators for the survival of each

individual passenger as well as covariates such as age, fare paid, etc. We used a Spike-and-Slab

prior with a point mass at zero and a Student-t continuous component (full model specification

available at https://github.com/UBC-Stat-ML/blangDemos/blob/master/src/main/java/glms/SpikeSlabClassification.

bl). Third, we used the Ising model from Section 3.2.6. Finally, we also used an end-point conditioned

Wright-Fisher stochastic differential equation (see, e.g., Tataru et al. (2017)). For this last model we

used synthetic data generated by the model. The specification of this last model is available at https:

//github.com/UBC-Stat-ML/blangSDK/blob/master/src/main/java/blang/validation/internals/fixtures/Diffusion.bl.
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Figure 3.10: Effective Sample Size (ESS) per second (ordinate, in log scale) for four PT methods
(abscissa). The four facets show results for the four models described in Section 3.4.3.
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Model (and dataset when applicable) Method N ŝ (%) Λ̂

Spike-and-slab classification NRPT+SCM 15 67.6 4.54
(RMS Titanic passengers data, Hind (2019)) ARR 6 36.3 3.82

MMV 6 39.9 3.61
NRPT 15 67.2 4.59

Bayesian hierarchical model NRPT+SCM 34 63.7 11.96
(historical rocket failure data, McDowell (2019)) ARR∗ 2∗ 0∗ 1∗

MMV 15 33.6 9.96
NRPT 34 63.4 12.08

Wright-Fisher diffusion NRPT+SCM 15 75.2 3.47
ARR 5 43.8 2.81
MMV 5 43.7 2.82
NRPT 15 75.5 3.42

Ising model NRPT+SCM 15 78.2 3.05
ARR 4 37.9 2.48
MMV 4 36.9 2.52
NRPT 15 78.5 3.01

Table 3.2: Summary statistics for the experiments in Section 3.4.3. The row marked with a
star indicates failed optimization of one of the stochastic optimization schemes on the Bayesian
hierarchical model.
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Figure 3.11: Examples of multimodality encountered in the Spike-and-Slab model applied to the
RMS Titanic passenger dataset. Joint posterior distribution of the following regression param-
eters (1) passengerAge and passengerClass; (2) passengerAge and SiblingsSpousesAboard;
(3) passengerClass and passengerClass2, the latter corresponding to an artificially duplicated
regressor used to investigate the effect of co-linearity on the posterior approximation.
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Figure 3.12: Example of multimodality in an Ising model. Each facet is a posterior probability
mass function, facet rows index the first 20 vertices of the Ising graph, facet columns, four posterior
approximation methods. By symmetry, each marginal should place equal mass at spins −1 and 1.
The multimodality is only correctly captured by our proposed algorithm (NRPT, third column, wall
clock time of 7.250s, N = 10). For the other methods, the posterior approximation either misses
the other mode completely, namely when using AIS (left column, wall clock time of 5.723s, 1000
particles, relative ESS adaptive annealing schedule) or single-chain MCMC (second column, wall
clock time of 1.439s), or, for annealed SMC (fourth column, wall clock time of 8.269s, 1000 particles,
relative ESS adaptive annealing schedule), detects the multimodality but not the modes’ respective
proportions. All wall clock times are reported for a 2.8 GHz Intel Core i7.
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3.4.4 Mixture models

Bayesian analysis of mixture models can give rise to a label-switching symmetry, leading to a

multimodal posterior distribution. We consider a Bayesian mixture model with two mixture

components. The likelihood for each component is a normal distribution with a non-conjugate

Uniform(0, 100) prior on the standard deviation and a normal prior on the means (standard

deviation of 100). We placed a uniform prior on the mixture proportion. We used simulated data

generated from the model. While the mixture membership indicator latent random variables can

be marginalized in this model, we sample them to make the posterior inference problem more

challenging. Sampling these mixture membership random variables is representative of more complex

models from the Bayesian non-parametric literature where marginalization of the latent variable is

intractable; for example, this is the case for the stick-breaking representation of general completely

random measures (Zhu et al., 2020).

In addition to the three MCMC methods described in the main text, we also ran baselines

based on SMC and AIS, which are popular methods to explore complex posterior distributions.

These methods also depend on the construction of a sequence of annealed distributions from prior

to posterior. For the SMC and AIS baselines, to select the sequence of distributions we used an

adaptive scheme based on relative ESS as described in Zhou et al. (2016). Diagnostics of the

adaptation are shown in Figure 3.16. These methods were parallelized at the particle level. We set

the number of particles to achieve a similar running time compared to NRTP, namely 2 000 particles

for SMC and 2 500 particles for AIS. We found that the quality of the posterior approximation was

highly dependent on performing several rounds of rejuvenations on the final particle population.

The wall-clock time with 5 and 20 rounds of rejuvenation (SMC-5, SMC-20) was comparable to

NRPT (1.778min, 2.302min) however the posterior approximation is markedly poor compared to

NRPT. With 100 rounds of rejuvenation, the posterior approximation matches closely that of NRPT,

however this brings the computation cost to 5.064min. AIS did not perform well since the weights

were highly unbalanced in the last iteration, effectively resulting in an approximation putting all

mass to a single particle.

In Figure 3.13 we compare the following inference methods on a label-switching posterior

distribution: our proposed algorithm (NRPT), an MCMC run based on a single chain (i.e. the
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Figure 3.13: Mixture model example: eight approximations of the posterior distributions, showing
for each approximation two of the 155 latent random variables, namely the two component mixtures’
mean parameters. Since the two latent random variables are exchangeable a posteriori (by label
switching), the true marginal posterior distributions are identical for the two random variables.
Amongst the approximation methods, multimodality is only captured by our algorithm (NRPT,
1.508min) and by a state-of-the-art sequential Monte Carlo combined with several rounds of
rejuvenation (SCM-100, 5.064min). The benchmark is conservative in that all competing methods
use a computational budget (in terms of both parallelism and wall clock time) greater or equal than
NRPT.

exploration kernel alone), the stochastic optimization method of Miasojedow-Moulines-Vihola

(MMV), DEO but optimized using MMV (MMV-DEO), Annealed Importance Sampling (AIS)

(Neal, 2001), and a sequential Monte Carlo based on a sequence of annealed distributions (Del Moral

et al., 2006) (labelled SCM as before). For both SCM and AIS, we use the adaptive scheme of Zhou

et al. (2016) (see Figure 3.14 for diagnostics of the SCM adaptation). The number of iterations

are set so that the method with the smallest wall clock time is our proposed algorithm (NRPT:

1.508min, MMV: 2.019min, MMV-DEO:1.665min, AIS: 1.887min, SCM: 1.778min–5.064min). For

all methods, timing includes the time spent to perform schedule optimization.

Amongst MCMC methods, only NRPT correctly captures the multimodality of the target

distribution. This is confirmed by the trace plots of the three MCMC methods, shown in Figure 3.15.

MMV automatically selected N = 8 by targeting a swap acceptance probability of 23%. Post-

adaptation, the swap acceptance probability was 27%. For NRPT we use N = 30 but to avoid

penalizing MMV for a lack of parallelism, we limited all methods to use no more than 8 threads.

After schedule optimization, NRPT estimates the global communication barrier to a value of Λ̂ ≈ 8,

and the average swap acceptance probability was 72% (see Figure 3.16 for more NRPT diagnostics).
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Figure 3.14: Diagnostics for the adaptive annealed SMC method (SCM), used as a benchmark on
the Bayesian mixture problem. From left to right: (1) ESS as a function of the SMC iteration.
Resampling is performed when the ESS drops below 1/2; (2) annealing parameter as a function of
the SMC iteration; (3) log normalization estimates at each resampling step.
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Figure 3.15: Mixture modelling example: post burn-in trace plots of two model parameters (facet
rows) for four MCMC methods considered (facet columns). The two parameters correspond to the
location parameters of two exchangeable clusters. Correct MCMC exploration of this unidentifiable
model requires label switching, providing a test bed for MCMC over multimodal targets. All
methods use a computational budget lower or equal to NRPT’s.

3.4.5 Multimodality arising from single cell, whole genome copy number

inference

In this section we describe an application to copy number inference in which multimodality arises

from the unknown ploidy of a cancer cell. The likelihood of this model is based on a hidden Markov

model over n = 6 206 observations, and after analytic marginalization of the corresponding 6 206

hidden states, the multimodal sampling problem is defined over d = 30 remaining latent variables.

The model is described in (Syed et al., 2021a, Appendix I.4.5), in this section we summarize the

results concerning the performance of the algorithms.
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Figure 3.16: Diagnostics for NRPT (Algorithm 5) on the mixture modelling example. From left to
right: (1) Estimate of the global communication barrier Λ̂ as a function of the schedule optimization
round. (2) Average swap acceptance probability across the 30 chains as a function of the schedule
optimization round. The final value is 72%. (3) Estimated communication barrier λ output by
NRPT. The two peaks can be interpreted as transition points where the cluster membership indicator
variables go from disorganized (all cluster membership variables are i.i.d. at β = 0), to all taking the
same value within a cluster. The two clusters having different number of data points and parameters
induce two distinct transition points. The empirical behaviour observed is analogous to the phase
transition found in statistical mechanics models such as the Ising model. Investigation of possible
phase transitions in clustering models would be an interesting future direction of investigation,
although somewhat orthogonal to this work. (4) Learning curves for the annealing parameters
(ordinate axis, log scale) for the 30 NRPT chains (colours) as a function of the schedule optimization
round (abscissa).

We compare the quality of posterior approximations from four samplers on the High-Grade Serous

Ovarian cancer dataset from Dorri et al. (2020). The four methods compared are: the stochastic

optimization adaptive PT method MMV (adaptation selected 7 chains, average post-adaptation

swap acceptance, 28.7%), DEO but optimized using MMV (MMV-DEO, adaptation selected 11

chains, average post-adaptation swap acceptance, 26.9%) our proposed algorithm algorithm (NRPT

with 25 and 50 chains, average post-optimization swap acceptance of respectively 48.8% and 73.5%),

and inference based on a single MCMC chain. As in Section 3.4.4, to avoid overly penalizing MMV

for a lack of parallelism, we limited all methods to use no more than 8 threads, hence obtaining the

following wall clock running times including schedule optimization when applicable: MMV, 15.91h;

MMV+DEO, 14.33h; 25 chains NRPT, 8.809h; 50 chains NRPT, 15.35h; 1 chain MCMC, 2.91h.

The running time of MMV was dominated by adaptation (88% of the wall clock time), and is higher

than the schedule optimization time used by NRPT (67%).

Refer to Figure 3.17 for a comparison of the trace plots between all three methods. Since the

experimental protocol provides only proportionality between read counts and copy number, not
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absolute expected read count for a given copy number, the likelihood does not distinguish between

a given copy number profile, and another one obtained by genome duplication of the same profile

(refer to (Syed et al., 2021a, Appendix I.4.5) for details). The prior favours the former, but when

local copy number events occur after the genome duplication it may be possible to detect recently

evolved genome duplication. Challenging multimodality arises when these subsequent events involve

only small regions. In such case, the tension between the prior distribution favouring low ploidy and

the noisy observation favouring higher ploidy creates a multimodal posterior distribution. We use

data from one such cell in the following experiments to illustrate a realistic multimodal inference

problem.

The multimodality of the posterior distribution was successfully captured by NRPT but not

by a single-chain MCMC nor by the stochastic optimization method MMV (Figure 3.17). MMV

failed to achieve any round trip because the learnt schedule is highly suboptimal: while the mean

swap acceptance probability across chains is 28.7%, the minimum across chains is nearly zero due

to the noise in the optimization procedure. The difficulty of exploring this particular multimodal

target is compounded by the fact that the state space of each chromosome’s copy number is random,

being upper-bounded by random variables mc corresponding to each chromosome c. So in order to

perform a jump doubling the cell’s ploidy the sampler has to increase a large number of discrete

variables mc simultaneously. This is reflected in the posterior distribution of the model variables

denoted mc, as seen in trace plots in Figure 3.17. Hence the local exploration kernel, which in this

example samples the variables mc one at the time, is insufficient to jump mode, and only excursions

through the prior can achieve mode jumping, via a regeneration based on sampling from the prior

at β = 0.

NRPT used 50 chains, estimated Λ̂ = 13 (see Figure 3.19), and converged quickly in this large

scale example, performing drastic changes in the annealing schedule in the first 8 rounds then

relatively little changes in rounds 8 through the final tenth round (Figure 3.19).

Comparing the performance of the two NRPT variants, we estimated a round trip rate of 9×10−4

for 25-chain, and 6× 10−3 for 50-chain. Notice the increase being more than a factor two supports

the use of large N for exploration of complex multimodal posterior distributions. Neither MMV nor

MMV-DEO achieved any round trips in the post-burn-in iterations.
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Figure 3.17: Trace plots for the copy number inference problem. Each facet shows a post burn-in
trace plot for one of the random variables mc. Facet rows are indexed by chromosomes. Facet
columns are indexed by MCMC approximation methods. The trace plots show that only NRPT
frequently jumps between the two modes. MMV and the exploration kernel alone do not achieve
any jump, due to the required concerted changes in a large number of discrete variables.
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Figure 3.18: Copy number inference: inputs and outputs. From left to right: (1) raw data, where
each dot represent a genomic bin i, c, with its abscissa showing log gi,c and its ordinate, log yi,c. (2)
posterior distribution obtained from NRPT for the random function f(θ, ·) obtained from NRPT.
One translucent line f(θn, ·) is drawn for each sampled θn. Notice the bi-modality of the posterior
distribution. (3) The approximation of the same posterior distribution based on a single chain
misses one of the modes.
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Figure 3.19: NRPT diagnostics on the copy number inference example. From left to right: (1)
Estimate of the global communication barrier Λ̂ as a function of the scehdule optimization round. (2)
Average swap acceptance probability across the 50 chains as a function of the schedule optimization
round. (3) Estimated communication barrier λ output by NRPT. (4) Learning curve for the
annealing parameters (ordinate axis, log scale) for the 50 NRPT chains (colours) as a function of
the schedule optimization round (abscissa).
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Chapter 4

Parallel tempering on optimized paths

One geometry cannot be more true than another; it can only be more convenient.

— Jules Henri Poincare

4.1 Motivation

The previous chapter showed that non-reversible PT is guaranteed to dominate its classical reversible

counterpart. Moreover, adding more chains in the non-reversible regime does not lead to performance

collapse. However, even with these more efficient non-reversible PT algorithms, we established that

the improvement in round trip rates brought by higher parallelism would asymptote to a fundamental

limit τ∞ = (2 + 2Λ)−1 controlled by the global communication barrier Λ. The communication

barrier Λ measures the difficulty of communication between π0 and π1 and represents a limitation

of non-reversible PT that cannot be improved upon by increasing the number of chains or tuning

the schedule. Therefore when Λ is large, NRPT with a well-tuned schedule with many chains will

still suffer poor performance. For example, this can happen when π0 and π1 are nearly mutually

singular. A typical case is where the target is a Bayesian posterior distribution, the reference is the

prior—for which i.i.d. sampling is typically possible—and the prior is misspecified.

We can naturally ask if it is possible to improve upon the optimal round trip rate τ∞, theoretically

and empirically established in Chapter 3. In this chapter, we show that the answer to this question

is surprisingly positive. We will show that by generalizing the class of paths interpolating between

π0 and π1 from linear to nonlinear, the global communication barrier can be broken, leading to

substantial performance improvements. Notably, the nonlinear path used to demonstrate this

breakage is computed using a practical algorithm that can be used in any situation where PT is

applicable.

The following proposition demonstrates that the traditional linear path πβ ∝ π1−β
0 πβ1 suffers
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from an arbitrarily suboptimal global communication barrier even in simple examples with Gaussian

reference and target distributions. Therefore, upon decreasing the variance of the reference and

target while holding their means fixed, the traditional linear annealing path obtains an exponentially

smaller asymptotic round trip rate than the optimal path of Gaussian distributions. Figure 4.1

provides an intuitive explanation. The standard path (top) corresponds to a set of Gaussian

distributions with mean interpolated between the reference and target. Reducing the variance of

the reference and target also reduces the variance of the distributions along the path. For any fixed

N , these distributions become nearly mutually singular, leading to arbitrarily low round trip rates.

The solution to this issue (bottom) is to allow the distributions along the path to have increased

variances, thereby maintaining mutual overlap and the ability to swap components with a reasonable

probability. This motivates the need to design more general annealing paths. In the following, we

introduce the precise general definition of an annealing path, an analysis of path communication

efficiency in parallel tempering, and a rigorous formulation of—and solution to—the problem of

tuning path parameters to maximize the round trip rate.

This chapter will develop a theoretical analysis of parallel tempering algorithms based on

general nonlinear paths and their geometry. We will use this to understand the properties of the

communication barrier and how it changes and develop a practical algorithm to tune the path to

improve the performance of PT. To see an example of a path optimized using our algorithm see

Figure 4.1 (bottom).

Proposition 9. Suppose the reference and target distributions are π0 = N (µ0, σ
2) and π1 =

N (µ1, σ
2), and define z = |µ1 − µ0|/σ. Then as z →∞,

1. the path πβ ∝ π1−β
0 πβ1 has τ∞ = Θ(1/z), and

2. there exists a path of Gaussian distributions with τ∞ = Ω(1/ log z).

We will prove a more general result in Section 4.5.9.

4.1.1 Literature review

Beyond parallel tempering, several methods to approximate intractable integrals rely on a path

of distributions from a reference to a target distribution, and there is a rich literature on the
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Figure 4.1: Two annealing paths between a π0 = N(−2, 0.22) (light blue) and π1 = N(2, 0.22) (dark
blue) : the traditional linear path (top) and an optimized nonlinear path (bottom). While the
distributions in the linear path are nearly mutually singular, those in the optimized path overlap
substantially, leading to faster round trips.

construction and optimization of nonlinear paths for annealed importance sampling type algorithms

(Gelman and Meng, 1998; Rischard et al., 2018; Grosse et al., 2013) and recently variational inference

(Zimmermann et al., 2021; Masrani et al., 2021; Chen et al., 2021). These algorithms are highly

parallel; however, for challenging problems, even when combined with adaptive step size procedures

(Zhou et al., 2016) they typically suffer from particle degeneracy in Section 3.4.3. Moreover, these

methods use different path optimization criteria which are not well motivated in the context of

parallel tempering.

Some special cases of non-linear paths have been used in the PT literature (Whitfield et al.,

2002; Tawn et al., 2020). Whitfield et al. (2002) construct a non-linear path inspired by the concept

of Tsallis entropy, a generalization of Boltzmann-Gibbs entropy, but do not provide algorithms to

optimize over this path family. The work of Tawn et al. (2020), also considers a specific example of

a nonlinear path distinct from the ones explored in this paper. However, the construction of the

nonlinear path in Tawn et al. (2020) requires knowledge of the location of the modes of π1 and

hence makes their algorithm less broadly applicable than standard PT.
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4.2 Parallel tempering on general annealing paths

4.2.1 Annealing paths

Given π0, π1 ∈ P(X ) we expand the terminology annealing path from Section 2.1.1 to describe a

continuum of distributions interpolating between π0 and π1. Formally, an annealing path between

π0 and π1 is a one-to-one P(X )-valued function β 7→ πβ, such that (1) for all x ∈ X , πβ(x) is

continuous in β, and (2) is equal to π0 and π1 at β equal to 0 and 1 respectively. We will refer to β

as the annealing parameter corresponding to the annealing distribution πβ,

πβ(x) =
1

Z(β)
exp (Wβ(x)) , x ∈ X ,

where Z(β) =
∫
X exp (Wβ(x)) dx <∞ is the normalizing constant. We will assume Wβ(x) can be

cheaply evaluated for each x ∈ X but not Z(β).

The most important example of an annealing path is the linear path πβ ∝ π1−β
0 πβ1 , which was

the focus of Chapter 3. However, it does not take much imagination to construct a non-linear

path. For example, consider a nonlinear path πβ ∝ π
η0(β)
0 π

η1(β)
1 where ηi : [0, 1]→ R are continuous

functions such that η0(0) = η1(1) = 1 and η0(1) = η1(0) = 0. As long as for all β ∈ [0, 1], πβ is a

normalizable density this is a valid annealing path between π0 and π1. Further, note that the path

parameter does not necessarily have to appear as an exponent: consider for example the mixture

path πβ ∝ (1− β)π0 + βπ1. Section 4.6 provides a more detailed example based on linear splines.

4.2.2 Velocity

An annealing path π is differentiable at β with velocity π̇β : X → R equal to the derivative of the

log-likelihood when it exists,

π̇β(x) :=
d log πβ(x)

dβ

=
dWβ(x)

dβ
− d logZ(β)

dβ
.

The velocity π̇β corresponds to the score function of the annealing path πβ, and measures the

sensitivity of πβ(x) to changes in β. Under mild regularity assumptions on Wβ(x), we have π̇β has
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mean zero with respect to πβ, and the variance of π̇β is the Fisher information of πβ,

Eβ [π̇β] = 0, Varβ [π̇β] = Varβ

[
dWβ

dβ

]
,

Notably, the linear path between π0 and π1 has velocity,

π̇β(x) = V (x) +
d logZ(β)

dβ
, (4.1)

where recall V (x) = W1(x) −W0(x) is the corresponding log-likelihood ratio between π0 and π1

modulo the normalizing constant.

The velocity will be important when analyzing the asymptotic and geometric properties of PT

for generalized paths. From now on we will assume all annealing paths are continuously piece-wise

differentiable.

4.2.3 Path reparametrization

Suppose πβ is a differentiable annealing path with schedule BN generated by γ for some increasing

differentiable γ with derivative γ̇. Then πβn = π′n/N where π′w = πγ(w) is a differentiable annealing

path satisfying,

π′w = πγ(w), (4.2)

π̇′w = π̇γ(w)γ̇(w).

Choosing a schedule BN generated by γ for π is equivalent to the uniform schedule for π′. Consequen-

tially, schedule generators can be equivalently reinterpreted as orientation preserving reparametriza-

tions of an annealing path.

We will say that two differentiable annealing paths π and π′ are equivalent if and only if there

is a continuous increasing γ : [0, 1] → [0, 1] such that γ(0) = 0, γ(1) = 1 such that (4.2) holds.

Equivalent paths share the same annealing distributions in P(X ) and end points, although they

differ in their velocity.
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4.2.4 Non-asymptotic analysis

Notice that the local exploration and communication kernels Kexpl and Kcomm
t constructed in

Sections 2.2.1 and 2.2.2 respectively are well-defined for general annealing paths π and schedule

BN . In particular, note that Algorithms 1 and 2 hold for any choice of annealing path and do not

require the use of a linear path. So we can therefore extend the notion of the index process and

round trip to general annealing paths. We will denote τ(π,BN ) as the round trip rate for a general

path π with schedule BN .

Notably for general annealing paths ∆Wn = Wβn −Wβn−1 may not simplify to (3.1) as it did for

the linear path. We only used the structure of the linear path when developing the non-asymptotic

theory for PT in Section 3.1 through the ELE assumption (A2) from Section 3.1.2. Assumptions

(A1) and (A2) can be simply modified for general paths:

(A1’) Stationarity : X0 ∼ π and thus Xt ∼ π for all t as the kernel KPT
t is π-invariant.

(A2’) Efficient Local Exploration (ELE): If X ∼ π and X̄|X ∼ Kexpl(X,dx̄), then ∆Wn(Xn−1) is

independent of ∆Wn(X̄n−1) and ∆Wn(Xn) is independent of ∆Wn(X̄n) for all n = 1, . . . , N .

When π is the linear path (A2’) reduce to (A2) since Wn(x) ∝ V (x). Recall α(n−1,n)(Xt) is the

probability a swap occurs between chains Xn−1
t and Xn

t at scan t defined by

α(n−1,n)(x) = 1 ∧ exp(∆Wn(xn−1)−∆Wn(xn)).

Assumptions (A1’) and (A2’) ensure for each n = 1, . . . , N we have {α(n−1,n)(Xt)}∞t=1 are independent

and Theorem 1 and Corollary 2 still hold for general annealing paths π with schedule BN . In

particular, the round trip rate satisfies,

τ(π,BN ) =
1

2 + 2Λ(π,BN )
, (4.3)

where Λ(π,BN ) is the non-asymptotic communication barrier for path πβ with schedule BN defined

by,

Λ(π,BN ) =

N∑
n=1

r(πβn−1 , πβn)

1− r(πβn−1 , πβn)
.
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Recall r(πβn−1 , πβn) is the average rejection rate for the n-th swap kernel from Section 3.2.1.

4.3 Asymptotic analysis

Our next objective is to characterize the asymptotic efficiency of a nonlinear path π with schedule

BN in the regime where N →∞ —which establishes its fundamental ability to take advantage of

parallel computation. In other words, we require a generalization of the asymptotic result from

Corollary 5 and Theorem 6. We will follow a similar approach to Section 3.2 in Chapter 3 from the

linear path to a general annealing path. In particular, in Chapter 3, we developed the asymptotic

theory of parallel tempering for the linear annealing path through the communication barrier Λ. In

this section, we will extend the communication barrier for sufficiently regular annealing paths.

4.3.1 Regular annealing paths

We will say that that an annealing path πβ ∝ exp(Wβ) is regular if for all x ∈ X , Wβ(x) is piecewise

twice continuously differentiable in β, and when dW
dβ (x) and d2W

dβ2 (x) exist and there exists some

functions V1, V2 : X → [0,∞) such that

∀x ∈ X , sup
β∈[0,1]

∣∣∣∣dWβ

dβ
(x)

∣∣∣∣ ≤ V1(x), (4.4)

∀x ∈ X , sup
β∈[0,1]

∣∣∣∣d2Wβ

dβ2
(x)

∣∣∣∣ ≤ V2(x). (4.5)

Moreover, we assume there exists some ε > 0, satisfying

sup
β

Eβ[(1 + V 3
1 ) exp(εV2)] <∞. (4.6)

The differentiability condition (4.4), (4.5) ensures the log-likelihood does not change too rapidly for

adjacent distributions along the path. The integrability condition (4.6) is required to control the

tail behaviour of distributions formed by linearized approximations to the path πβ . This condition

is satisfied for any reasonable path families that would arise in practice. For example, e.g., if Wβ(x)

is piecewise linear for all x ∈ X , then V2 = 0 trivially.

75



4.3.2 Communication barrier for regular paths

If p ∈ P(X ) and f is integrable with respect to p, we define λ(p, f) as,

λ(p, f) :=
1

2
Ep
[∣∣f(X)− f(X ′)

∣∣] , X,X ′
i.i.d.∼ p. (4.7)

Recall from equation (4.1), the linear path πβ between π0 and π1 has velocity π̇(x) = V (x)− d logZ
dβ .

By substituting V (x) = π̇(x) + d logZ
dβ into (3.13) we can rewrite the communication barrier Λ as,

Λ =

∫ 1

0
λ(πβ, π̇β)dβ. (4.8)

Notice that (4.8) is well-defined when π is any differentiable annealing path and motivates the

definition of Λ(π),

λ(β) := λ(πβ, π̇β), Λ(π) :=

∫ 1

0
λ(β)dβ. (4.9)

Theorem 10 shows that for regular annealing paths, λ(β) and Λ(π) defined in (4.9) encode

the same asymptotic information for PT as the local and global communication barrier for the

linear path. In particular, Theorem 10 extends Theorem 4, Corollary 5 and Theorem 6 for general

non-linear paths, with slightly weaker error estimates. Consequentially the theoretical analysis

and methodology developed for the linear path in Chapter 3 are still valid for any regular paths.

Motivated by Theorem 10, we will now refer to λ(β), and Λ(π) defined through (4.9), as the local

and global communication barrier for π.

Theorem 10. Suppose π is a regular annealing path, with local communication barrier λ(β) and

global communication barrier Λ(π) defined by (4.9), then we have the following holds:

(a) The local communication barrier equals the instantaneous rate of rejection,

lim
∆β→0

r(πβ+∆β, πβ)

|∆β|
= λ(β). (4.10)
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(b) The total rejection rate uniformly converges to the global communication barrier as ‖BN‖ → 0,

lim
δ→0

sup
BN :‖BN‖≤δ

∣∣∣∣∣
N∑
n=1

r(πβn−1 , πβn)− Λ(π)

∣∣∣∣∣ = 0. (4.11)

(c) The asymptotic round rate for non-reversible PT uniformly converges to τ∞(π) := (2+2Λ(π))−1

as ‖BN‖ → 0,

lim
δ→0

sup
BN :‖BN‖≤δ

|τ(π,BN )− τ∞(π)| = 0. (4.12)

See Appendix A.2.1 for the proof.

Invariance of the communication barrier

Suppose π′ is equivalent to π with local communication barrier λ′ and λ respectively. There is an

orientation preserving reparametrization γ such that (4.2) holds, which we can substitute into (4.7)

to get the following relation,

λ′(w) = λ(γ(w))γ̇(w). (4.13)

By integrating (4.13) over w and subtituting β = γ(w) we have

Λ(π′) =

∫ 1

0
λ(γ(w))γ̇(w)dw =

∫ 1

0
λ(β)dβ = Λ(π).

Therefore the global communication barrier Λ is invariant to orientation preserving reparameteriza-

tions and cannot distinguish between equivalent paths.

4.4 Path tuning

4.4.1 Annealing path families

It is often the case that there are a set of candidate annealing paths in consideration for a particular

target π1. For example, if a path has tunable parameters φ ∈ Φ that govern its shape, we can

generate a collection of annealing paths (up to equivalency) that all target π1 by varying the

77



parameter φ. We call such collections an annealing path family. Formally, an annealing path family

for target π1 is a collection of regular annealing paths A = {πφ : φ ∈ Φ} such that for all parameters

φ ∈ Φ, πφ1 = π1.

There are many ways to construct useful annealing path families. For example, if one is provided

a parametric family of variational distributions {qφ : φ ∈ Φ} for some parameter space Φ, one

can construct the annealing path family A = {πφ : φ ∈ Φ} of linear paths πφβ = q1−β
φ πβ1 from a

variational reference qφ to the target π1. More generally, given ηi(β) satisfying the constraints in

Section 4.2.1, πφβ = q
η0(β)
φ π

η1(β)
1 defines a nonlinear annealing path family. Another example of an

annealing path family used in the context of PT are q-paths {πqβ}q∈[0,1] (Whitfield et al., 2002).

Given a fixed reference and target π0, π1, the path πqβ interpolates between the mixture path (q = 0)

and the linear path (q = 1) (Brekelmans et al., 2020). In Section 4.6, we provide a new flexible class

of nonlinear paths based on splines that is designed specifically to enhance the performance of PT.

4.4.2 Optimizing over annealing path families

Motivated by the analysis of Section 4.3, given an annealing path family A = {πφ : φ ∈ Φ}, a

natural objective function for this optimization to consider is to maximize non-asymptotic round

trip rate τ(πφ,BN ) or equivalently minimize the non-asymptotic communication barrier Λ(πφ,BN )

which now depend both on the schedule and path parameter, denoted by superscript φ. Since every

path in A has the desired target distribution π1, we are free to optimize the path over the tuning

parameter space φ ∈ Φ in addition to optimizing the schedule BN ,

φ?,B?N = arg min
φ∈Φ,BN

Λ(πφ,BN ), (4.14)

= arg min
φ∈Φ,BN

N∑
n=1

rφn

1− rφn
,

where rφn = r(πφβn−1
, πφβn). We solve this optimization using an approximate coordinate-descent

procedure, iterating between an update of the schedule BN for a fixed path parameter φ ∈ Φ,

followed by a gradient step in φ based on a surrogate objective function and a fixed schedule. We

assume that the optimization over φ ends after a finite number of adaptive rounds to sidestep the

potential pitfalls of adaptive MCMC methods (Andrieu and Moulines, 2006). This is summarized in
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Algorithm 6 PathOptimizedNRPT

Input: Initial state x0, annealing path family {πφβ : φ ∈ Φ}, maximum chains N̄ , tuning budget
ttune, scans per round tround, learning rate κ
. Initialize state

1: x← x0

. Initialize schedule, e.g. uniform
2: BN̄ ← (0, 1/N̄, 2/N̄, . . . , 1)

. Initialize linear path, e.g. linear path
3: πφβ ← π1−β

0 πβ1
4: maxRound← ttune/tround

5: for round in 1, 2, . . . , maxRound do
. Approximate rejection rate using Algorithm 1

6: {xt}troundt=1 , (rn)N̄n=1 ← DEO(x, πφβ ,BN , tround)
. Approximate communication barrier using Algorithm 4

7: λ,Λ← CommunicationBarrier((rn)N̄n=1,BN̄ )
. Approximate optimal schedule using Algorithm 3

8: BN̄ ← UpdateSchedule(λ, N̄)
. Update path using gradient descent (See Section 4.4.4)

9: φ← φ− κ∇φSKL(πφ,BN̄ )
10: x← xtscan
11: end for
12: return πφβ ,BN̄ , λ,Λ

Algorithm 6.

Algorithm 6 is not a replacement of Algorithm 5, but rather a companion. Given an annealing

path family, we can incorporate path tuning using Algorithm 6 in place of the tuning phase (lines

1-9) of Algorithm 5. To utilize the tuning budget of ttune scans, we run ttune/tround adaptive rounds

of tscan scans per round instead of the doubling procedure from Algorithm 5. See Syed et al. (2021b)

for guidelines on how to tune tround and the learning rate κ.

4.4.3 Optimizing the schedule

Fix the value of φ, which fixes the path πφ ∈ A and we will characterize the optimal schedule

BφN = arg minBN Λ(πφ,BN ) for πφβ by using the same analysis in Section 3.3.1. When N is large,

finding the schedule that minimizes Λ(πφ,BN ) reduces to approximately solving the following
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constraint optimization problem,

minimize
N∑
n=1

rφn

1− rφn
,

s.t.
N∑
n=1

rφn = Λ(πφ).

Based on the same argument in Section 3.3.1, the optimal schedule BφN = (βφn)Nn=1 achieves a

constant rejection rφn = rφ for n = 1, . . . , N and approximately satisfies,

1

Λ(πφ)

∫ βφn

0
λφ(β)dβ =

n

N
, (4.15)

where λφ is the local communication barrier for πφ. We want to remark that condition (4.15) implies

βφn = γφ(n/N), where γφ is the inverse of F φ(β) = 1
Λφ

∫ β
0 λφ(u)du. Consequentially, the optimal

schedule BφN for the path πφβ is generated by γφ.

Given πφ and the current schedule BN = (βn)Nn=0, we can run PT and obtain Monte Carlo

estimates for rφn. We can then use Algorithm 4 to efficiently approximate the communication barrier

for πφ using monotone splines. Equipped with the communication barrier, Algorithm 3 can be used

to solve (4.15) and obtain an estimate of BφN .

4.4.4 Optimizing the path

Fix the schedule BN ; we now want to improve the path πφ itself by modifying φ. However,

in challenging problems, this is not as simple as taking a gradient step for the non-asymptotic

communication barrier Λ(πφ,BN ) objective in Equation (4.14). In particular, in early iterations—

when the path is near its oft-poor initialization—the rejection rates satisfy rφn ≈ 1. As demonstrated

empirically in (Syed et al., 2021b, Appendix F), gradient estimates in this regime exhibit a low

signal-to-noise ratio that precludes their use for optimization. Moreover, the non-asymptotic

communication barrier Λ(πφ,BN ) depends on the path πφ, and its parameterization through the

annealing schedule BN . Since we want to optimize the path independent of the parameterization,

we will construct a proxy objective for Λ(πφ,BN ) that (1) measures the quality of the path, (2) is

numerically stable to optimize.

80



Using the convexity of r → r/(1 − r), the non-asymptotic communication barrier Λ(πφ,BN )

satisfies,

Λ(πφ,BN ) =
N∑
n=1

rφn

1− rφn
≥ r(πφ,BN )

1−N−1r(πφ,BN )
, (4.16)

where r(πφ,BN ) :=
∑N

n=1 r
φ
n is the total rejection rate, and we have equality if and only if BN

achieves equi-acceptance. We can equivalently minimize r(πφ,BN ) since the lower bound in (4.16)

is approximately attained when the optimal schedule BφN for πφ is chosen and rφn is constant

n = 1, . . . , N .

Theorem 10 implies the total rejection rate r(πφ,BN ) ≈ Λ(πφ) when ‖BN‖ is small. It follows

from (4.11) in Theorem 10 that if (πφ,BN ) approximately miniminizes r(πφ,BN ), then so does

(πφ,B′N ) for every annealing schedule B′N (assuming ‖B′N‖ is small). This means the path minimizing

the total rejection rate does not admit a unique solution making it numerically unstable to optimize.

To remedy this issue, we will find a suitable surrogate objective that upper bounds r(πφ,BN ) and

does not suffer from the same identifiability issues.

By Jensen’s inequality,

r(πφ,BN )2 =

(
N∑
n=1

rφn

)2

≤ N
N∑
n=1

r2(πφβn−1
, πφβn) (4.17)

with equality when the rejection rates are constant. From Equation (3.11) we know that the squared

rejection rate is bounded above by the SKL divergence, which combined with (4.17) results in the

SKL objective,

r(πφ,BN )2 ≤ SKL(πφ,BN ), (4.18)

where SKL(π,BN ) equals,

SKL(π,BN ) := N
N∑
n=1

SKL(πβn−1 , πβn). (4.19)

Since SKL(πφ,BN ) bounds r(πφ,BN ), it is a candidate objective to optimize. In the next section we
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will argue that optimizing the SKL objective leads to near optimal paths for parallel tempering, and

offer theoretical evidence that it does not suffer from the same identifiability issues as r(πφ,BN ).

See Appendix F of Syed et al. (2021b) for empirical evidence that minimizing the SKL objective

leads to improved performance for PT and Appendix D of Syed et al. (2021b) for a derivation of

the gradient, ∇φSKL(πφ,BN ).

The slack in inequality (4.18) could potentially depend on φ even in the large N regime. Therefore,

during optimization, we recommend monitoring the value of the non-asymptotic communication

barrier Λ(πφ,BN ) to ensure that the optimization of the surrogate SKL objective SKL(πφ,BN )

indeed improves it, and hence the round trip rate performance of PT via Equation (4.3). We will

explore the asymptotic properties of the SKL objective and characterize its optima for large N in

Section 4.5.8.

4.5 Annealing within parametric families

Suppose a regular annealing path πβ takes on values in some parametric family of distributions

M = {pη ∈ P(X ) : η ∈ Ω},

where Ω is some subset of Rd. The corresponding probability distributions pη have density,

pη(x) =
1

Z(η)
exp(Wη(x)),

where Z(η) =
∫
X exp(Wη(x))dx is corresponding normalizing constant, and Wη(x) is the log-

likelihood modulo a constant. For example suppose X = R and Ω = R× R+, then we can identify

each η = (µ, σ) ∈ Ω with pη = N(µ, σ2). The corresponding parametric family M is the space of

Gaussians with log-likelihood Wη(x) = 1
2σ2 (x− µ)2. Annealing paths π in the space of Gaussians

can be equivalently represented by the 2-dimensional curve η(β) = (µ(β), σ(β)) ∈ Ω corresponding

to annealing distributions πβ = N(µ(β), σ(β)2) ∈M.

More generally, by identifying pη ∈M with η ∈ Ω, the family M inherits the topological and

geometric structure of Ω. In particular, we can study the geometric properties of annealing paths

πβ in M through the geometry of d-dimensional curves η(β) in the space of parameters Ω. With
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this interpretation, the local and global communication barriers will emerge as the “speed” and

“length” of annealing paths, respectively and provide an alternative view of Algorithm 6.

4.5.1 Annealing families

Given a parameteric family M, we define the score function for M as

Sη(x) := ∇η log pη(x),

and the Fisher information matrix I(η),

I(η) := −Eη[∇2
η log pη],

where we use Eη to indicate the expectation is with respect to pη. We will say that a parametric

family M is a annealing family if the following conditions hold:

(R1) Identifiability: For all η, η′ ∈ Ω if η′ 6= η, then pη 6= pη′ .

(R2) Topological regularity: Ω is complete, locally compact and path connected.

(R3) Geometric regularity: Wη(x) is twice continuously differentiable in η for all x and for all

compact K ⊂ Ω, there exist functions V1, V2 : X → R such that

∀x ∈ X , sup
η∈K, ‖v‖=1

∣∣vT∇ηWη(x)
∣∣ ≤ V1(x),

∀x ∈ X , sup
η∈K, ‖v‖=1

∣∣vT∇2
ηWη(x)v

∣∣ ≤ V2(x),

for some functions V1, V2 : X → [0,∞) and there exists some ε > 0 satisfying

sup
η∈K

Eη[(1 + V 3
1 ) exp(εV2)] <∞. (4.20)

(R4) Positive definite: The Fisher information is positive definite for all η ∈ Ω,

η ∈ Ω, v 6= 0, vT I(η)v > 0.
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Condition (R1) is there to make sure the parametric representation ofM is uniquely determined

by η ∈ Ω. (R2) and (R3) ensure M is compatible with parallel tempering. In particular, condition

(R2) guarantees the existence of annealing paths between any two points π0, π1 ∈ M, and rules

pathologies arising from multiple connected components for M. (R3) ensures that any piecewise

twice-differentiable annealing paths in M are regular and thus satisfy the conditions of Theorem

10. Moreover, (R3) also guarantees we can twice differentiate
∫
X pη(x)dx under the integral sign

with respect to η which implies the score function has mean 0 with respect to η, and the Fisher

information is the covariance matrix for the score function, i.e. for all η ∈ Ω,

Eη[Sη] = 0, Eη[SηSTη ] = I(η). (4.21)

Finally (R4) makes sure that I(η) is always full rank and eliminates the possibility that Ω is a low

dimensional surface embedded in Rd.

In particular, the image of any regular annealing path π satisfying the condition of Theorem 10

is a 1-dimensional annealing family M = {πβ : β ∈ [0, 1]} parametrized by β ∈ [0, 1] with Fisher

information I(β) = Varβ

[
dWβ

dβ

]
. This is not an interesting family, since there only exists one regular

paths between π0 and π1 up to equivalency, namely π, but demonstrates the generality of our

framework. We will see that even a 2-dimensional annealing family M will give us enough freedom

to design flexible annealing path families.

Tangent bundle

For an annealing family M, it is possible to fully characterize all differentiable annealing paths in

terms of the corresponding differentiable curves in Ω. Define tangent bundle of M denoted TM as

the possible values for a differentiable annealing path in M and its velocity,

TM = {(πβ, π̇β) : π is a differentible annealing path in M}.

Proposition 11 implies that TM is in bijective correspondence to Ω× Rd, and therefore there is an

equivalence between differentiable paths π in M and differentiable parametric curves η in Ω.
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Proposition 11. Suppose M is an annealing family, then Φ : Ω× Rd → TM defined by

Φ(η, v) = (pη, v
TSη),

is a bijection.

See Appendix A.2.2 for the proof.

4.5.2 Regular divergences on annealing families

A divergence on an annealing familyM is a function D :M×M→ R+ such that for all p, p′ ∈M:

D(p, p′) ≥ 0, D(p, p′) = 0⇐⇒ p = p′. (4.22)

Intuitively, D(p, p) measures the difference between p and p′, but may not be symmetric or satisfy

the triangle inequality. Divergences are helpful since they provide a more flexible notion of “distance”

between probability distributions than a metric. In particular, the divergences relevant for PT are

the rejection rate and SKL divergence defined in Section 3.2.1.

Since a divergence can be general, to say anything meaningful we require some structure on D

to ensure D(pη, pη′) is well behaved when η ≈ η′. If D(pη, p
′
η) is sufficiently smooth as a function of

η, η′, then (4.22) implies that at D(pη, pη′) and its partial derivatives should vanish at η = η′ and

the Hessian should be positive definite. Then by Taylor’s Theorem we expect D(pη, pη+∆η) to be

locally quadratic in ∆η for small perturbations ∆η from η. Formally, we will say D is a regular

divergence if for each η ∈ Ω, as ‖∆η‖ → 0,

D(pη, pη+∆η) = λ2
D(η,∆η) + o(‖∆η‖2), (4.23)

where ‖ · ‖ is the Euclidean norm in Rd and λD : Ω× Rd → R+ satisfies,

(F1) Regularity: λD(η, v) is continuously differentiable on {(η, v) ∈ Ω× Rd : v 6= 0}.

(F2) Positive definite: λD(η, v) ≥ 0 with equality if and only if v = 0.

(F3) Positive homogeneity: For all c ≥ 0, λD(η, cv) = cλD(η, v).
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(F4) Strong convexity: For all η ∈ Ω, v → λ2
D(η, v) is strongly convex, i.e. for all v 6= 0,

GD(η, v) = ∇2
vλ

2
D(η, v) � 0.

We call λD(η, v) and GD(η, v) the Finsler norm and Finsler metric induced by divergence D. When

M is an annealing family, we can use Proposition 11 to define the Finsler norm and metric on the

tangent bundle TM,

λD(pη, v
TSη) := λD(η, v), GD(pη, v

TSη) := GD(η, v). (4.24)

The Finsler norm λD(η,∆η) characterizes the local behaviour of the divergence. Condition (F1)

ensures λD(η, v) smoothly varies and does not undergo sudden jumps. Equation (4.23) combined

with conditions (F2)-(F3) ensure that D(pη, pη+∆η) is locally quadratic in ∆η for all η. Finally,

(F4) ensures D(η, η′) is uniquely minimized at η = η′. It can sometimes be easier to verify the strict

sub-additivity condition (F4’) which is equivalent to (F4) (Tamássy, 2005),

(F4’) Strict sub-additivity: For all η ∈ Ω, and v′ 6= cv for some c 6= 0,

λD(η, v + v′) < λD(η, v) + λD(η, v′).

Intuitively λD(η, v) is an asymmetric norm for v that smoothly varies with η. Notice that

(F3) does not imply that λD(η, v) is symmetric in v since it is possible that λD(η,−v) 6= λD(η, v)

accounting for the potential asymmetry of the divergence. When λD(η,−v) = λD(η, v), the Finsler

norm reduces to a norm for each η ∈ Ω, and thus (4.23) implies a regular divergence locally behaves

like a square norm.

4.5.3 Regularity of f-divergences

When D(pη, pη′) is twice-continuously differential in η, η′, then it follows by Taylor’s theorem,

D(pη, pη+∆η) = ∆ηTGD(η)∆η + o(‖∆η‖2),
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where GD(η) is proportional to the Hessian of η′ 7→ D(η, η′) evaluated at η′ = η. In this case the

Finsler norm is induced by an inner product and λ2(η, v) = vTGD(η)v is a quadratic form for each

η ∈ Ω. Therefore, the Finsler metric induced by D is constant in v, and GD(η, v) = GD(η) coincides

with a Riemannian metric.

Given a convex function f : R+ → R with f(1) = 0, define the f -divergence on P(X ) as

Df (p, p′) =

∫
X
f

(
p(x)

p′(x)

)
p(x)dx.

f -divergences (Csiszár, 1967) are an important family of divergences in statistics and machine

learning. For appropriately chosen f , we can recover many commonly used divergences such as

the KL, reverse KL, SKL, Chi-square, total variation distance, squared-Hellinger distance, and

α-divergences to name a few. It follows from Polyanskiy (2020, Theorem 7.12) that when f is twice

differentiable with lim supu→∞ f
′′(u) <∞ then Df is a regular divergence on M,

Df (pη, pη+∆η) =
f ′′(1)

2
∆ηT I(η)∆η + o(‖∆η‖2),

with Finsler norm λDf (η, v) =

√
f ′′(1)

2 vT I(η)v , and Finsler metric GDf (η, v) = f ′′(1)
2 I(η), where

recall I(η) is the Fisher information matrix for M.

In particular, f(u) = 1
2(u− 1) log u, we have Df = SKL, which implies SKL divergence is regular

with Finsler norm and metric,

λSKL(η, v) =

√
1

2
vT I(η)v , GSKL(η, v) =

1

2
I(η).

Connection to information geometry

Information geometry is the branch of mathematics devoted to studying the differential-geometrization

of statistics. There is a rich literature devoted to studying geometry induced by the Fisher informa-

tion metric and its applications. See Nielsen (2013) for an elementary introduction to the subject,

and Nielsen (2020); Amari (2016) for a more comprehensive overview.

Finsler geometry can be studied independently of divergences and comes equipped with a natural

notion of speed, length and distances through the Finsler norm. We refer to Tamássy (2005) for
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an overview of the metric geometry induced by the Finsler norm, and Bishop (2013) for a Finsler

view of Riemannian geometry. For an in-depth study of the Finsler geometry generated by regular

divergences, see Shen (2006).

4.5.4 Regularity of the rejection rate

If a divergence D is not regular, it is often the case that a scaled version is. In general if

D(pη, pη+∆η) ∼ C(η)‖∆η‖α as ∆η → 0, then D2/α(pη, pη′) = D(pη, pη′)
2/α satisfies the condition of

a regular divergence if C(η) is sufficiently smooth in η. We will now show that the rejection rate

r(pη, pη′) is not regular, but r2(pη, pη) is, with the local communication defining a Finsler norm.

Proposition 12. If M is an annealing family, then r2 is regular divergence with Finsler norm,

λr2 : Ω× Rd → R+

λr2(η, v) = λ(pη, v
TSη), (4.25)

where λ(p, f) is defined in (4.7).

See Appendix A.2.3 for the proof.

4.5.5 Speed and length induced by regular divergences

Suppose D is a regular divergence on an annealing family M, then recall the induced Finsler norm

λD is well-defined on the tangent bundle TM through (4.24). If π is a differentiable annealing

path in M, we define λD(β) := λD(πβ, π̇β) and ΛD(π) :=
∫ 1

0 λD(β)dβ as the speed and length of π

respect to D respectively.

It follows directly from (4.23) that the speed is the derivative of
√
D along π with respect to β,

lim
∆β→0

√
D(πβ, πβ+∆β)

|∆β|
= λD(β). (4.26)

The speed measures how rapidly πβ changes as measured by D for small changes in β. It can be

used to approximate the divergence between nearby points along the path by integrating (4.26),
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from β to β + ∆β,

√
D(πβ, πβ+∆β) =

∫ β+∆β

β
λD(u)du+ o(∆β). (4.27)

Consequentially, for any schedule BN , by summing (4.27) over n = 1, . . . , N ,

N∑
n=1

√
D(πβn−1 , πβn) = ΛD(π) + o(1), (4.28)

with equality as ‖BN‖ → 0. This shows that length is the cumulative change along the path

measured by D.

Given an annealing path π in M, Proposition 12 allows us to reinterpret the local and global

communication barrier as the speed of and length of π with respect to the squared rejection rate,

λ(β) = λr2(β), Λ(π) = Λr2(π).

More generally, we have shown that (4.10) and (4.11) from Theorem 10 are special instances of

(4.26) and (4.28) respectively and hold more generally for regular divergences D on an annealing

family M.

Computation of speed and length

Given an annealing schedule BN and estimates of r(πβn−1 , πβn), we can reinterpreted the output of

Algorithm 4 as an approximation of the speed and length of π with respect to r2. More generally

(4.27), (4.28) imply Algorithm 4 can be used more broadly to approximate the speed and length

of π with respect to any regular divergence D given estimates of
√
D(πβn−1 , πβn) rather than

r(πβn−1 , πβn).
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4.5.6 Schedule optimization

Reparametrizations

Suppose π′ is an equivalent path to π with speed λ′D and λD respectively. Then there is an

orientation preserving γ such that π′w = πγ(w). Using condition (F3) and chain rule,

λ′D(w) = λD(γ(w))γ̇(w). (4.29)

By substituting β = γ(w) and integrating (4.29), it follows that all equivalent annealing paths have

the same length with respect to D:

ΛD(π′) =

∫ 1

0
λD(γ(w))γ̇(w)dw =

∫ 1

0
λD(β)dβ = ΛD(π).

Since the length is invariant to reparametrization, it begs the question: is there a natural reparame-

terization for π compatible with D? The answer is yes, and they correspond to the constant speed

reparametrization.

Paths of constant speed

Given an annealing path π, we will say that γ is a constant speed parametrization for π if

π′ = πγ(w) has constant speed, i.e. λ′D(w) is constant for all w. Since the length of π is invariant to

reparametrization, for all w ∈ [0, 1], the speed must equal the length,

λ′D(w) = Λ(π). (4.30)

It follows immediately from (4.27) that π′ is constant speed if and only if the schedule generated by

γ satisfies

√
D
(
πβn−1 , πβn

)
=

ΛD(π)

N
+ o(N−1),

with equality as N →∞. This implies that the schedule BN generated by γ, will ensure D(πβn−1 , πβn)

is approximately constant for all n = 1, . . . , N .
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Computation of optimal schedule

When D = r2, we can reinterpret the optimal schedule generator derived in Section 3.3 and 4.4.3 as

constant speed reparameterization of π with respect to the rejection rate. More generally, given

π with speed λD(β) we can directly compute γ by substituting (4.29) into (4.30), and integrating

both sides

∫ w

0
λD(γ(u))γ̇(u)du = ΛD(π)w. (4.31)

After substituting in β = γ(u) into (4.31),

∫ γ(w)

0
λD(β)dβ = ΛD(π)w.

Therefore γ(w) = F−1(w) where F (β) = 1
ΛD(π)

∫ β
0 λD(u)du. If we have estimates of the speed λD(β)

and length ΛD(π), then we can use Algorithm 3 to compute the schedule generator to achieve an

approximately constant value of D(πβn−1 , πβn) for all n = 1, . . . , N .

4.5.7 Geodesics

Equipped with the length, we can define the distance between points in M as the length of the

shortest path with respect to D. Given π0, π1 ∈M, we define

dD(π0, π1) = inf
π∈A(π0,π1)

ΛD(π),

where A(π0, π1) is the set of regular paths π in M with endpoints π0 and π1. In general dD is a

semi-metric (positive definite, satisfies the triangle inequality) that generates the same topology for

M induced by open sets in Ω, and is locally compatible with the regular divergence D, i.e.

lim
η→η′

dD(pη, pη′)
2

D(pη, pη′)
= 1.

When λD(η,−v) = λD(η, v), then dD is also symmetric and hence a metric. See Tamássy (2005,

Section 2) for further exposition about the distance function induced by a Finsler norm.

We say an annealing path π in M is a geodesic between π0, π1 with respect to D if (1) π is
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constant speed and (2) ΛD(π) = dD(π0, π1). The Hofp-Rinow Theorem guarantees the existence of

geodesic curve between any two points inM since (R2) presumes Ω is complete and locally compact

(Bridson and Haefliger, 2013, Proposition 3.7). In practice finding geodesics is not an easy task since

it requires minimizing the length functional ΛD. This can be difficult since the minimizer is not

unique: in fact if π minimizes ΛD so does πγ(w) for every orientation preserving reparameterization

γ. This is easily resolved using Jensen’s inequality,

ΛD(π)2 =

(∫ 1

0
λD(β)dβ

)2

≤
∫ 1

0
λ2
D(β)dβ,

with equality if and only if π is a constant speed path. This implies optimizing ΛD(π) is equivalent

to minimizing the kinetic energy functional

ED(π) :=

∫ 1

0
λ2
D(β)dβ.

Unlike the length, the energy ED(π) is not invariant to reparameterization and is minimized by

geodesics.

4.5.8 Path optimization

We can now use this geometric structure of the communication barrier to characterize the optimal

performance of PT. Equation (4.12) from Theorem 10 implies the optimal round trip rate for a

fixed annealing path π in M and all possible annealing schedule is,

τ(π) =
1

2 + 2Λr2(π)
.

By taking the supremum over all annealing paths between reference π0 and target π1 in M, then

the theoretically optimal round trip rate for PT when annealing in M is,

sup
π∈A(π0,π1)

τ(π) =
1

2 + 2dr2(π0, π1)
.

Therefore dr2(π0, π1) encodes the fundamental limit of parallel tempering among all possible

annealing paths on M, optimally chosen schedule BN , and an infinite number of parallel chains N .
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Given an annealing path πβ, It also follows immediately from Jensen’s inequality, that

λ(πβ, π̇β) ≤ λSKL(πβ, π̇β), (4.32)

and thus Λ(π) ≤ ΛSKL(π), where ΛSKL(π) is proportional to the Fisher-Rao length of π,

sup
π∈A(π0,π1)

sup
BN

τ(π,BN ) ≥ 1

2 + 2dSKL(π0, π1)
. (4.33)

Proposition 7 shows that in the high dimensional scaling limit, the local and global communication

barriers are asymptotically equivalent to the speed and length with respect to the Fisher information,

λ(β) ∼
√

2

π̂
λSKL(β) ≈ 0.798λSKL(β),

Λ(π) ∼
√

2

π̂
ΛSKL(π) ≈ 0.798ΛSKL(π),

where π̂ is the constant 3.1415 . . . . This offers evidence that in the high dimensional regime the

slack in (4.32) and (4.33) is independent of the path, and the geodesics with respect to the SKL are

approximately geodesics with respect to r2 and thus still provide near optimal performance for PT.

Since π is a regular path, with schedule BN generated by γ, Theorem 1 from Grosse et al. (2013)

implies as N →∞, the SKL objective SKL(π,BN ) defined in (4.19) converges to the kinetic energy

of the reparameterized path π′w = πγ(w).

Proposition 13. If π is a regular path on an annealing family M and BN is generated by γ, then

lim
N→∞

SKL(π,BN ) = ESKL(π′),

where π′w = πγ(w).

This implies for large N minimizing the SKL objective is equivalent to minimizing the energy

functional, which is minimized at the geodesic. Given an annealing path family A, the path

π∗ ∈ arg minπ∈A SKL(π,BN ) can be interpreted as the projection of the geodesic in A.
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4.5.9 Example: location-scale families

We will now provide a concrete example to demonstrate that this geometric view of PT can help

design better annealing paths when the reference and target a nearly mutually singular.

Suppose X = R and p(x) = exp(W (x)) ∈ P(X ), is normalized, with mean 0 and variance 1 and

W (x) is differentiable and symmetric. For η = (µ, σ) ∈ R× R+ we let

pη(x) =
1

σ
p

(
x− µ
σ

)
.

Define M = {pη : η ∈ Ω}, to be the location-scale family generated by p. This is a 2-parameter

family where µ and σ are called the location and scale parameters corresponding to the mean and

standard deviation of πη. Notice that when p = N(0, 1) is the standard normal, then pη = N(µ, σ2),

and M corresponds to the space of 1-dimensional Gaussians.

Suppose we wish to anneal between a reference that is a translation of the target, i.e. π0 = pη0

and π1 = pη1 , where η0 = (µ0, σ) and η1 = (µ1, σ) respectively. When z = |µ1 − µ0|/σ is large, this

models the situation where the reference and target are nearly mutually singular. The simplest

path between π0 and π1 is the translation path η(β) = (µ(β), σ), with µ(β) = (1 − β)µ0 + βµ1,

that translates π0 toward π1 keeping the variance fixed in β. For example see Figure 4.1 (top). We

remark that for general local-scale families, the translation path in M may not be equal to the

linear path since π1−β
0 πβ1 may not be in M.

For location-scale families, we can explicitly compute the communication barrier for the transla-

tion path and the geodesic with respect to the SKL. Proposition 14 generalizes 9 from Section 4.1

and shows as z →∞, the global communication barrier for the translation path is O(z), in contrast

to the geodesic, which is O(log z). This implies that when the reference and target are nearly

mutually singular, we can gain an exponential improvement in the round trip rate by choosing a

different path.

Proposition 14. Suppose the reference and target distributions are π0 = pη0 and π1 = pη1 corre-

sponding to η0 = (µ0, σ) and η1 = (µ1, σ) in Ω, and define z = |µ1 − µ0|/σ. Then as z →∞,

1. the translation path has τ(π) = Θ(1/z), and

2. the geodesic path has τ(π) = Ω(1/ log z).
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For a fixed N , when z is sufficiently large, the intermediate distribution for the translation path

{πβn}Nn=0 are nearly mutually, leading to high rejection rates and hence low round trip rates (see

Figure 4.1 (top)). In contrast the geodesic path moves mass from π0 to π1 while increasing variance

for the intermediate distributions to increase their overlap and maintain a high rejection rate (see

Figure 4.1 (bottom)). Although this is a toy model, by studying the geodesics of location-scale

families, we will apply these insights to design path families robust to situations where the reference

and target are nearly mutually singular in the following section.

Translation path

We can compute the global communication barrier explicitly.

π̇β(x) =
d log πβ(x)

dβ
= −µ1 − µ0

σ

dW

dx

(
x− µ(β)

σ

)
. (4.34)

Since for all η = (µ, σ), we Xη ∼ pη, implies (Xη − µ)/σ ∼ p, we can substituting in (4.34) into

(4.7), to get

λ(β) =
|z|
2
E
[∣∣∣∣dWdx (X)− dW

dx
(X ′)

∣∣∣∣] , X,X ′ ∼ p, (4.35)

where z = |µ1 − µ0|/σ. Thus, the local communication is constant and the global communication

barrier Λ(π) equals (4.35). As z → ∞, this implies Λ(π) = Θ(z), and hence the round trip rate

τ(π) = Θ(1/z).

Geodesic path

We will now find the geodesics and distance with respect to the SKL between π0 and π1 by using

the analysis in Nielsen (2021, Appendix A). See also Costa et al. (2015, Section 2) for a similar

computation for the Gaussian family. Using the Fisher information for the location-scale family M

(Nielsen, 2020, Example 5), the Finsler/Riemannian metric for the SKL is,

GSKL(η) =
1

2
I(η) =

1

2σ2

a2 0

0 b2

 ,
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where a, b are constants depending on p,

a2 = Ep

[(
dW

dx
(X)

)2
]
, b2 = Ep

[(
X

dW

dx
(X) + 1

)2
]
.

For example, in the case where p is the standard Gaussian, we have a = 1, b = 2 (Costa et al.,

2015). By re-scaling the location parameters by a/b, the Finsler metric for the rescaled parameters

η̄ = (µ̄, σ̄) = (abµ, σ) becomes,

GSKL(η̄) =
b2

2σ̄2

1 0

0 1

 =
b2

2
GH(η̄), (4.36)

where GH(η̄) is the Riemannian metric for the Poincaré upper-half plane H 1. If π is a path in M

between π0 and π1 with location and scale parameters η(β) = (µ(β), σ(β)), then (4.36) implies the

length of π with respect to the SKL is,

ΛSKL(π) =
b√
2

ΛH(η̄) (4.37)

where ΛH(η̄) is the length of the path of η̄(β) = (abµ(β), σ(β)) between η̄0 = (abµ0, σ) and η̄1 =

(abµ1, σ) in H. It is well known that the geodesics in H are vertical half-lines or half-circles centered at

σ̄ = 0 (Lee, 2006, Chapter 3), so the geodesics inM correspond to vertical half-lines and half-ellipses

in Ω with eccentricity a/b. By taking the infimum over annealing paths π in (4.37), the distance

with respect to the SKL can be written term of the distance η̄0 and η̄1 in H,

dSKL(π0, π1) =
b√
2
dH(η̄0, η̄1)

= b
√

2 log

(
a

b
z +

√
a2

b2
z2 + 4

)
.

1The Poincaré upper-half plane, H, is the subset H = R× R+ ⊂ R2 equipped with the Riemannian metric

GH(η̄) =
1

σ̄2

(
1 0
0 1

)
.

Given η̄0, η̄1 ∈ H, the distance in H equals,

dH(η̄0, η̄1) = 2 log

(√
(µ̄1 − µ̄0)2 + (σ̄1 − σ̄0)2 +

√
(µ̄1 − µ̄0)2 + (σ̄1 + σ̄0)2

2
√
σ̄0σ̄1

)
.
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Since dr2(π0, π1) ≤ dSKL(π0, π1), as z →∞, we have the distance dr2(π0, π1) = O(log(z)), and hence

the round trip rate of the geodesic path is τ(π) = Ω(1/ log z).

4.6 Spline annealing path family

In this section, we develop an annealing path family A = {πφ : φ ∈ Φ} that offers a practical and

flexible improvement upon the traditionally used linear path. Given a fixed reference π0 ∝ exp(W0)

and target π1 ∝ exp(W1) distributions, we begin with the practical desiderata for an annealing

path family to be useful in the context of parallel tempering. First, the traditional linear path,

πβ ∝ exp(Wβ) where Wβ = (1− β)W0 + βW1, should be a member of the family, so that one can

achieve at least the round trip rate provided by that path. Second, the family should be broadly

applicable and not depend on precise details of either π0 or π1 or the state space X . Finally, using

the Gaussian example from Figure 4.1 and Section 4.5.9 as insight, the family should enable the

path to smoothly vary from π0 to π1 while inflating/deflating the variance as necessary.

Since we want our annealing path family to include the linear path, we begin our exploration by

first studying the structure of the linear path. In particular, for the linear path the log-likelihood

Wβ is a convex combination of the form η0(β)W0 + η1(β)W1 where η0(β) = 1− β and η1(β) = β.

We will relax the constraint forcing the weights η0(β) and η1(β) to sum to 1 since our desiderata do

not require this. This is the motivation for the construction of the exponential annealing family.

4.6.1 Exponential annealing family

Suppose we have a fixed reference π0(x) ∝ exp(W0(x)) and target π1(x) ∝ exp(W1(x)). For

η = (η0, η1) ∈ R2, and W (x) = (W0(x),W1(x)), define pη ∈ P(X ), such that,

pη(x) =
1

Z(η)
exp(ηTW (x)),

where Z(η) =
∫
X exp(ηTW (x))dx when defined. Define Ω = {η ∈ R2 : Z(η) <∞}, then M = {pη :

η ∈ Ω} is an exponential family with sufficient statistics W (x) and natural parameters η. Intuitively,

η0 and η1 represent the level of annealing for the reference and target, respectively. By Proposition

15, under some mild integrability conditions, M is an annealing family making it amenable to
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parallel tempering so we shall refer to M as the exponential annealing family. In particular linear

paths between η0 and η1 in Ω correspond to linear paths between πη0 and πη1 in M.

Proposition 15. If M is the exponential familiy generated by π0 and π1 and if for all compact

K ⊂ Ω,

sup
η∈K

Eη[‖W‖3] <∞,

then M is an annealing family.

See Appendix A.2.4 for the proof.

4.6.2 Spline annealing path family

Let A be the set of regular annealing paths for M. For each π ∈ A, there is a piece-wise twice

continuously differentiable η : [0, 1]→ Ω such that πβ(x) ∝ exp(η(β)TW (x)). When the annealing

schedule BN is fixed, the analysis in Section 4.3 shows that PT cannot distinguish between π and

the spline approximation πNβ ∝ exp(WN
β ) ∈ A defined by (A.38). Since linear paths between pη and

pη′ ∈M correspond to the linear path connecting η and η′ in Ω, we have WN
β (x) = ηN (β)TW (x)

where ηN a linear spline in Ω with N knots. This motivates our construction of the spline annealing

path family.

Suppose φ = (η0, . . . , ηK) ∈ ΩK+1 = ΦK , such that η0 = (1, 0) and ηK = (0, 1). Then, define the

K-knot linear spline ηφ : [0, 1]→ Ω that takes on values ηk at β = k/K and linearly interpolates

between ηk−1 and ηk for β ∈ [k−1
K , kK ]. More precisely,

ηφβ = (k −Kβ)ηk−1 + (Kβ − k + 1)ηk, β ∈
[
k − 1

K
,
k

K

]
.

We will denote the corresponding annealing path πφβ inM with log-likelihood W φ
β (x) = ηφ(β)TW (x).

The K-knot spline annealing path family is defined as the set of K-knot linear spline paths denoted

AK = {πφ}φ∈ΦK .

Validity: If pη0 , pη1 ∈M, then so is the linear path between them. In particular we always have

the linear path is a member of AK for all K, ensuring we do no worse than the PT without path
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tuning.

Convexity: Furthermore, the convexity of Ω implies tuning the knots φ = (η0, . . . , ηK) ∈ ΦK

involves optimization within a convex constraint set. In practice, we enforce also that the knots

ηk = (ηk,0, ηk,1) are monotone in each component—i.e., the first component monotonically decreases,

1 = η0,0 ≥ η1,0 ≥ · · · ≥ ηK,0 = 0 and the second increases, 0 = η0,1 ≤ η1,1 ≤ · · · ≤ ηK,1 = 1 —such

that the path of distributions always moves from the reference to the target. Because monotonicity

constraint sets are linear and hence convex, the overall monotonicity-constrained optimization

problem has a convex domain.

Flexibility: Suppose πβ ∝ exp(η(β)TW ) ∈ A. Given a large enough number of knots K, the

spline annealing family well-approximates πβ. By Taylor’s theorem,

inf
φ∈ΦK

‖ηφ(β)− η(β)‖∞ ≤
1

4K2

∥∥∥∥d2η

dβ2

∥∥∥∥
∞
. (4.38)

Let πKβ ∝ exp(ηK(β)TW ) ∈ AK be the path that attains the infimum in (4.38) and corresponding

to the projection of π onto AK . When K = 1, we note that πKβ = π1−β
0 πβ1 always reduces to the

linear path and K →∞ we have πKβ converges to πβ in total variation. Therefore as K increases,

πK interpolates between the linear path and a fully general path π ∈ A. In particular, PT cannot

distinguish between path π ∈ A and the linear spline path with knots πβ0 , . . . , πβN . Therefore, in

PT, we can non-asymptotically reconstruct any path using at most K = N knots.

4.6.3 Tuning K

As we established above, as K increases, the flexibility of the annealing path family AK increases up

to K = N . Since η0 = (1, 0), η1 = (0, 1) are fixed, AK can be parameterized by optimizing the SKL

objective over knots η1, . . . , ηK−1, with 2(K − 1) free parameters. In particular, this suggests we do

not want to choose K = O(N) since the optimization problem’s complexity would grow linearly

with the number of chains, which would not be scalable when N is large. We want to pick K large

enough so that AK is reasonably flexible but small enough so that the optimization problem is

computationally tractable. In practice, the most significant improvements are found from K = 1 to

K = 2, corresponding to a single free knot, and after this, the gains are marginal. The optimized
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Figure 4.2: The spline path for K = 1, 2, 3, 4, 5, 10 knots in the exponential annealing family
generated by π0 = N(−1, 0.5) and π1 = N(1, 0.5). The smooth pink line is the geodesics with
respect to the SKL.

path becomes smoother for K > 2, but the performance improvements become marginal. We want

to pick K � N . As an example, we see in Figure 4.2, as K increases, the optimized spline path

approximates the geodesic for the exponential annealing family generated by the Gaussians. See

Syed et al. (2021b) for tuning guidelines for choosing K.

4.6.4 Example: Gaussian

The exponential annealing family generated by the Gaussians is also a location-scale family, where

we have explicit characterization of the linear path and geodesics (a = 1, b =
√

2 ) from Section

4.5.9. We can use this to show to validate the theory and performance of Algorithm 6. Figure

4.2 illustrates the behaviour of optimized spline paths for a Gaussian reference and target. The

path takes a convex curved shape, starting at the bottom right point of the Figure 4.2. This path

corresponds to increasing the variance of the reference, shifting the mean from reference to target,

and finally decreasing the variance to match the target. With more knots, this process happens

more smoothly.

When π0 = N(µ0, σ
2) and the target π1 = N(µ1, σ

2), we can use (4.35) to compute the
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communication barrier for the linear path analytically,

Λ(π) =
z

2
E[|Z − Z ′|], Z, Z ′ ∼ N(0, 1),

where z = |µ1 − µ0|/σ. Since Z − Z ′ ∼ N(0, 2), we have E[|Z − Z ′|] is the mean of a folded-normal

distribution and equal 1.128.... This implies that the linear path for the Gaussian has communication

barrier Λ ≈ .564z.

Suppose π0 = N(−1, 0.012) and π1 = N(1, 0.12), with z = 200. We used Algorithm 6 with

N = 50 parallel chains initialized at the linear path between π0 and π1 with the uniform schedule.

The results of these experiments are shown in Figure 4.3. Figure 4.3 (left) shows the number of

round trips as a function of the number of scans. Note that the global communication barrier

Λ ≈ 113 for the linear path is much larger than N . Algorithms based on linear paths incurred

rejection rates of nearly one for most chains, resulting in no round trips.

One can see that PT using the spline annealing family outperforms PT using the linear annealing

path across all numbers of knots tested. Moreover, the slope of these curves demonstrates that

PT with the spline annealing family exceeds the theoretical upper bound of round trip rate for

the linear path. The largest gain is obtained from K = 1 (linear) to K = 2. For all the examples,

increasing the number of knots to more than K > 2 leads to marginal improvements. Figure 4.3

(right) shows the value of the surrogate SKL objective and non-asymptotic communication barrier.

In particular, this demonstrates that the SKL provides a surrogate objective that is a reasonable

proxy for the non-asymptotic communication barrier.

See Section 5 of Syed et al. (2021b) for a more thorough exploration into the practical implemen-

tation of Algorithm 6, and path tuning more generally. In particular, Syed et al. (2021b) empirically

demonstrates that Algorithm 6 can be applied as broadly as non-reversible PT with the linear path

but can also outperform the theoretically optimal performance of the linear path potentially by

large margins. Moreover, they show PT with path tuning is also more robust for hard problems

where π0 and π1 are nearly mutually singular and when the model is high dimensional.
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Figure 4.3: (Left) Cumulative round trips averaged over 10 runs for the spline path with K =
2, 3, 4, 5, 10 (solid blue), non-reversible PT using a linear path (dashed green), and reversible PT
with linear path (dash/dot red). The slope of the lines represent the round trip rate. We observe
large gains going from linear to non-linear paths (K > 1). For all values of K > 1, the optimized
spline path substantially improves on the theoretical upper bound on round trip rate possible using
linear path (dotted black). (Right) Non-asymptotic communication barrier Λ(πφ,BN ) (solid blue)
and symmetric KL objective SKL(πφ,BN ) (dash orange) in log-scale as a function of iteration for
one run of PathOptimizedNRPT + Spline (K = 4 knots).
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Chapter 5

Scaling limit for parallel tempering

If you just focus on the smallest details, you never get the big picture right.

— Leroy Hood

5.1 Introduction

Recall the difference between non-reversible and reversible PT is just the difference in the communi-

cation kernel. The difference between DEO and SEO communication that defines the two variants

of PT is simply the difference between alternating between even and odd swaps or choosing them at

random. We have seen that DEO dominates its SEO in terms of round trip rate for any choice of

N and schedule (Corollary 2), and the performance gap widens as N increases (Theorem 6). In

particular, the round trip rate in the reversible case deteriorates to zero, in contrast to DEO, which

improves in performance as N increases. So far, we have focused on leveraging these quantitative

differences in Chapters 3 and 4 to develop guidelines and methodology to tune DEO. It remains to

be addressed why such seemingly trivial algorithmic change can lead to such dramatic change in

both non-asymptotic and asymptotic performance.

The DEO scheme first introduced in Okabe et al. (2001) was presumably devised on algorithmic

grounds (it performs the maximum number of swap attempts in parallel) and provided no theoretical

justification or reference to non-reversibility. Lingenheil et al. (2009) first identified a qualitative

difference between the two communication schemes and empirically showed that DEO required

different tuning guidelines than SEO. The arguments given in Lingenheil et al. (2009) to explain

the superiority of DEO communication over various PT algorithms rely on a misleading assumption,

namely a diffusive scaling limit for the index process. Figures 1.4 and 2.3 suggest that the index

process behaves qualitatively differently as N increases for reversible and non-reversible PT. DEO

does not exhibit the same diffusive behaviour for large N that SEO does. In particular, Figure 2.3
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suggests that when time is scaled by a factor of N , the law of the index process stabilizes. This

section aims to investigate these differences by identifying the scaling limits of the index process as

N increases. Such limits exist under assumptions (A1’) and (A2’) specified in Section 4.2.4.

Scaling limits are a powerful tool to understand the behaviour of the structure of a family of

probabilistic objects. Often we want to say that our random object is similar to a simpler object

that you can describe precisely. By appropriately taking limits of a scaled object, we can provide

approximate descriptions of what it should look like when you look from a “large distance” or

“zoom-out”. Scaling limits are widely used in the literature to study the qualitative behaviour of

Monte Carlo algorithms in various asymptotic regimes (Gelman et al., 1997; Roberts and Rosenthal,

2001; Beskos et al., 2013; Bierkens and Roberts, 2017; Deligiannidis et al., 2018). Previous theoretical

studies for PT analyzed the high-dimensional scaling behaviour of the acceptance probability based

on a target consisting of a product of independent components of increasing dimension (Atchadé et al.,

2011), or an increased swap frequency between exploration steps using the Langevin exploration

kernel (Dupuis et al., 2012). We will formally identify the scaling behaviour of the index process as

N increases encoding the limiting behaviour of PT as parallel computation resources increase.

5.2 Scaling limits of the index process

We suppose π is a regular annealing path defined in Section 4.3.1, with schedule generated by γ.

Suppose (It, εt) is the index process for an annealing schedule BN generated by γ. To establish

a scaling limit for (It, εt), it will be convenient to work in a continuous time setting. To do

this, we suppose the times that PT scans occur are distributed according to a Poisson process

{M(·)} with mean µN . The number M(t) of PT iterations that occur by time t ≥ 0 thus satisfies

M(t) ∼ Poisson(µN t). We define the scaled index process by ZN (t) = (WN (t), εN (t)) where

WN (t) := IM(t)/N is the scaled index and εN (t) := εM(t) is the scaled lifting parameter. This

corresponds to “speeding” up the index process by a factor of µN .

Define the piecewise-deterministic Markov process (PDMP) (Davis, 1993) Z(t) = (W (t), ε(t)) on

[0, 1]× {−1, 1} as follows: W (t) moves in [0, 1] with velocity ε(t) and the sign of ε(t) is reversed at

an inhomogeneous rate λ(γ(W (t))γ̇(W (t)) or when W (t) hits a boundary; see Bierkens et al. (2018)

for a discussion of PDMP on restricted domains. The process Z corresponds to an inhomogeneous
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persistent random walk with reflective boundary conditions; see Masoliver et al. (1992) for a

description of the Fokker-Plank equation and first passage times.

Theorem 16. Suppose π is a regular annealing path, and BN is the family of schedules generated

by γ, and assumptions (A1’) and (A2’) hold, then

(a) For reversible PT if µN = N2 and if WN (0) converges weakly to W (0) then WN converges

weakly to a diffusion W , where W is a Brownian motion on [0, 1] with reflective boundary

conditions. The process W admits Unif([0, 1]) as stationary distribution.

(b) For non-reversible PT if µN = N and if ZN (0) converges weakly to Z(0), then ZN converges

weakly to the PDMP Z with initial condition Z(0). The process Z admits Unif([0, 1]×{−1, 1})

as stationary distribution.

Notation: We would like to emphasize, for the remainder of this chapter Z(t) and W (t) will

denote the PDMP we just described and a Brownian motion reflected in the boundaries of [0, 1]

respectively rather than log-likelihood, and normalizing constant.

Reversible PT

Theorem 16 implies for reversible PT that if we speed time by a factor of N2, then the index process

scales to a diffusion W (see Figure 5.1). For large N , the diffusivity of the index process dominates

the reduction in the rejection rate. Since the scaling limit W is independent of the annealing path

and schedule, even a perfectly tuned reversible PT algorithm performance collapses when N is

large. As discussed in Section 3.3.3, for a path with communication barrier Λ, the number of chains

required to maintain a constant rejection rate is Θ(Λ) as Λ→∞. It follows for challenging problems

when Λ is large, SEO communication is particularly fragile since the diffusivity intrinsic to reversible

PT will make it exceedingly difficult for round trips to occur.

Non-reversible PT

By speeding up non-reversible PT by a factor of N , the scaled index process converges to the

PDMP Z. The limit depends on the path through the communication barrier and the schedule

through γ. This scaling behaviour explains why DEO communication exhibits such drastically
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Figure 5.1: Sample trajectory of reversible scaling limit W (t) corresponding to Brownian motion on
[0, 1] with reflective boundary condition.

different performance and tuning guidelines than its reversible counterpart. See Figure 5.2 for

sample trajectories of Z for different values of Λ.

In particular, in light of Theorem 16, we have a new interpretation of the communication barrier:

the local communication barrier λ governs the instantaneous rate of reflection of W (t), and since

for any generator γ,

∫ 1

0
λ(γ(w))γ̇(w)dw = Λ,

the global communication barrier Λ is the total rate of reflection. Recall the optimal schedule

derived in Chapters 3 and 4 is generated by γ(w) = F−1(w) for F (β) =
∫ β

0 λ(u)du/Λ. The optimal

schedule generator ensures the rate of reflection is constant, i.e. λ(γ(w))γ̇(w) = Λ for all w ∈ [0, 1]

and ε(t) changes sign at a constant rate Λ.

5.3 Scaled index process

For convenience, we will use z = (w, ε) ∈ [0, 1]× {−1, 1} to be a scaled index. Define C(R+,S) and

D(R+,S) to be sets of functions f : R+ → S that are continuous and càdlàg respectively.

The process ZN ∈ D(R+, [0, 1]×{−1, 1}) takes values on the discrete set {0, 1/N, . . . , 1}×{−1, 1}

and is only well-defined when ZN (0) = z0 ∈ {0, 1/N, . . . , 1} × {−1, 1}. To establish convergence, it

is useful to extend it to a process ZN which can be initialized at any z0 ∈ [0, 1]× {−1, 1}. Suppose

ZN (0) = z0 ∈ [0, 1] × {−1, 1} and let T1, T2, . . . be the iteration times generated by the Poisson

process M(t). We construct ZN (t) as follows: define ZN (t) = zi for t ∈ [Ti, Ti+1) and update zi+1|zi

via a transition kernel dependent on the communication scheme. We determine this transition kernel
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Figure 5.2: Sample trajectories of W (t) where Z(t) = (W (t), ε(t)) under an optimal schedule
generated by γ = F−1 for F (β) = Λ(β)/Λ for Λ = 0.1 (top), Λ = 1 (middle), and Λ = 10 (bottom)
respectively.

mirroring the construction from Section 3.1.4.

Before doing this, it will be useful to define the backward and forward shift operators ΦN
− ,Φ

N
+ :

[0, 1]→ [0, 1] by,

ΦN
− (w) =


w − 1

N w ∈
[

1
N , 1

]
,

1
N − w w ∈

[
0, 1

N

)
,

(5.1)

and similarly,

ΦN
+ (w) =


w + 1

N w ∈
[
0, 1− 1

N

]
,

1−
(

1
N − (1− w)

)
w ∈

(
1− 1

N , 1
]
.

(5.2)

Intuitively ΦN
ε (w) represents the location in [0, 1] after w moves a distance 1

N in the direction of ε

with a reflection at 0 and 1.
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5.3.1 Scaled index process for reversible PT

Under the SEO communication scheme, if zi = (wi, εi) ∈ {0, 1
N , . . . , 1} × {−1, 1}, then we have

wi+1 = ΦN
εi (wi) if a swap successfully occurred and wi+1 = wi otherwise. In both cases, εi+1 ∼

Unif{−1,+1}. Since ΦN
ε (w) is not only well-defined for w ∈ {0, 1

N , . . . , 1} but for w ∈ [0, 1], we

naturally extend this construction to any w ∈ [0, 1].

Formally, we generate (wi+1, εi+1) in two steps. In the first step we simulate,

wi+1|wi, εi ∼


ΦN
εi (wi) with probability s

(
γ(wi), γ(ΦN

εi (wi))
)
,

wi otherwise.

In the second step we simulate εi+1 ∼ Unif{−1,+1}. This defines a continuous time Markov pure

jump process WN ∈ D(R+, [0, 1]) with jumps occurring according to an exponential of rate µN and

is well defined when initialized at any state w0 ∈ [0, 1].

From Theorem 19.2 in Kallenberg (2002), the infinitesimal generator for WN with SEO commu-

nication is

LWN f(w) =
µN
2

∑
ε∈{±1}

(
f(ΦN

ε (w))− f(w)
)
s
(
γ(w), γ(ΦN

ε (w))
)
, (5.3)

where the domain D(LWN ) is given by the set of functions such that LWN f is continuous. Since

ΦN
+ ,Φ

N
− are continuous, we have D(LWN ) = C([0, 1]).

5.3.2 Scaled index process for non-reversible PT

Before defining the transition kernel for the scaled index process under DEO communication, it

will be convenient to define the propagation function ΦN : [0, 1] × {−1, 1} → [0, 1] × {−1, 1} for

z = (w, ε),

ΦN (z) =


(ΦN

ε (w), ε) if ΦN
ε (w) = w + ε

N ,

(ΦN
ε (w),−ε) otherwise,
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and similarly the rejection function R : [0, 1]× {−1, 1} → [0, 1]× {−1, 1},

R(z) = (w,−ε).

Under the DEO scheme, if zn = (wn, εn) ∈ {0, 1
N , . . . , 1} × {−1, 1}, then we have zn+1 = ΦN (zn)

when a swap is accepted and zn+1 = R(zn) otherwise. Since ΦN (z) and R(z) are well-defined for all

of z ∈ [0, 1]× {−1, 1}, we naturally extend this construction to any z ∈ [0, 1]× {−1, 1}.

Formally, we generate zi+1 according to the transition kernel,

zi+1|zi ∼


ΦN (zi) with probability s

(
γ(wi), γ(ΦN

εi (wi))
)
,

R(zi) otherwise.

This defines a continuous time Markov pure jump process ZN ∈ D(R+, [0, 1] × {−1, 1}) with

jumps occurring at an exponential of rate µN . This process is well defined when initialized at any

z0 ∈ [0, 1]× {−1, 1}.

Analogously to the reversible case, under DEO communication, the infinitesimal generator for

ZN is

LZN f(z) = µN
(
f(ΦN (z))− f(z)

)
s
(
γ(w), γ(ΦN

ε (w))
)

+ µN (f(R(z))− f(z)) r
(
γ(w), γ(ΦN

ε (w))
)
,

where z = (w, ε) and D(LZN ) is given by the set of functions f such that LZN f is continuous. Since

ΦN has discontinuities at ( 1
N ,−1) and (1 − 1

N , 1), we can verify that f ∈ D(LZN ) if and only if

f(w0,−1) = f(w0, 1) for w0 ∈ {0, 1}.

5.4 Proof of scaling limit for reversible PT

We will prove Theorem 16(a) by using Theorem 17.25 from Kallenberg (2002).

Theorem 17 (Trotter, Sova, Kurtz, Mackevic̆ius). Let X,X1, X2, . . . be Feller processes defined

on a state space S with generators L,L1,L2, . . . respectively. If D is a core for L, then the following

statements are equivalent:

1. If f ∈ D, there exists fN ∈ D(LN ) such that ‖fN − f‖∞ → 0 and ‖LNfN − Lf‖∞ → 0 as
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N →∞.

2. If XN (0) converges weakly to X(0) in S, then XN converges weakly to X in D(R+, S).

We will be applying Theorem 17 with L = LW defined as LW f = 1
2f
′′ for f ∈ D(LW ) where

D(LW ) :=
{
f ∈ C2 ([0, 1]) : f ′(0) = f ′(1) = 0

}
,

and LN = LWN defined in (5.3), which we recall here for the reader’s sake

LWN f(w) =
N2

2

∑
ε∈{±1}

(
f(ΦN

ε (w))− f(w)
)
s
(
γ(w), γ(ΦN

ε (w))
)
, w ∈ [0, 1],

with ΦN
± (w) defined in (5.1), (5.2) and taking µN = N2. Recall from the discussion just before (5.3)

that LWN defines a Feller semigroup.

First notice that in Kallenberg (2002), the transition semi-group and generator of a Feller process

taking values in a metric space S are defined on C0(S), the space of functions vanishing at infinity.

Equivalently f ∈ C0(S) if and only if for any δ > 0 there exists a compact set K ⊂ S such that

for x /∈ K, |f(x)| < δ. In our case since S = [0, 1] is compact C0(S) = C(S), which justifies the

definition of the generator LW given above.

Define W ∈ C(R+, [0, 1]) to be the diffusion on [0, 1] with generator

LW f(w) =
1

2

d2f

dw2
, (5.4)

where the domain D(LW ) is the set of functions f ∈ C2([0, 1]) such that f ′(0) = f ′(1) = 0. W is a

Brownian motion on [0, 1] with reflective boundary conditions admitting the uniform distribution

Unif([0, 1]) as stationary distribution.

Proposition 18. W is a Feller process with generator LW defined by (5.4).

See Appendix A.3.1 for the proof.

Now we can apply Theorem 17 to prove Theorem 16(a). We only need to check the first

condition of Theorem 17. In this direction, first note that by definition ΦN
± (w) = w ± 1/N for

w ∈ [1/N, 1− 1/N ]. Thus in this case using a Taylor expansion we have for w∗− ∈ [w − 1/N,w] and
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w∗+ ∈ [w,w + 1/N ] that for any f ∈ D (LW ),

f(ΦN
+ (w))− 2f(w) + f(ΦN

− (w)) = f(w) +
1

N
f ′(w) +

1

2N2
f ′′(w∗+)

+ f(w)− 1

N
f ′(w) +

1

2N2
f ′′(w∗−)− 2f(w)

=
1

2N2

(
f ′′(w∗+) + f ′′(w∗−)

)
.

Since f ′′ is uniformly continuous it follows that as N →∞,

sup
w∈[0,1]

|f ′′(w∗±)− f ′′(w)| = o(1),

and therefore for w ∈ [1/N, 1− 1/N ] we have

sup
w∈[0,1]

∣∣∣f(ΦN
+ (w))− 2f(w) + f(ΦN

− (w))− f ′′(w)

N2

∣∣∣ = o

(
1

N2

)
.

When w ∈ [0, 1/N) or w ∈ (1 − 1/N, 1] we instead perform a Taylor expansion around 0 or

1 respectively. We only do the calculation in the first case, the other case being similar. Let

w ∈ [0, 1/N) in which case, since f ′(0) = 0, for w∗, w∗−, w
∗
+ ∈ [0, 2/N ]

f(ΦN
+ (w))− 2f(w) + f(ΦN

− (w)) = f(0) + ΦN
+ (w)f ′(0) +

1

2

[
ΦN

+ (w)
]2
f ′′(w∗+)

+ f(0) + ΦN
− (w)f ′(0) +

1

2

[
ΦN
− (w)

]2
f ′′(w∗−)

− 2f(0)− 2f ′(0)w − 2
f ′′(w∗)

2
w2

=
f ′′(0)

2

{[
ΦN

+ (w)
]2

+
[
ΦN
− (w)

]2 − 2w2
}

+ o
(
N−2

)
,

where the error term is uniform in w and was obtained by combining the facts that f ′′ is uniformly

continuous and that |ΦN
± |, |w| ≤ 2/N . Finally notice that since w ∈ [0, 1/N ], then

[
ΦN

+ (w)
]2

+
[
ΦN
− (w)

]2 − 2w2 =

[
w +

1

N

]2

+

[
1

N
− w

]2

− 2w2 =
2

N2
.
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Using Theorem 10 we see that for some constant C > 0,

sup
w∈[0,1]

∣∣∣s (γ(w), γ(ΦN
± (w))

)
− 1
∣∣∣ ≤ C sup

w

∣∣γ(w)− γ
(
ΦN
± (w)

)∣∣ ≤ C‖γ̇‖∞
N

,

and therefore

LNf(w) =
N2

2

∑
ε∈{±1}

(
f(ΦN

ε (w))− f(w)
)
s
(
γ(w), γ(ΦN

ε (w))
)

=
N2

2

∑
ε∈{±1}

(
f(ΦN

ε (w))− f(w)
) [

1 + o(N−1)
]

=
N2

2

(
f(ΦN

+ (w))− 2f(w) + f(ΦN
− (w))

) [
1 + o(N−1)

]
=
N2

2

f ′′(w)

N2
[1 + o(1)] ,

where the error term is uniform in w. Thus LNf → Lf uniformly.

5.5 Proof of scaling limit for non-reversible PT

Define Z ∈ C(R+, [0, 1]× {−1, 1}) to be the PDMP on [0, 1]× {−1, 1} given by Z(t) = (W (t), ε(t))

where W (t) moves in [0, 1] with velocity ε(t) and the sign of ε(t) is reversed at the arrivals times of

a non-homogeneous Poisson process of rate λ(γ(W (t)))γ̇(W (t)) or when W (t) reaches the boundary

{(0,−1), (1,+1)}. The infinitesimal generator of Z is given by

LZf(z) = ε
∂f

∂w
(z) + λ(γ(w))γ̇(w) (f(R(z))− f(z)) ,

for any f ∈ D(LZ), the set of functions f ∈ C1([0, 1]× {−1, 1}) such that f(w0,−1) = f(w0, 1) and

∂f
∂w (w0,−1) = − ∂f

∂w (w0, 1) for w0 ∈ {0, 1}.

We will prove Theorem 16(b) in a slightly round about way. We will define the auxiliary

processes {UN (·)}, {U(·)} living on the unit circle S1 := {z ∈ C : |z| = 1} along with a mapping

φ : S1 7→ [0, 1] × {±1} such that ZN = φ(UN ) and Z = φ(U). We will first show that the law of

UN converges weakly to U .

Before defining the processes we point out that we will identify S1 with [0, 2π) in the usual way
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by working in mod 2π arithmetic. Notice that in this way

C(S1) = {f ∈ C([0, 2π]) : f(0) = f(2π)}.

The reason for working with these auxiliary processes is that we can now avoid working with PDMPs

with boundaries, helping us to remove a layer of technicalities.

For any N we define ΣN : S1 7→ S1 through ΣN (θ) = θ+ 2π/N . Consider then a continuous-time

process UN that jumps at the arrival times of a homogeneous Poisson process with rate N according

to the kernel

QN (θ,dθ′) = s
(
γ̃(θ), γ̃(ΣN (θ))

)
δΣN (θ)(dθ

′) + r
(
γ̃(θ), γ̃(ΣN (θ))

)
δ2π−θ(dθ

′),

where

γ̃(θ) =


γ
(
θ
π

)
, θ ∈ [0, π),

γ
(

2π−θ
π

)
, θ ∈ [π, 2π).

Define the map

φ(θ) =


(
θ
π ,+1

)
, θ ∈ [0, π),(

2π−θ
π ,−1

)
, θ ∈ [π, 2π).

Essentially we think of the circle as comprising of two copies of [0, 1] glued together at the end points.

The top one is traversed in an increasing direction and the bottom one in a decreasing direction.

When glued together and viewed as a circle these dynamics translate in a counter-clockwise rotation

with occasional reflections w.r.t. the x-axis at the time of events. With this picture in mind it

should be clear that φ(UN ) = ZN .

We also define the limiting process U as follows. First let

λ̃(θ) = (λ ◦ γ)(φ1(θ))γ̇(φ1(θ)),

where φ1(θ) is the first coordinate of φ(θ). Notice at this point that φ1 : S1 7→ [0, 1] is continuous
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and satisfies φ1(θ) = φ1(−θ) for any θ ∈ [0, 2π), whence we obtain that λ̃(−θ) = λ̃(θ). Given

U(0) = θ, let T1 be a random variable such that

P[T1 ≥ t] = exp

{
−
∫ t

0
λ̃(θ + s)ds

}
,

and define the process as U(s) = θ + s mod 2π for all s < T1 and set U(T1) = −U(T1−) mod 2π.

Iterating this procedure will define the S1-valued PDMP {U(·)}.

Proposition 19. The process U defined above is a Feller process, its infinitesimal generator is

given by

LUf(θ) = f ′(θ) + λ̃(θ) [f(2π − θ)− f(θ)] ,

with domain

D(LU ) = {f ∈ C1([0, π]) : f(0) = f(2π)},

and invariant measure dθ/2π.

See Appendix A.3.2 for the proof.

Proposition 20. Suppose UN (0) converges weakly to U(0), then UN converges weakly to U in

D(R+, [0, 1]).

Proof. We will once again use Theorem 17. The generator of UN is given by

LNU f(θ) = N [f(θ + 1/N)− f(θ)] s
(
γ̃(θ), γ̃(ΣN (θ))

)
+N [f(−θ)− f(θ)] r

(
γ̃(θ), γ̃(ΣN (θ))

)
.

We will consider the two terms separately. To this end notice that by Theorem 10, the

boundedness of λ and the fact that γ ∈ C1[0, 1],

∣∣1− s (γ̃(θ), γ̃(ΣN (θ))
)∣∣ ≤ C

N
,
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for some C > 0. Thus, using the mean value theorem, for each θ ∈ [0, 2π), there exists gN (θ) ∈

[θ, θ + 1/N ] such that

N [f(θ + 1/N)− f(θ)] s
(
γ̃(θ), γ̃(ΣN (θ))

)
= f ′ (gN (θ)) (1 +O(1/N)) = f ′ (θ) ((1 + o(1)) ,

where the errors are uniformly bounded and to obtain the second equality above we have used the

fact that |gN (θ)− θ| ≤ 1/N and that f ′ is uniformly continuous, being continuous on a compact set.

Overall we can see that as N →∞

sup
θ

∣∣N [f(θ + 1/N)− f(θ)] s
(
γ̃(θ), γ̃(ΣN (θ))

)
− f ′(θ)

∣∣→ 0.

Next, using Theorem 10 we have that

r
(
γ̃(θ), γ̃(ΣN (θ))

)
= λ̃(θ)

1

N
+ o(N−1),

where the error is uniform in θ, whence we easily conclude that

N [f(−θ)− f(θ)] r
(
γ̃(θ), γ̃(ΣN (θ))

)
→ λ̃(θ) [Qf(θ)− f(θ)] ,

uniformly in θ.

Now we are ready to prove the main result of this section. Notice that ZN (·) = φ
(
UN (·)

)
and

Z(·) = φ (U(·)).

From Proposition 20 we know that the finite dimensional distributions of UN converge to those

of U . If φ were continuous we could conclude using the continuous mapping theorem. Since it is

not continuous at the points {0, π, 2π}, we will be using (Billingsley, 2013, Theorem 2.7). We have

to check that the law of the limiting process, that is the law of {U(·)} places zero mass on finite

dimensional distributions that hit {0, 1}, that is for k ∈ N and 0 < t1 < · · · < tk we want

P [U(ti) ∈ {0, 1} for some i ∈ {1, . . . , k}] = 0,

when U(0) is initialized according to dθ/2π. But the above follows from the fact that P[U(ti) ∈
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{0, 1}] = 0, by stationarity when U(0) is initialised uniformly on S1.

Relative compactness of {ZN (·)}N can be easily seen to follow from the compact containment

condition (Ethier and Kurtz, 2009, Remark 3.7.3). This combined with convergence of the finite

dimensional distributions of ZN to those of Z concludes the proof.
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Chapter 6

Conclusions

A good tool improves the way you work. A great tool improves the way you think.

— Jeff Duntemann

6.1 Summary of contributions

We formally introduced the PT algorithm in Chapter 2 and distinguish between PT with reversible

and non-reversible communication. We then characterized their differences through the dynamics of

the index process, which tracks the flow of information between the reference and target. In the

case of reversible PT, the index process retains no memory of the direction of travel, forcing the

reference and target chain to communicate through a random walk. In contrast, for non-reversible

PT, the index process maintains momentum in the direction of travel unless a rejection occurs,

or a boundary is reached. We characterize communication efficiency through the round trip rate,

measuring the number of round trips per unit time.

Our first contribution in Chapter 3 was to show that the index process is Markovian under the

simplifying ELE assumption. We argue the round trip rate is inversely proportional to the expected

round trip time for the index process, which is analytically tractable to compute (Theorem 1). It

follows that non-reversible PT non-asymptotically dominates reversible PT in terms of round trip

rates for any choice of N and annealing schedule BN (Corollary 2).

Our first contribution in Chapter 3 was to show that the index process is Markovian under the

simplifying ELE assumption. We argued that the round trip rate is inversely proportional to the

expected round trip time for the index process, which is analytically tractable to compute (Theorem

1). It followed from Corollary 2 that non-reversible PT non-asymptotically dominates reversible PT

in terms of round trip rates for any number of parallel chains, N , and the annealing schedule, BN .

We then studied PT in a novel asymptotic regime where we let N go to infinity through the
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rejection rate. We defined the local communication barrier, λ(β), as the instantaneous rejection rate,

and the global communication barrier, Λ =
∫ 1

0 λ(β)dβ. The local communication barrier measures

how rapidly the path of distributions πβ changes for small perturbations in β. We showed in

Theorem 4 and Corollary 5 that the rejection rate between nearby chains approximates the integral

of the local communication barrier, the sum of the rejection rate equals Λ with O(N−2) error. The

communication barrier is invariant to the schedule, and can be interpreted as a divergence between

π0 and π1 measuring the difficulty of communicating along the path πβ.

In particular, we characterized the optimal round trip rate in terms of the global communication

barrier Λ, which we used to identify an intrinsic limitation of both reversible and non-reversible PT

(Section 3.2.4). Theorem 6 showed that as N increases to infinity, the round trip rate for reversible

PT is asymptotically equivalent to (2N + 2Λ)−1 in contrast to non-reversible PT, which increases

with N but with diminishing returns to (2 + 2Λ)−1. This demonstrates the optimal performance of

PT decays with Λ, which accounts for the choice of a poor reference, dimension (Proposition 7),

and multi-modality present in the target (Proposition 8).

We then combined the non-asymptotic and asymptotic analysis, to develop guidelines for tuning

the schedule and number of chains for non-reversible PT to maximize the total number of round

trips. We showed that the optimal annealing schedule satisfies a constant rejection rate across

all chains. We also provided practical guidelines to optimally tune the schedule and efficiently

allocate computation resources to maximize the performance of PT for general problems. This led

to the development of Algorithm 5 which tunes PT, samples from the target, and computes the

log-normalizing constants, given only the annealing path and computational budget as input.

Algorithm 5 also outputs the local and global communication barriers, which we used to develop

diagnostic tools for practitioners to see the quality of their annealing path and schedule. By

comparing the empirical round trip rate with (2 + 2Λ)−1, we can also assess the efficiency of the

implementation and the deviance from optimality. Before our methodology, there was no established

criterion in the literature to measure the efficiency PT algorithms.

In Section 3.4 we applied Algorithm 5 to a diverse selection of 16 different models from statistics,

physics, and biology to verify our theory and showcase the robustness of our methodology. In

particular, our adaptive schedule tuning algorithm reliably converged for all models within ten

adaptive rounds. We showed that the non-reversible PT is robust to violations in ELE, scales
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to high-dimensional Bayesian inference problems with real data and multimodal posteriors. Our

methodology outperformed state-of-the-art PT methods in terms of both round trips and ESS/second

by a factor of 10-100x in all of our experiments.

A consequence of the analysis in Chapter 3 is that the optimal round trip rate that can be

achieved is (2 + 2Λ)−1. When Λ is large, it could mean a meagre round trip rate, even when tuned

optimally with a large number of chains. One common situation this can occur is when π0 and π1

are nearly mutually singular, e.g. in the Bayesian setting where π0 is a misspecified prior. The only

way to improve the performance of PT is by decreasing Λ, which is a function of the annealing path.

Traditionally in the PT literature, we presume the use of the “linear” annealing path πβ ∝ π1−β
0 πβ1

which linearly interpolates between π0 and π1 in log-scale. We abandoned this convention and

developed a theory of PT for general, non-linear paths.

By generalizing the ELE assumptions from Chapter 3 to general paths, we showed that the

non-asymptotic analysis of non-reversible PT extends to general non-linear annealing paths. We

then expanded the definition of local and global communication barriers to non-linear paths and

showed under mild regularity assumptions on the path; the asymptotic analysis developed in Chapter

3 applies to non-linear paths (Theorem 10). Given a family of annealing paths, we modified the

tuning phase of Algorithm 5 to tune both the path as well as the schedule (Algorithm 6).

In Section 4.5 we analysed the geometry of annealing paths that take on values in a parametric

family of distributions M. We showed in Proposition 12 that the rejection rate induces a natural

geometry on M, where the local and global communication barrier can be interpreted as the speed

the length of the annealing path, respectively. Hence, optimal tuning of PT algorithms is equivalent

to finding a constant speed, length minimizing paths in M, also known as geodesics. We showed

that the geodesics with respect to geometry induced by PT are well-approximated by the geodesics

generated by the Fisher information metric.

In Section 4.5.9, we demonstrated the potential of this framework when M is a location-scale

family modeling the motivating example where the reference and target are nearly mutually singular.

Here we showed M is a hyperbolic space with analytically tractable geodesics. We showed that

the round trip rate induced by the geodesic path is exponentially larger compared to the naive

translation path (Propostion 14).

In Section 4.6, we used the given reference and target to construct a 2-parameter exponential

119



annealing familyM motivated by the characteristics of geodesics in local-scale families (Proposition

15). We also proposed a corresponding annealing path family using linear splines that can flexibly

approximate any annealing path in M. We showed that optimzing over this family is equivalent to

find spline approximation to the geodesics inM. We validated our theory using the Gaussian model

and showed empirically we can surpass the theoretically optimal round trip rate for PT without

path tuning.

In Chapter 5, we explained how such an innocuous algorithmic difference between reversible and

non-reversible PT can lead to such a dramatic difference in performance. Given a regular annealing

path and schedule generator, we computed the scaling limit of the index process for both reversible

and non-reversible PT. In particular, we formally proved in Theorem 16(a) that by scaling the index

process by N and speeding time by a factor or N2, the index process for reversible PT converges to

a Brownian motion on [0, 1] with reflective boundary conditions independent of the annealing path

and schedule (Theorem 16(a)). This diffusive scaling was presumed in the literature but without

proof.

In contrast, we showed in Theorem 16(b) that for non-reversible PT by scaling the index process

by a factor of N and speeding up time by N , the scaled index process weakly converges to a

PDMP rather than a diffusion as previously presumed in the literature. The limit process is a

scaled persistent random walk on [0, 1] with reflective boundary conditions–the limit depends on the

path and annealing schedule through the communication barrier and schedule generator. The limit

process travels in a straight line and reverses direction according to the local communication barrier,

and the global communication barrier is the total rate of reflection across [0, 1]. The inhomogeneity

of the reflection rate is accounted for by the deviation from the optimal schedule.

6.2 Impact of work

MCMC methods were developed in conjunction with the first computers ever built (Robert and

Casella, 2011), and their efficacy and popularity coincide with advancements in computational

hardware. As parallel computing resources become cheaper, the demand for algorithms capable of

efficiently utilizing them grows too. Our non-reversible PT framework was designed to be compatible

with both existing and future MCMC methods and computing architectures. Its performance is
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competitive with state-of-the-art sampling methods and will only improve with advancements in

algorithmic and hardware developments.

Since our methodology does not make any structural assumptions on the state-space or target,

it is particularly appealing to developers of probabilistic programming languages. Probabilistic

programming is a programming paradigm where practitioners specify models in a high-level formalism,

while the details of posterior inference are automated (van de Meent et al., 2018). Successful PPL

implementations make state-of-the-art Monte Carlo methods accessible to general practitioners and

dramatically increase their potential impact. Non-reversible PT can naturally be implemented in

existing probabilistic programming languages that use MCMC and improve the quality of their

inferences.

Our non-reversible PT framework has already been implemented as the default inference engine

for Blang (Bouchard-Côté et al., 2021) for Bayesian inference on combinatorial spaces, and THEMIS

(Broderick et al., 2020; Tiede, 2021) developed by physicists for Bayesian parameter estimation

in astrophysics. Since our publication of Syed et al. (2021a), both Turing.jl (Ge et al., 2018),

and TensorFlow Probability (Abadi et al., 2015) have updated their implementation of PT to use

non-reversible communication and plan to implement our tuning guidelines in the near future.

Other research groups have also used our non-reversible PT framework and achieved high-

performance multi-modal posterior exploration in other scientific disciplines. Most notably, the

Event Horizon Telescope collaboration used THEMIS to reproduce the first image of Sagittarius

A∗, the supermassive black hole at the center of the galaxy M87 (Akiyama et al., 2019) (Figure 6.1

(Left)). Algorithm 5 from Chapter 3 was benchmarked against Vousden et al. (2016), a popular

algorithm for tuning PT in the physics literature, with various local exploration kernels in Chapter

4 of Tiede (2021). They found samplers using Algorithm 5 converged faster compared with Vousden

et al. (2016). More importantly, Algorithm 5 was the only one that reliably discovered all three

dominant modes. In particular, Algorithm 5 in combination with NUTS (Hoffman et al., 2014)

converged to the correct posterior 98% faster compared to THEMIS without non-reversible PT

(Tiede, 2021, Chapter 4.6). The significant gains in performance and reliability THEMIS achieved

from our non-reversible PT methodology were instrumental in modeling interstellar scattering

in measurements (Issaoun et al., 2021). This research discovered magnetic polarization in the

photograph (Akiyama et al., 2021) represented by the ripples in Figure 6.1 (Right).
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Figure 6.1: The first photograph of Sagittarius A∗, the supermassive black hole at the center of galaxy
M87 (left) and its update with Magnetic polarization (right) Source: eventhorizontelescope.org.

Our work was also used recently by Google research in conjunction with Hamiltonian Monte

Carlo for solving Bayesian inference problems with poor conditioning and multi-modal posteriors

(Langmore et al., 2021). Our non-reversible PT methodology was used by Dorri et al. (2020) to

perform Bayesian phylogenetic tree reconstruction using low-depth genome-wide single-cell data.

This was used to model time-series of single-cell cancer genomes (Salehi et al., 2021).

6.3 Future research directions

6.3.1 Weakening ELE assumption

The critical tool for our theoretical analysis was the ELE assumption which assumes the independence

of the log-likelihood at each scan. We used ELE to study the index process for each machine as a

Markov process and to make our theoretical analysis of the round trip rate tractable. The ELE is

motivated by target distributions where multimodality arises from label switching and is satisfied if

the local exploration kernel can draw independent samples within each mode. However, as discussed

in Section 3.1.2, we do not expect the ELE to hold in practice. This implies the potential to develop

a theory of non-reversible PT without ELE. We hypothesize we can retain theoretical guarantees if

we weaken the ELE to assume the local exploration kernel is geometrically or uniformly ergodic on
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each mode.

Weakening the ELE assumption would make the analysis more delicate since the index process

would no longer be Markovian. However, it would open the possibility to incorporate information

about the exploration kernel into designing better PT algorithms. It is worth exploring how the

theory and tuning guidelines change when simultaneously tuning both PT and the exploration

kernel. In particular, it would be of practical importance to know how PT interacts with popular

local exploration kernels as Hamiltonian Monte Carlo (Langmore et al., 2021; Broderick et al., 2020;

Tiede, 2021).

6.3.2 Mixing properties of round trips

The goal of PT is to improve mixing times and convergence rates of MCMC algorithms; however,

our analysis optimizes the round trip rate rather than the spectral gap or ESS. The round trip

rate measured the performance of the communication move in PT algorithms independent of the

problem-specific local exploration kernel. This coarse grain approach to the PT analysis prevents

us from making any rigorous claims about mixing in a particular instance of PT where the local

exploration kernel does not satisfy the ELE condition.

Our empirical analysis shows that optimizing round trips improves mixing between modes and

effective sample size, with gains in performance as the quality of the local exploration improves as

seen in Figures 2.4 and 3.9. In particular, Figure 2.4 is compelling evidence that ESS is correlated

with the total number of round trips and is worth further exploration. Understanding the mixing

and rejuvenation structure of PT and determining how it relates to the round trip rates would be

valuable for the theoretical understanding of PT algorithms and could give new insights on how to

tune the local exploration kernel compatible with PT.

6.3.3 PT with variational reference

The motivation for Chapter 4 was to improve the performance of PT by reducing the communication

barrier between π0 and π1. We did this by improving the path between them, to increase the

overlap between successive distributions. Alternatively, we could have also chosen a better reference

distribution to be “closer” to the target in terms of communication barrier.

Suppose M0 = {qθ : θ ∈ Θ} is a flexible, easy to sample family of reference distributions over X
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that we can evaluate up to a constant. For example, M0 can be a family of Gaussian mixtures,

mean-field approximations of π1, or a family of distributions parametrized by a neural net. Using

M0, we can construct an annealing path family A = {πθ : θ ∈ Θ}, where πθβ ∝ q
1−β
θ πβ1 is the linear

path between qθ and π1. We can then define the loss function, L : A → R+, where L(πθ) = Λ(πθ) is

the global communication barrier. We can improve the performance of PT by picking the path π

minimizing L. We can interpret the optimal reference π0 as the projection of the target π1 ontoM0.

This construction also naturally extends to path families with linear splines using the construction

from Section 4.6.

If we use π0 for π ∈ arg minL in place of the target, this becomes equivalent to doing variational

inference (Blei et al., 2017) with the communication barrier as the objective rather than the

Kullback–Leibler divergence. Variational inference using different divergences is an active area of

research (Li and Turner, 2016; Regli and Silva, 2018; Masrani et al., 2019; Wan et al., 2020). We

can use existing knowledge amassed by the variational inference community to improve the round

trip rate for PT.

6.3.4 Geometric structure of annealing

We developed a geometric theory of PT induced by the rejection rate, where the local and global

communication barriers correspond to the speed and length respectively. This allows us to reinterpret

the tuning of PT algorithms as computing a geodesic. In particular, it would be valuable to

characterize the geodesics and how curvature relates to designing better annealing paths. It is

worth understanding the geometry of the exponential annealing family from Section 4.6.1 and its

connection to information geometry more generally. We already saw from Proposition 7 in the

high dimension scaling limit, the Finsler structure for PT coincides with the Fisher information

metric. This connection to information geometry opens up the possibility to study PT using more

sophisticated tools from differential geometry. Conversely, PT can be used as a tool for the field

of applied information geometry (Amari, 2016) since Algorithm 6 approximates the geodesics for

any specified annealing family M viewed as an information manifold. We could see applications of

Algorithm 6 potentially outside of the MCMC context.
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6.3.5 Beyond PT

This thesis showed that non-reversible PT is competitive with state-of-the-art Monte Carlo methods.

Still, it remains an open problem to determine when practitioners should use non-reversible PT

versus another class of successful methods such as SMC (Del Moral et al., 2006). The geometric

framework developed in Chapter 4 extends naturally beyond PT to any annealing-based algorithm

where the efficiency is measured using a regular divergence. Examples include AIS (Neal, 2001),

SMC, and optimal transport (Villani, 2009), where the Finsler structure is induced by the KL

divergence (Grosse et al., 2013), χ2 divergence (Agapiou et al., 2017; Chatterjee and Diaconis, 2018),

and the squared Wasserstein distance (Lott and Villani, 2009; Figalli and Villani, 2011) respectively.

Our geometric framework developed in Chapter 4 unifies these seemingly disparate methodologies,

each constituting a rich literature. There is potential to use the tools and insights from PT to study

these other algorithms. In particular, we can apply our theory and guidelines developed for PT

to create a new approach to tuning for other methods. Conversely, the tools from these areas can

potentially lead to novel advancements in PT both theoretically and algorithmically.

125



Bibliography

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis,

A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia,

Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S.,
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Appendix A

Technical Proofs

A.1 Chapter 3

A.1.1 Theorem 1

Proof of Theorem 1. To simplify notation for the rest of the proof, let T↑ and T↓ be the hitting

times to the target and reference defined by,

T↑ = min{t : (It, εt) = (N, 1)}, T↓ = min{t > T↑ : (It, εt) = (0,−1)}.

We will also denote

sn = s(n−1,n), rn = 1− s(n−1,n).

Expected round trip times for SEO

If we define an• = ESEO(T•|I0 = n) for n = 0, . . . , N and • ∈ {↑, ↓}, then we have

ESEO(T ) = a0
↑ + aN↓ . (A.1)

By the Markov property, for n = 1, . . . , N − 1, an• satisfies the recursion

an• =
1

2
sn+1(an+1

• + 1) +
1

2
sn(an−1

• + 1) +
1

2
(rn+1 + rn)(an• + 1). (A.2)
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For n = 1, . . . , N , we substitute in bn• = an• − an−1
• into (A.2). After simplification, bn• satisfies the

following recursive relation

−2 = sn+1b
n+1
• − snbn• . (A.3)

The solutions to (A.3) are

snb
n
• = s1b

1
• − 2(n− 1), (A.4)

or equivalently

snb
n
• = sNb

N
• + 2(N − n). (A.5)

We now deal with the case of ↑ and ↓ separately.

Computation of a0
↑. To determine a0

↑, we note that if I0 = 0 then I1 = 1 with probability 1
2s1

and I1 = 0 otherwise. So a0
↑ satisfies

a0
↑ =

1

2
s1(a1

↑ + 1) +

(
1− 1

2
s1

)
(a0
↑ + 1),

or equivalently

s1b
1
↑ = −2.

Substituting this into (A.4) implies snb
n
↑ = −2n. By summing bn↑ = an↑ − a

n−1
↑ from n = 1, . . . , N

and, noting aN↑ = 0, we get

a0
↑ =

N∑
n=1

2n

sn
. (A.6)
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Computation of aN↓ . Similarly to determine aN↓ we note that if I0 = N then I1 = N − 1 with

probability 1
2sN and I1 = N otherwise. So aN↓ satisfies

aN↓ =
1

2
sN (aN−1

↓ + 1) +

(
1− 1

2
sN

)
(aN↓ + 1),

or equivalently

sNb
N
↓ = 2.

Substituting this into (A.5) implies snb
n
↓ = 2 + 2(N − n). By summing bn↓ = an↓ − an−1

↓ from

n = 1, . . . , N and, noting a0
↓ = 0, we get

aN↓ =
N∑
n=1

2(N − n) + 2

sn
. (A.7)

Substituting in (A.6) and (A.7) into (A.1), it follows that

ESEO(T ) =
N∑
n=1

2n

sn
+

N∑
n=1

2(N − n) + 2

sn

= 2(N + 1)
N∑
n=1

1

sn

= 2N(N + 1) + 2(N + 1)
N∑
n=1

rn
sn
.

Expected round trip times for DEO

If we define an,ε• = EDEO(T•|I0 = n, ε0 = ε) for n = 0, . . . , N , ε ∈ {+,−} and • ∈ {↑, ↓}, then we

have

EDEO(T ) = a0,−
↑ + aN,+↓ . (A.8)
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Note that for n = 1, . . . , N − 1 an,ε• satisfies the recursion relations

an,+• = sn+1(an+1,+
• + 1) + rn+1(an,−• + 1), (A.9)

an,−• = sn(an−1,−
• + 1) + rn(an,+• + 1). (A.10)

If we substitute cn• = an,+• + an−1,−
• , and dn• = an,+• − an−1,−

• into (A.9) and (A.10) and simplify, we

obtain

an+1,+
• − an,+• = rn+1d

n+1
• − 1, (A.11)

an,−• − an−1,−
• = rnd

n
• + 1. (A.12)

By subtracting and adding (A.11) and (A.12), we obtain a joint recursion relation for cn• and dn• of

the form

cn+1
• − cn• = rn+1d

n+1
• + rnd

n
• , (A.13)

dn+1
• − dn• = rn+1d

n+1
• + rnd

n
• − 2. (A.14)

Note that (A.14) can be rewritten as

sn+1d
n+1
• − sndn• = −2. (A.15)

Once one has expressions for cn• and dn• , then we can recover an,ε• by using

an,+• =
cn• + dn•

2
,

an−1,−
• =

cn• − dn•
2

.

We now deal with the ↑ and ↓ cases separately.
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Computation of a0,−
↑ . Note that a0,−

↑ = a0,+
↑ + 1. We can substitute this into (A.11) to get

s1d
1
↑ = −2, which combined with (A.15) implies

snd
n
↑ = −2n. (A.16)

Since aN,+↑ = 0 we have cN↑ = −dN↑ , so by summing (A.13) we get

2a0,−
↑ = c1

↑ − d1
↑

= cN↑ − d1
↑ −

N−1∑
n=1

(cn+1
↑ − cn↑ )

= −dN↑ − d1
↑ −

N−1∑
n=1

(rn+1d
n+1
↑ + rnd

n
↑ )

= −sNdN↑ − s1d
1
↑ − 2

N∑
n=1

rnd
n
↑ . (A.17)

After substituting (A.16) into (A.17), we obtain

a0,−
↑ = N + 1 +

N∑
n=1

2nrn
sn

. (A.18)

Computation of aN,+↓ . Note that aN,+↓ = aN,−↑ + 1. We can substitute this expression into (A.12)

to get sNd
N
↓ = 2, which combined with (A.15) implies

snd
n
↓ = 2(N − n+ 1). (A.19)

Since a0,−
↓ = 0 we have c1

↓ = d1
↓, so by summing (A.13) we get

2aN,+↓ = cN↓ + dN↓

= c1
↓ + dN↓ +

N−1∑
n=1

(cn+1
↓ − cn↓ )

= d1
↓ + dN↓ +

N−1∑
n=1

(rn+1d
n+1
↓ + rid

n
↓ )

= s1d
1
↓ + sNd

N
↓ + 2

N∑
n=1

rnd
n
↓ . (A.20)
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After substituting in (A.19) into (A.20), we obtain

aN,+↓ = N + 1 +
N∑
n=1

2(N − n+ 1)rn
sn

. (A.21)

Finally, by substituting (A.18) and (A.21) into (A.8), it follows that

EDEO[T ] = 2(N + 1) + 2(N + 1)
N∑
n=1

rn
sn
.

A.1.2 Theorem 3

Proof of Theorem 3. We first want to verify that Ep̄[|∆W |3] <∞. This follows from the integrability

of ∆W 3 with respect to p, p′ and the arithmetic and geometric means inequality

p̄(x) ∝
√
p(x)p′(x) ≤ 1

2
(p(x) + p′(x)).

Let us define λk = 2−kEp̄[|∆W (X ′)−∆W (X)|k] for X,X ′ ∼ p̄. By applying Taylor’s remainder

theorem to the numerator and denominator in Equation (3.12) to the third order we get

r(p, p′) = 1− 1− λ1 + λ2 +R′

1 + λ2 +R′′
(A.22)

where the remainders R′, R′′ satisfy

|R′|, |R′′| ≤ C ′Ep̄[|∆W |3]

for some constant C ′ > 0. Only the even terms remain in the denominator since E[(∆W (X ′) −

∆W (X))k] = 0 for k odd by symmetry. By applying Taylor’s remainder theorem again to (A.22)

for the function (1 + x)−1 we get that the λ2 terms cancel and we are left with

r(p, p′) = λ1 +R,
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where the remainder R satisfies

|R| ≤ CEp̄[|∆W |3]

for some finite constant C.

A.1.3 Theorem 4

Lemma 21. Let f : X → R be measurable. Then if E0[|f |],E1[|f |] <∞, then

‖f‖π = sup
β∈[0,1]

Eβ[|f |] <∞. (A.23)

Proof of Lemma 21. By the weighted AM-GM inequality for all β ∈ [0, 1],

π0(x)1−βπ1(x)β ≤ (1− β)π0(x) + βπ1(x).

By integrating over X ,

πβ(|f |) =
1

Z(β)

∫
X
|f(x)|π0(x)1−βπ1(x)βdx

≤ (1− β)
1

Z(β)

∫
X
|f(x)|π0(x)dx+ β

1

Z(β)

∫
X
|f(x)|π1(x)dx

= (1− β)
Z(0)

Z(β)
E0[|f |] + β

Z(1)

Z(β)
E1[|f |] <∞.

Since Z(β) is continuous and positive on [0, 1], (A.23) follows from the extreme value theorem.

Lemma 22. Suppose E0[|V |3],E0[|V |3] <∞ then λ ∈ C2([0, 1]) with derivatives satisfying,

∥∥∥∥d2λ

dβ2

∥∥∥∥
∞
≤ C‖V 3‖π, (A.24)

where ‖V 3‖π = supβ Eβ[|V |3].

Proof. Suppose V k is integrable with respect to π0 and π1, we want to show here that λ : [0, 1]→ R+
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given by

λ(β) =
1

2

∫
X 2

|V (x)− V (y)|πβ(x)πβ(y)dxdy =
g(β)

2Z(β)2
, (A.25)

where Z, g : [0, 1]→ R+ satisfy,

Z(β) =

∫
X
π̃β(x)dx,

g(β) =

∫
X 2

|V (x)− V (y)|π̃β(x)π̃β(y)dxdy,

where π̃β(x) = exp(Wβ) is the un-normalized density of πβ . Since Z(β) > 0 on [0, 1], if we can show

that Z, g ∈ C2([0, 1]) then it implies that λ ∈ C2([0, 1]).

Regularity of Z: Note that π̃β(x) satisfies

∂j π̃β
∂βj

(x) = V (x)j π̃β(x).

For all j ≤ 3,

sup
β∈[0,1]

∣∣∣∣∂j π̃β∂βj
(x)

∣∣∣∣ ≤ |V (x)|jπ0(x) + |V (x)|jπ1(x). (A.26)

The bound in (A.26) is uniform in β and is integrable. By Leibniz integration rule we have

Z ∈ C3([0, 1]) with derivatives satisfying

djZ

dβj
= Z(β)

∫
X
V (x)jπβ(x)dx.

Since Z(β) is continuous on [0, 1], we have

∥∥∥∥djZdβj
∥∥∥∥
∞
≤ ‖Z‖∞‖V j‖π. (A.27)

where ‖V j‖π = supβ Eβ[|V |j ].
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Regularity of g: Let h(x, y, β) = |V (x)− V (y)|π̃β(x)π̃β(y). The partial derivatives satisfy,

∂j

∂βj
h(x, y, β) = (−1)j |V (x)− V (y)|(V (x) + V (y))j π̃β(x)π̃β(y).

Similar to (a), we have for all β ∈ [0, 1], j ≤ 2,

sup
β∈[0,1]

∣∣∣∣ ∂j∂βj h(x, y, β)

∣∣∣∣ ≤ |V (x)− V (y)||V (x) + V (y)|jπ0(x)π0(y)

+ |V (x)− V (y)||V (x) + V (y)|jπ1(x)π1(y). (A.28)

The left hand side of (A.28) dominates ∂jh
∂βj

uniformly in β. It is integrable by Lemma 21 and using

the fact that V k is integrable with respect to π0 and π. By the Leibniz integration rule,

djg

dβj
= Z(β)2

∫
X 2

(−1)j |V (x)− V (y)|(V (x) + V (y))jπβ(x)πβ(y)dxdy.

Again by the continuity of Z(β) we have for j ≤ 2.

∥∥∥∥ djgdβj
∥∥∥∥
∞
≤ ‖Z‖2∞‖V j‖π. (A.29)

Finally we get (A.24) by applying the quotient rule to (A.25) then using (A.27), (A.29).

Proof of Theorem 4. We first note that the log-likelihood ratio between πβ ∝ exp(Wβ), πβ′ ∝

exp(Wβ′) satisfies,

∆W = Wβ′ −Wβ = (β′ − β)V (x).

Applying Theorem 3 to πβ and πβ′ we get for some C ′ > 0

∣∣r(β, β′)− (β′ − β)λ(β̄)
∣∣ ≤ C ′Eβ̄[|V |3]|β′ − β|3, (A.30)

where β̄ = (β + β′)/2 and λ(β̄) is defined by (3.13). It follows from Lemma 21 that

‖V 3‖π = sup
β∈[0,1]

Eβ[|V |3] <∞.
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Notice that (β′ − β)λ(β̄) is the Riemann sum for
∫ β′
β λ(u)du with a single rectangle. By Lemma

22, we have λ is twice continuously differentiable and thus the standard midpoint rule error estimates

yields

∣∣∣∣∣
∫ β′

β
λ(β̃)dβ̃ − (β′ − β)λ(β̄)

∣∣∣∣∣ ≤ 1

12

∥∥∥∥d2λ

dβ2

∥∥∥∥
∞
|β′ − β|3. (A.31)

By the triangle inequality combined with (A.30) and (A.31),

∣∣∣∣∣r(β, β′)−
∫ β′

β
λ(β̃)dβ̃

∣∣∣∣∣ ≤ C ′‖V ‖3π|β′ − β|3 +
1

12

∥∥∥∥d2λ

dβ2

∥∥∥∥
∞
|β′ − β|3.

The result follows using Lemma 22.

A.1.4 Corollary 5

Proof of Corollary 5. By the triangle inequality and Theorem 4,

∣∣∣∣∣
N∑
n=1

r(βn−1, βn)− Λ

∣∣∣∣∣ =
N∑
n=1

∣∣∣∣∣r(βn−1, βn)−
∫ βn

βn−1

λ(β)dβ

∣∣∣∣∣
≤

N∑
n=1

C sup
β∈[βn−1,βn]

Eβ[|V |3]|βn − βn−1|3

≤ C‖V 3‖π‖BN‖2.

The last inequality used the fact that
∑N

n=1 βn − βn−1 = 1. The result follows by the mean value

theorem and using (2.2).

A.1.5 Theorem 6

Proof of Theorem 6. We first note that (b) and (c) follow immediately from (a) and Corollary 2.

So to prove Theorem 6 it is sufficient to show (a). By Corollary 5 we get the following estimate for
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Λ(BN ),

∣∣∣∣∣Λ(BN )−
N∑
n=1

r(βn−1, βn)

∣∣∣∣∣ =
N∑
n=1

r(βn−1, βn)2

1− r(βn−1, βn)

≤
r∗N

1− r∗N

N∑
n=1

r(βn−1, βn)

=
r∗N

1− r∗N

(
Λ +O

(
1

N2

))
, (A.32)

where r∗N = maxn r(βn−1, βn) is the maximum rejection rate. Given BN generated by γ, Theorem 4

implies

∣∣∣∣∣r(βn−1, βn)−
∫ βn

βn−1

λ(β)dβ

∣∣∣∣∣ ≤ C̃‖V 3‖π
N3

.

This implies for all n = 1, . . . , N we have r(βn−1, βn) satisfies,

r(βn−1, βn) ≤ ‖λ‖∞|βn − βn−1|+
C̃‖V 3‖π‖γ′‖3

N3
,

≤ ‖V ‖π‖γ̇‖∞
N

+
C̃‖V 3‖π‖γ′‖3

N3
.

We arrived at the last line using (2.2) and (3.13). By Taylor’s theorem, x/(1 − x) = x + O(x2),

which implies

r∗N
1− r∗N

≤ ‖V ‖π‖γ̇‖∞
N

+O

(
1

N2

)
. (A.33)

Finally we arrive at our estimate by combining (A.32) and (A.33).

A.1.6 Proposition 7

Proof of Proposition 7. Let V (d) be the the log-likelihood ratio between π
(d)
0 and π

(d)
1 . The indepen-

dence structure from Equation (3.14) tells us that V (d)(x(d)) =
∑d

i=1 V (xi) where x(d) = (x1, . . . , xd).

If X(d) = (X1, . . . , Xd) and X ′(d) = (X ′1, . . . , X
′
d) be drawn i.i.d. from π

(d)
β , then {V (Xi)−V (X ′i)}di=1
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are i.i.d. with mean zero and variance 2Varβ[V ]. By the central limit theorem,

V (d)(X(d))− V (d)(X ′(d))√
2dVarβ[V ]

=
1√
d

d∑
i=1

V (Xi)− V (X ′i)√
2dVarβ[V ]

===⇒
d→∞

Z ∼ N(0, 1). (A.34)

Thus we have

λ(d)(β) =
1

2
E
[
|V (d)(X(d))− V (d)(X ′(d))|

]
=

1

2

√
2dVarβ[V ] E

[∣∣∣∣∣V (d)(X(d))− V (d)(X ′(d))√
2dVarβ[V ]

∣∣∣∣∣
]
. (A.35)

The sequence of variables indexed by d in the expectation in (A.35) is also uniformly integrable.

This follows by noting that the second moment of the integrand in (A.35) is uniformly bounded in d:

sup
d

E

∣∣∣∣∣V (d)(X(d))− V (d)(X ′(d))√
2dVarβ[V ]

∣∣∣∣∣
2
 = sup

d

1

2dVarβ[V ]

d∑
i=1

Var
[
V (Xi)− V (X ′i)

]
= 1.

By d→∞ and using (A.34) we have

lim
d→∞

√
2

dVarβ[V ]
λ(d)(β) = E|Z| =

√
2

π
, (A.36)

To obtain the high dimensional scaling limit for Λd, we use Cauchy-Schwarz

λ(d)(β)√
d

=
1

2
√
d
E
[
|V (d)(X(d))− V (d)(X ′(d))|

]
≤
√

Varβ[V ]

2
. (A.37)

Finally, (A.36), (A.37) along with dominated convergence yield

lim
d→∞

Λ(d)

√
d

=

∫ 1

0
lim
d→∞

λ(d)(β)√
d

dβ =
1√
π

∫ 1

0

√
Varβ[V ] dβ.
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A.2 Chapter 4

A.2.1 Theorem 10

Proof of Theorem 10. We first note that without loss of generality we can place an artificial schedule

point βn at each of the finitely many discontinuities in Wβ or its first/second derivative. Thus we

assume that Wβ(x) is C2 on each interval [βn−1, βn]. Later in the proof it will become clear that

the contributions of these artificial schedule points becomes negligible as ‖BN‖ → 0.

Suppose we have a fixed annealing schedule BN , with annealing distributions πβ0 , . . . , πβN

interpolating along the path πβ ∝ exp(Wβ). Define the spline path πNβ = 1
ZN (β)

exp(WN
β ) with

log-likelihood WN
β satisfying for each segment βn−1 ≤ β ≤ βn,

WN
β = Wβn−1 +

∆Wn

∆βn
(β − βn−1), (A.38)

where ∆Wn = Wβn −Wβn−1 and ∆βn = βn − βn−1. The spline path is the concatenation of the N

linear paths, between πβn−1 and πβn , i.e. the log-likelihood WN
β agrees with Wβ for β ∈ BN , and

linearly interpolates between Wβn−1 and Wβn for β ∈ [βn−1, βn]. The spline path approximation is

important as for a fixed schedule BN , parallel tempering is unable to distinguish between πN and π.

Moreover, by Taylor’s theorem, for all x ∈ X ,

|WN
β (x)−Wβ(x)| ≤ 1

2
sup
β

∣∣∣∣d2W

dβ2
(x)

∣∣∣∣ ‖BN‖2, (A.39)

So as N → ∞, (A.39) implies for all x, we have πNβ (x) converge to πβ(x) uniformly in β as

‖BN‖ → 0.

Let λN be the local communication barrier for πN defined by (4.9). For β ∈ (βn−1, βn), we have

πNβ is the linear path between πβn−1 and πβn . Since the global communication barrier is invariant

to reparameterization, we have

∫ βn

βn−1

λN (β)dβ = Λn,

where Λn is equal to the global communication barrier for the linear path between πβn−1 and πβn .
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Using Theorem 4 combined and the regularity condition (4.4), we have

rn =

∫ βn

βn−1

λN (β)dβ +O(‖BN‖3). (A.40)

By summing (A.40) from n = 1, . . . , N , we have the following estimate for the cumulative rejection,

N∑
n=1

r(πβn−1 , πβn) = Λ(πN ) +O(‖BN‖2). (A.41)

and the round trip rate,

τ(π,BN ) =
1

2 + 2Λ(πN )
+O(‖BN‖). (A.42)

Lemma 24 shows supβ |λ̂N (β)− λ(β)| converges uniformly to 0 as ‖BN‖ → 0 then by dominated

convergence theorem Λ(πN ) converges to Λ(π) uniformly as ‖BN‖ → 0. Combining this with (A.40),

(A.41), (A.42), we complete the proof by letting ‖BN‖ → 0.

Proof of Lemma 24

Given a regular annealing path π, for measurable function f define

‖f‖π = sup
β

Eβ[|f |],

and given s > 0, define

C(f, s) = ‖f exp(sV2)‖π.

Lemma 23. (a) Suppose there is an ε > 0 such that C(1, ε) <∞, and N is large enough so that

‖BN‖2 < ε, then

sup
β∈[0,1]

∣∣∣∣ZN (β)

Z(β)
− 1

∣∣∣∣ ≤ C(V2, ε)‖BN‖2. (A.43)
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and if N is large enough so that C(V2, ε)‖BN‖2 < 1 also holds, then,

sup
β∈[0,1]

∣∣∣∣ Z(β)

ZN (β)
− 1

∣∣∣∣ ≤ C(V2, ε)

1− C(V2, ε)‖BN‖2
‖BN‖2. (A.44)

(b) Suppose there is an ε > 0 such that C(f, ε) <∞, and if N is large enough so that ‖BN‖2 < ε

and C(V2, ε)‖BN‖2 < 1,

sup
β∈[0,1]

∣∣πNβ (f)− πβ(f)
∣∣ ≤ [ C(V2, ε)C(f, ε)

1− C(V2, ε)‖BN‖2
+ C(fV2, ε)

]
‖BN‖2. (A.45)

Proof of Lemma 23. (a) We rewrite the expression

ZN (β)

Z(β)
=

1

Z(β)

∫
X

exp
(
WN
β (x)

)
dx

=

∫
X

exp
(
WN
β (x)−Wβ(x)

)
πβ(x)dx

= 1 +

∫
X

(
exp

(
WN
β (x)−Wβ(x)

)
− 1
)
πβ(x)dx.

Thus using the inequality |ex − 1| ≤ e|x| − 1 and the spline error (A.39),

∣∣∣∣ZN (β)

Z(β)
− 1

∣∣∣∣ ≤ ∫
X

(
exp

(∣∣WN
β (x)−Wβ(x)

∣∣)− 1
)
πβ(x)dx

≤
∫
X

(
exp

(
‖BN‖2V2(x)

)
− 1
)
πβ(x)dx

= mβ(‖BN‖2)−mβ(0),

where mβ(s) = πβ(exp(sV2)) is differentiable for 0 ≤ s < ε, with derivative m′β(s) =

πβ(V2 exp(sV2)). By the mean value theorem, we have

∣∣∣∣ZN (β)

Z(β)
− 1

∣∣∣∣ ≤ πβ(V2 exp(εV2))‖BN‖2.

By taking supremum over β ∈ [0, 1], we arrive at (A.43). The bound on |Z(β)/ZN (β) − 1|

arises from straightforward algebraic manipulation of the above bound.
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(b) We begin by rewriting πNβ (f):

πNβ (f)− πβ(f) =
1

ZN (β)

∫
X
f(x) exp

(
WN
β (x)

)
dx− πβ(f)

=

∫
X

(
Z(β)

ZN (β)
exp

(
WN
β (x)−Wβ(x)

)
− 1

)
f(x)πβ(x)dx

=

(
Z(β)

ZN (β)
− 1

)∫
X
f(x) exp

(
WN
β (x)−Wβ(x)

)
πβ(x)dx (A.46)

+

∫
X
f(x)

(
exp

(
WN
β (x)−Wβ(x)

)
− 1
)
πβ(x)dx. (A.47)

We will find bounds on each term separately. For (A.46) we use the spline error bound (A.39),

and (A.44),

∣∣∣∣( Z(β)

ZN (β)
− 1

)∫
X
f(x) exp

(
WN
β (x)−Wβ(x)

)
πβ(x)dx

∣∣∣∣
≤
∣∣∣∣ Z(β)

ZN (β)
− 1

∣∣∣∣ ∫
X
f(x) exp

(
‖BN‖2V2

)
πβ(x)dx

≤ C(V2, ε)‖BN‖2

1− C(V2, ε)‖BN‖2
C(f, ε). (A.48)

For (A.47), we again use |ex − 1| ≤ e|x| − 1, the spline error bound (A.39),

∫
X
f(x)

(
exp

(
WN
β (x)−Wβ(x)

)
− 1
)
πβ(x)dx

≤
∫
X
f(x)

(
exp

(
‖BN‖2V2(x)

)
− 1
)
πβ(x)dx

= mf,β(‖BN‖2)−mf,β(0),

where mf,β(s) = πβ(f exp(sV2)) is differentiable for 0 ≤ s < ε with derivative m′f,β(s) =

πβ(fV2 exp(sV2)). By the mean value theorem,

∫
X
f(x)

(
exp

(
WN
β (x)−Wβ(x)

)
− 1
)
πβ(x)dx ≤ C(fV2, ε)‖BN‖2. (A.49)

Combining (A.48) and (A.49) we get (A.45).

Lemma 24. If π is a regular path with local communication barrier λ(β), and πN is the spline path
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approximation with speed λN (β), then for all ε > 0 there is a δ > 0 such that ‖BN‖ < δ implies

|λN (β)− λ(β)| < ε.

Proof of Lemma 24. Adding and subtracting E
[∣∣∣∣dWN

β

dβ (X)− dWN
β

dβ (X ′β)

∣∣∣∣] within the absolute dif-

ference 2|λ̂N (β)− λ(t)| and using the triangle inequality, it can be shown that we require bounds

on

J1,β =

∫
πβ(x)πβ(y)

∣∣∣∣∣
∣∣∣∣∣dWN

β

dβ
(x)−

dWN
β

dβ
(y)

∣∣∣∣∣−
∣∣∣∣dWβ

dβ
(x)−

dWβ

dβ
(y)

∣∣∣∣
∣∣∣∣∣ dxdy,

and

J2,β =

∫ ∣∣πβ(x)πβ(y)− πNβ (x)πNβ (y)
∣∣ ∣∣∣∣∣dWN

β

dβ
(x)−

dWN
β

dβ
(y)

∣∣∣∣∣dxdy.

For the first term, the mean value theorem implies that there exist s, s′ ∈ [βn−1, βn] (potentially

functions of x and y, respectively) such that

J1,β =

∫
πt(x)πt(y)

∣∣∣∣∣∣∣∣dWs

dβ
(x)− dWs′

dβ
(y)

∣∣∣∣− ∣∣∣∣dWβ

dβ
(x)−

dWβ

dβ
(y)

∣∣∣∣∣∣∣∣dxdy.

Split the integral into the set A of x, y ∈ X where the first term in the absolute value is larger; the

same analysis with the same result applies in the other case in Ac. Here, Taylor’s theorem applied

to dWs
dβ about s = β in conjunction with (4.5) implies,

∣∣∣∣dWs

dβ
(x)− dWs′

dβ
(y)

∣∣∣∣ ≤ ∣∣∣∣dWβ

dβ
(x)−

dWβ

dβ
(y)

∣∣∣∣+ (V2(x) + V2(y))‖BN‖.

Using this and the same procedure for Ac, we have that

J1,β ≤
∫
πt(x)πt(y)(V2(x) + V2(y))‖BN‖dxdy

= 2πβ(V2)‖BN‖

≤ 2‖V2‖π‖BN‖.
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This converges to 0 as ‖BN‖ → 0.

For the second term J2,β, we can again use the mean value theorem to find s, s′ ∈ [βn−1, βn]

where

J2,β =

∫ ∣∣πβ(x)πβ(y)− πNβ (x)πNβ (y)
∣∣ ∣∣∣∣dWs

dβ
(x)− dWs′

dβ
(y)

∣∣∣∣ dxdy,

and therefore via the triangle inequality, symmetry, and the V1(x) bound on the first path derivative

(4.4),

J2,β ≤ 2

∫
V1(x)

∣∣πβ(x)πβ(y)− πNβ (x)πNβ (y)
∣∣ dxdy.

We then add and subtract πβ(x)πNβ (y) within the absolute value and use the triangle inequality

again to find that

J2,β ≤ 2

∫
(V1(x) + πβ(V1)) |πβ(x)− π̃β(x)|dx

= 2

∫
(V1(x) + πβ(V1))

∣∣∣∣∣1− πNβ (x)

πβ(x)

∣∣∣∣∣πβ(x)dx.

Note that by the triangle inequality and the bound |ex − 1| ≤ e|x| − 1,

∣∣∣∣∣1− πNβ (x)

πβ(x)

∣∣∣∣∣ ≤
∣∣∣∣ Z(β)

ZN (β)
− 1

∣∣∣∣ exp
(
‖BN‖2V2(x)

)
+ exp(‖BN‖2V2(x))− 1.

Let f = V1 + EπtV1. If N is large enough so that, ‖BN‖2 < ε and C(f, ε)‖BN‖2 < 1, then

J2,β ≤ 2 sup
s∈[0,1]

∣∣∣∣ Z(s)

ZN (s)
− 1

∣∣∣∣mf,β(‖BN‖2) +mf,β(‖BN‖2)−mf,β(0),

wheremf,β(s) = πβ(f exp(sV2)) is differentiable for 0 ≤ s < ε with derivativem′f,β(s) = πβ(fV2 exp(sV2)).

By the mean value theorem,

|mf,β(‖BN‖2)−mf,β(0)| ≤ C(fV2, ε)‖BN‖2.
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Using Lemma 23 and supβmf,β(‖BN‖2) ≤ C(f, ε),

J2,β ≤ 2

(
C(V2, ε)

1− C(V2, ε)‖BN‖2
C(f, ε) + C(fV2, ε)

)
‖BN‖2.

Therefore J1,β + J2,β → 0 as ‖BN‖ → 0 at a rate of O(‖BN‖) which completes the proof.

A.2.2 Proposition 11

Proof of Proposition 11. Suppose πβ is a regular annealing path in M corresponding to a differen-

tiable parametric curve η(β), then by chain rule,

(πβ, π̇β) = (pη(β), η̇(β)TSη(β)) = Φ(η(β), η̇(β)), (A.50)

where η̇(β) = dη
dβ ∈ Rd is the velocity of the parametric curve η at β. It follows from (A.50) that Φ

is onto.

To see that Φ is one-to-one, suppose Φ(η, v) = Φ(η′, v′), i.e. pη = pη′ and vTSη = v′TSη′ .

Condition (R1) implies η = η′ and (v − v′)TSη = 0. By taking expectations with respect to pη and

using (4.21),

0 = Eη
[
|(v − v′)TSη|2

]
= Eη[(v − v′)TSηSTη (v − v′)]

= (v − v′)T I(η)(v − v′).

From condition (R4) we know I(η) is positive definite, this is only possible if v = v′.

A.2.3 Proposition 12

Proof of Proposition 12. Let η(β) = η + βv be a differentiable curve in Ω for a fixed η ∈ Ω and

‖v‖ = 1. Let πβ = pηη be the corresponding annealing path with log-density, Wβ(x) = Wη(β)(x)

and velocity π̇β = vTSη(β). Since M is a regular model, we have condition (R3) implies

∣∣∣∣dWβ(x)

dβ

∣∣∣∣ =
∣∣vT∇Wη(β)(x)

∣∣ ≤ V1(x),
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and

∣∣∣∣d2Wβ

dβ2

∣∣∣∣ =
∣∣vT∇2Wη(β)(x)v

∣∣ ≤ V2(x),

where V1 and V2 satisfy (4.20) for some ε > 0 and πβ satisfies the conditions of Theorem 10. It

follows from (4.10) as ∆η = βv → 0,

r(pη, pη+∆η) = λ2
r(η,∆η) + o(‖∆η‖),

and therefore D = r2 satisfies (4.23).

It remains to show that λ2
r satisfies the conditions of a Finsler metric. It can be shown that

regularity conditions (R3) forM ensure that λ satisfies (F1). Notice that for all η ∈ Ω, and x, x ∈ X ,

we have that v 7→ 1
2 |v

TSη(x, x
′)| defines a strictly sub-additive norm for v when Sη(x, x

′) 6= 0. By

taking expectations, with respect to η we have λr2(η, v) defined by (4.25) is a strictly sub-additive

norm for v if and only if Sη(x, x
′) is not identically zero. This cannot happen since (R4) ensures

Var[Sη(X,X
′)] = 2I(η) is positive definite for each η, where X,X ′ ∼ pη.

A.2.4 Proposition 15

Proof of Proposition 15. Since M is an exponential family with linearly independent sufficient

statistics W0 and W1, we have Ω is convex subset of R2 with non-empty interior and the Fisher

information is positive definite. It follows that M satisfies conditions (R1), (R2) and (R4). Since

∇Wη = W and ∇2
ηWη = 0, it follows M is an annealing family if V1 = ‖W‖ satisfies condition

(4.20) with V2 = 0,

A.3 Chapter 5

A.3.1 Proposition 19

Proof of Proposition 18. We will show LW defines a Feller semigroup on C([0, 1]) by the Hille-Yosida

theorem; see Kallenberg (2002, Theorem 19.11).

Indeed the first condition is satisfied since any function f ∈ C([0, 1]) can be uniformly ap-
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proximated within ε > 0 by a polynomial pε, that is a smooth function, by the Stone-Weirstrass

theorem. We can further uniformly approximate pε within ε by a C2 function p̂ε with vanishing

derivatives at the endpoints. For example one can let, for a δ to be chosen later, p̂ε(x) = pε(x)

for x ∈ (δ, 1− δ) and for x ≤ δ set p̂ε(x) =
∫ x

0 ρδ(y)p′ε(y)dy + c, where ρδ is a smooth, increasing

transition function such that ρδ(x) = 0 for x < 0, ρδ(x) = 1 for x > δ, for example let ρδ = ρ(x/δ),

ρ(x) = g(x)/(g(x) + g(1−x)) and g(x) = exp(−1/x)1{x>0}. We choose c so that p̂ε(x) is continuous

at δ. A similar construction can be used for the right-endpoint. One can then check that indeed

p̂ε ∈ C2([0, 1]), p̂′ε(0) = p̂′ε(1) = 0 and that for δ small enough ‖p̂ε − pε‖∞ < ε.

The second condition of Kallenberg (2002, Theorem 19.11) requires that for some µ > 0, the

set (µ − LW )(D
(
LW )

)
is dense in C([0, 1]). Let g ∈ C([0, 1]) be given. We apply Saranen and

Seikkala (1988, Corollary 2.2), with f(t, y) = 2µy − 2g, which is clearly square integrable in t and

2µ-Lipschitz in y. Then Saranen and Seikkala (1988, Corollary 2.2) implies that for small enough

µ > 0 the two-point Neumann-boundary value problem

µu− 1

2
u′′ = g

u′(0) = u′(1) = 0

admits a solution in the Sobolev space H2([0, 1]) of functions with square integrable first and second

derivatives. This already implies that u ∈ C1([0, 1]), whereas the continuity of g and of u a priori

implies the continuity of u′′ since u′′ = 2µu−g. Overall, for any g ∈ C([0, 1]) we can find u ∈ D(LW )

such that g = (µ− LW )g establishing the second condition of Kallenberg (2002, Theorem 19.11).

The third condition of Kallenberg (2002, Theorem 19.11) is that (LW ,D(LW )) satisfies the

positive maximum principle, that is if for some f ∈ D(LW )) and x0 ∈ [0, 1] we have f(x0) ≥ f(x)∨ 0

for all x ∈ [0, 1], then f ′′(x0) ≤ 0. Suppose first that the maximum is attained at an interior point

x0 ∈ (0, 1); since f ∈ C2([0, 1]), by definition of D(LW )), f ′′(x0) ≥ 0. If on the other hand the

positive maximum is attained at x0 = 0, suppose that f ′′(0) > ε for all x ≤ ε. Thus for 0 < y < ε

small enough, since f ′(0) = 0 we have

f(y) = f(0) +

∫ y

0
f ′(s)ds = f(0) +

∫ y

0

∫ s

0
f ′′(r)drdy ≥ f(0) +

ε

2
y2 > f(0),
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thus arriving at a contradiction.

We have thus established that (LW ,D (LW )) satisfies all conditions of Kallenberg (2002, Theo-

rem 19.11) and therefore generates a Feller process.

A.3.2 Proposition 19

Proof of Proposition 19. First, note that since S1 is compact C0(S1) = C(S1) and thus to study the

Feller process we consider the semi-group {P tU}t defined by the process U as acting on C(S1). To

prove the Feller property we can thus use Davis (1993, Theorem 27.6). Since there is no boundary

in the definition of U the first assumption is automatically verified, Qf(θ) = f(−θ) ∈ C
(
S1
)

for

any continuous f . We also know that the rate λ̃ is bounded whereas by Lemma 22 and the fact

that γ ∈ C1[0, 1] we know that λ̃ is also continuous. Therefore the third condition of Davis (1993,

Theorem 27.6) holds and thus U is Feller.

The infinitesimal generator will be defined on D(LU ) ⊆ C(S1). The domain is defined as the

class of functions f ∈ C(S1) such that

g(θ) = lim
h→0

1

h

[
P tUf(θ)− f(θ)

]
∈ C(S1),

where the limit is uniform in θ. However by Böttcher et al. (2013, Theorem 1.33), we can also

consider pointwise limits without enlarging the domain. Using the definition of U we then have for

θ ∈ [0, 2π) that

1

h
Eθ [f(Uh)− f(θ)] =

1

h

[
f (θ + h)Pθ [T1 ≥ h]− f(θ)

]
+

1

h
Eθ [f (Uh)1 {T1 ≤ h}] .

Since for x ≥ 0 we have | exp(−x)− 1 + x| ≤ Cx2 for some constant C > 0, and using the uniform

continuity of λ̃ we can see that

∣∣∣∣exp

{
−
∫ h

0
λ̃(θ + s)ds

}
− 1 + λ̃(θ)h

∣∣∣∣ = o(h),
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uniformly in θ, and thus

1

h
f (θ + h)Pθ [T1 ≥ h]− f(θ) =

1

h

[
f (θ + h)

[
1− λ̃(θ)h+ o(h)

]
− f(θ)

]
=

1

h
[f(θ + h)− f(θ)]− λ̃(θ)f(θ) + o(1).

In addition

1

h
Eθ [f (Uh)1 {T1 ≤ h}]

=
1

h

∫ h

0
λ̃(θ + s) exp

{
−
∫ s

0
λ̃(θ + r)dr

}
dsP h−sU Qf(θ)

→ λ̃(θ)Qf(θ),

for any f ∈ C(S1) by strong continuity of {P tU} (Feller property) and continuity of λ̃. Overall we

thus have that f ∈ D(LU ) if and only if

1

h
Eθ [f(Uh)− f(θ)] =

f(θ + h)− f(θ)

h
+ λ̃(θ) [Qf(θ)− f(θ)] + o(1)

→ g(θ) ∈ C(S1),

which is clearly equivalent to f ∈ C1(S1).

Finally to see that dθ/2π is invariant, having identified the domain we can easily check that for

any f ∈ C(S1) we have

∫
dθP tUf(θ) =

∫ t

s=0

∫
dθLUP sUf(θ)dθds.

Since f ∈ D(LU ) we have that P sUg ∈ D(LU ). Since for any g ∈ D(LU ) we have

∫
dθLUf(θ) =

∫ 2π

θ=0
f ′(θ)dθ +

∫ 2π

θ=0
λ̃(θ)f(Q(θ))dθ −

∫ 2π

θ=0
λ̃(θ)f(θ)dθ

= f(2π)− f(0) +

∫ 2π

θ=0
λ̃(θ)f(Q(θ))dθ.
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