
Kuber: Cost-Efficient Microservice Deployment Planner

by

Harshavardhan Kadiyala

B.Tech, Manipal University, India, 2015

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL

STUDIES

(Electrical and Computer Engineering)

The University of British Columbia

(Vancouver)

December 2021

© Harshavardhan Kadiyala, 2021

The following individuals certify that they have read, and recommend to the Fac-
ulty of Graduate and Postdoctoral Studies for acceptance, the thesis entitled:

Kuber: Cost-Efficient Microservice Deployment Planner

submitted by Harshavardhan Kadiyala in partial fulfillment of the requirements for

the degree of MASTER OF APPLIED SCIENCE

in Electrical and Computer Engineering

Examining Committee:

Julia Rubin, Assistant Professor, Electrical & Computer Engineering, UBC
Supervisor

Mohammad Shahrad, Assistant Professor, Electrical & Computer Engineering, UBC
Supervisory Committee Member

Sathish Gopalakrishnan, Associate Professor, Electrical & Computer Engineering, UBC
Additional Examiner

ii

Abstract

The microservice-based architecture – a SOA-inspired principle of dividing back-

end systems into independently deployed components that communicate with each

other using language-agnostic APIs – has gained increased popularity in industry.

Realistic microservice-based applications contain hundreds of services deployed

on a cloud. As cloud providers typically offer a variety of virtual machine (VM)

types, each with its own hardware specification and cost, picking a proper cloud

configuration for deploying all microservices in a way that satisfies performance

targets while minimizing the deployment costs becomes challenging.

Existing work focuses on identifying the best VM types for recurrent (mostly

high-performance computing) jobs economically. Yet, identifying the best VM

type for the myriad of all possible service combinations and further identifying the

optimal subset of combinations that minimizes deployment cost is an intractable

problem for applications with a large number of services. To address this prob-

lem, we propose an approach, called KUBER, which utilizes a set of strategies to

efficiently sample the necessary subset of service combinations and VM types to

explore. Comparing KUBER with baseline approaches shows that KUBER is able

to find the best deployment with the lowest search cost.

iii

Lay Summary

Microservice-based architecture is a method for developing complex applications

as a set of loosely coupled components that communicate with each other over

lightweight interfaces. Microservice-based applications are becoming increasingly

popular in industry due to their many advantages, including faster development cy-

cles and the ability to scale independently. To take full advantage of these benefits,

application developers use public cloud resources, such as virtual machines (VM),

to run microservices. As public cloud providers offer a variety of VM types, each

with its hardware specification and cost, application developers face the problem

of picking VM types to run their services. Complicating the problem, multiple

microservices can be co-located in the same VM to decrease costs, which raises

the number of options to run a microservice-based application exponentially. Our

work presents KUBER – a tool to help the application developer identify the right

VM types and microservice co-locations that are performant and cost-effective.

iv

Preface

This thesis presents a deployment planner for microservices and its comparison

with baseline approaches. The presented work was conducted by myself in col-

laboration with Alberto Misail, an undergraduate student, with the guidance and

mentorship of my advisor, Prof. Julia Rubin. The work presented in this thesis was

accepted as a full paper in SANER’22:

• Harshavardhan Kadiyala, Alberto Misail, Julia Rubin. Kuber: Cost-Efficient

Microservice Deployment Planner, IEEE International Conference on Software

Analysis, Evolution and Reengineering (SANER), 2022.

I was responsible for the problem formulation, approach design and implemen-

tation, and the evaluation of KUBER. Details concerning the contribution of each

collaborator to the manuscript are listed below:

• Alberto Misail: implementing and optimizing the approach, and manuscript

write-up.

• Prof. Julia Rubin: concept formulation, manuscript write-up and revision.

v

Table of Contents

Abstract . iii

Lay Summary . iv

Preface . v

Table of Contents . vi

List of Tables . ix

List of Figures . x

List of Acronyms . xi

Acknowledgments . xii

Dedication . xiii

1 Introduction . 1
1.1 Overview . 1

1.2 Insights . 3

1.3 Contributions . 4

1.4 Structure . 5

2 Background . 6
2.1 Microservice-based Applications 6

2.2 Cloud Infrastructure . 7

vi

3 Approach . 9
3.1 Problem Statement . 9

3.2 A First-Approximation Solution 10

3.3 Kuber Solution . 12

3.3.1 Combination Optimizer 13

3.3.2 Deployment Planner . 16

3.3.3 Execution Engine . 17

3.4 Implementation . 18

4 Evaluation Setup . 19
4.1 Research Questions . 19

4.2 VM Types . 19

4.3 Subject Applications . 20

4.4 Performance Targets . 22

4.5 Runtime Environment . 22

4.6 Baseline Approaches . 23

4.7 Measures and Metrics . 25

5 Results . 26
5.1 RQ1 (Configuration Selection Strategies) 27

5.2 RQ2 (VM Selection Strategies) 32

5.3 RQ3 (Sampling vs. Prediction) 33

5.4 Threats to Validity . 34

5.4.1 External Validity . 34

5.4.2 Internal Validity . 34

6 Related Work . 35
6.1 Identifying Cost-effective VM Types 35

6.1.1 Black-box Prediction-based Approaches 35

6.1.2 White-box Prediction-based Approaches 36

6.1.3 Black-box Sampling-based Approaches 36

6.1.4 White-box Sampling-based Approaches 37

6.2 Identifying Interference between Workloads 38

6.3 Other Approaches . 38

vii

7 Summary and Conclusion . 40
7.1 Limitations and Future work . 40

7.2 Conclusion . 41

Bibliography . 42

A Other papers . 49

viii

List of Tables

Table 4.1 VM Types . 20

Table 4.2 Subject Applications . 21

Table 4.3 Average CPU and Memory Utilizations for a Single Service

Running in Isolation . 23

Table 5.1 Execution Time of SF, SF1, SF2, SF3, and KUBER (in Hours) 29

ix

List of Figures

Figure 1.1 A demo application: Sock Shop [11]. 2

Figure 3.1 Weighed Independent Domination (WID). 10

Figure 3.2 KUBER overview. 12

Figure 5.1 Search cost (a-d) comparison. 27

Figure 5.2 Execution time (a-d) comparison. 28

x

List of Acronyms

API Application Programming Interface

AWS Amazon Web Services

CPU Central Processing Unit

EC2 Elastic Compute Cloud

GPU Graphical Processing Unit

ML Machine Learning

OS Operating System

RAM Random Access Memory

SLA Service-level Agreement

SOA Service-oriented Architecture

TMDB The Movie Database

VM Virtual Machine

WID Weighted Independent Domination

xi

Acknowledgments

I would first like to express my deep gratitude to my supervisor, Prof. Julia Rubin,

for her ever-patient guidance, constructive advice, and persistent encouragement

throughout my time working towards this Master’s degree. I am also very grateful

to my committee members Prof. Mohammad Shahrad and Prof. Sathish Gopalakr-

ishnan for carefully reviewing this thesis and providing insightful feedback. Lastly,

I am very fortunate to have friends and colleagues in the ReSeSS Research Lab and

outside, who took part in my journey towards this Master’s degree. Thank you for

all the support over the past years.

xii

Dedication

To my parents
Sankaranarayana Kadiyala and Lakshmi Devi

xiii

Chapter 1

Introduction

1.1 Overview
Microservice-based architecture is a SOA-inspired principle of building complex

backend systems as a composition of small, loosely coupled components that com-

municate with each other using language-agnostic APIs [15]. This architectural

principle is now becoming increasingly popular in industry due to its advantages,

such as greater software development agility, elasticity, and a pay-per-consumption

deployment model. Realistic microservice-based applications contain tens or even

hundreds of services deployed on private and public clouds [16, 17]. As cloud

providers typically offer a variety of virtual machine (VM) types, each with its own

hardware specification and cost, picking a proper cloud configuration for deploy-

ing all microservices, in a way that satisfies performance targets while minimizing

the deployment costs, becomes challenging [18].

Existing work focused on identifying the cheapest yet performant VM types

for recurrent (mostly high-performance computing) jobs in an economical man-

ner. This is typically done either by prediction-based approaches that estimate

the execution time of a job on each target VM type based on pre-existing data,

e.g., [47, 60, 63], or by sample-based approaches which perform run-time sam-

pling of job execution on a carefully selected subset of VMs and extrapolating this

data on the remaining VMs, e.g., [18, 39–41]. However, microservice-based appli-

cations bring additional complexity: it is not practical to explore the myriad of all

1

Front-end

User

Payment
Order

Cart

CatalogueUser

Shipping

Figure 1.1: A demo application: Sock Shop [11].

possible service combinations and, even if the performance of all service combi-

nations on all possible VMs is known, finding the optimal subset of combinations

that minimizes deployment cost is an NP-hard problem by itself, intractable for

applications with a large number of services.

Consider, for example, the Sock Shop microservice-based demo application [11]

in Figure 1.1, which contains seven services: Front-end, Cart, Catalogue, Ship-

ping, Order, Payment, and User. The developers might decide to deploy the appli-

cation on Amazon EC2 [4]: a cloud infrastructure offering more than 300 different

VM types with a variety of CPU, GPU, memory, disk, and network options [19]. In

the description of each VM type, Amazon provides recommendations for how this

type of a machine could be used. With only around 50 VM types that are recom-

mended for microservice-based applications, the space of all possible deployment

configurations is still very large, e.g., the services Carts, Catalogue, Shipping could

be combined and placed together on one VM, placed individually on three different

VMs of the same type, or placed on three different VMs of three different types.

Finding the right VM type for each service combination depends on whether

the services have competing CPU / memory / network requirements and on the

capabilities of the particular VMs. A straightforward solution to this problem is

to test all service combinations on all VM types. However, exploring the space of

all combinations is exponential in the number of services: even for an application

with seven services, there are 27−1 = 127 combinations, which quickly grows to

millions for an application with only 20 microservices. Thus, testing all possible

combinations of services on all VM types, to check which placement meets the

performance target with the smallest cost, is infeasible.

2

To further complicate matters, even if the right VM type for each combination

is identified, selecting the optimal subset of combinations is a non-trivial task by

itself. In our example, services Carts, Catalogue, Shipping can be combined and

placed together on a certain VM or can be further combined with services Orders

and Payment and placed on a more expensive VM. In fact, given the performance

of all service combinations on all VM types, deciding on the cheapest deployment

option translates to the weighted independent domination (Weighted Independent

Domination) problem, which is known to be NP-hard [24].

In this thesis, we propose a sample-based approach for addressing this prob-

lem, called KUBER, which relies on (a) a set of strategies for carefully selecting

service combinations and VM types to sample and (b) a deployment mechanism to

efficiently test the performance of the chosen combinations on a VM. We choose

to follow a sample- rather than a prediction-based approach as our and others expe-

rience, e.g., [18], shows that prediction-based approaches fail to accurately capture

the correlation between workloads and VM capacity. We also confirm this claim in

our evaluation.

1.2 Insights
KUBER performs an efficient search in the space of possible combinations and VM

types by relying on three main insights:

1. The partial ordering of service combinations allow KUBER to exclude a large

number of VM types that will not meet the performance targets. For exam-

ple, if a service combination {Shipping, Orders, User} does not meet the

performance target on a certain VM type, any superset of this combination,

e.g., {Shipping, Orders, User, Carts}, will not meet the target on that VM

type either. KUBER thus implements logic for keeping and propagating prior

execution results to future combinations.

2. Executing a service combination of a particular VM type is only worthwhile

if the obtained solution has the potential to decrease the overall deployment

cost. For example, it is not worthwhile to check whether the service combi-

nation {Shipping, Orders, User} meets a performance target on a VM that

3

costs $4 if it is already established that each individual service can work on

a VM costing $1 each. KUBER thus employs several strategies to efficiently

narrow down the space of considered configurations.

3. Given the cheapest VM type for each service combination, the problem of

finding the cheapest deployment can be translated to a well-known NP-hard

problem in graphs: Weighted Independent Domination (WID). The nature

of the translation and the specific structure of the graph that we used for

that enabled scaling existing heuristic solutions to the WID problem [26] to

microservice-based applications of realistic size and complexity.

We evaluated KUBER on four open-source benchmark microservice-based appli-

cations, comparing it with a baseline sample-based approaches which do not use

combination/VM selection strategies and a prediction-based approach built on top

of existing work. Our evaluation shows that KUBER outperforms the baseline

approaches, finding the best deployment configuration faster and with the low-

est search cost. Moreover, the differences between the approaches become more

pronounced as the size of the applications grow.

1.3 Contributions

This thesis makes the following contributions:

1. It formulates the problem of picking a proper cloud configuration for deploy-

ing microservice-based applications.

2. It proposes a sample-based approach for addressing this problem, imple-

mented in a tool called KUBER. KUBER consists of a set of strategies for

minimizing the number of runtime experiments, an efficient solution for

collecting performance data at runtime, and a problem-domain-inspired ap-

proach for improving the scalability of an existing heuristic WID solution,

so it can be applied to applications of realistic size and complexity.

3. It evaluates the effectiveness of KUBER on four case-studies, comparing it

with a number of baseline approaches.

4

4. It makes our implementation and evaluation setup publicly available to facil-

itate replication and further research [3].

1.4 Structure
The remainder of this thesis is structured as follows: Chapter 2 introduces the

necessary background on microservice-based applications and their deployment on

the cloud. We present our approach in Chapter 3, Chapter 4 outlines our evaluation

methodology. We discuss our results and threats to validity in Chapter 5. Chapter 6

discusses the related work. Lastly, Chapter 7 describes limitations of our approach,

future research directions, and conclusions of the thesis.

5

Chapter 2

Background

In this section, we provide a short overview of microservice-based application de-

velopment and deployment.

2.1 Microservice-based Applications
Microservice-based architectures are closely related to service-oriented architec-

tures (SOA), which is a style of software design where services represent appli-

cation components that communicate over a network [52]. Microservices aim at

shortening the development lifecycle while improving the quality, availability, and

scalability of applications at runtime. Cutting one big application into small in-

dependent pieces reinforces the component abstraction and makes it easier for the

system to maintain clear boundaries between components: APIs specified in the

service contract are the only channel for accessing the service. Developers can

focus on small parts of an application, without the need to reason about complex

dependencies and large code bases. Microservice-based applications also promote

autonomous teams working on services that are organized around business capabil-

ities and assume end-to-end responsibility for these capabilities, from development

to production. Another major advantage of microservice-based architectures is in-

dependent deployment, which reduces the coordination effort needed to align on

common application delivery cycles and also leads to independent scaling at run-

time [62].

6

A microservice-based development style is often used for in latency-critical

applications, such as user-facing websites, where decreased performance leads to

decreased user satisfaction and loss of business [13]. In such cases, it is com-

mon for developers to specify performance targets as part of their applications’

service-level agreement (SLA) – a commitment between a service provider and

a client. Along with application-level performance targets, service providers also

include service-level performance targets [10], e.g., a response time of less than

100 milliseconds, for each API of the service. Service-level performance targets

help service owners to monitor performance violations and ease troubleshooting of

application. Performance targets are usually evaluated on a p-th percentile (e.g.,

the 99th or 95th percentile) of all requests the service receives [43].

2.2 Cloud Infrastructure
Cloud providers, such as Amazon AWS [19] and Microsoft Azure [20], offer

customers compute resources running on the providers’ physical infrastructure.

Specifically, they provide a wide range of Virtual Machine (VM) types, which

differ in the processor architecture (e.g., Intel vs. AMD, CPU vs. GPU) and size

(e.g., 2 vs. 16 CPU cores). VM types are grouped into families; VMs in a fam-

ily typically have the same underlying architecture and differ by their size. At the

time of writing, AWS provides more than 300 VM types grouped into more than

40 families [19]; Azure provides more than 400 VM types grouped into more than

50 families [51].

To increase utilization and achieve better cost-efficiency, multiple VMs are typ-

ically hosted on the same physical machine and thus share CPU, caches, mem-

ory, storage, and networking devices. While cloud providers guarantee certain

resources, such as CPU, memory capacity, and storage, by dedicating them to a

particular VM, other resources are shared by VMs running on the same physi-

cal machine [5]. Increased load on a physical machine might cause VM interfer-

ence, which results in performance degradation for applications running on these

VMs [45, 46]. Moreover, developers have the option to co-locate multiple work-

loads/microservices on the same VM. OS-Level virtualization solutions, such as

Docker containers [30], help enable co-location of microservices by providing fault

7

and dependency isolation, thereby preventing failures in one service from propa-

gating to others. As containers do not guarantee performance isolation between

workloads, when services running on the same VM rely on a particular shared

resource, they face service-level interference [44].

Unlike the case of VM-level interference, no guarantees on the performance

of interfering services are available and it is up to the development team to decide

which co-locations of microservices are desirable given the performance targets. If

a shared resource is heavily utilized by co-located services, none of the service gets

all the resources they need to meet the required performance target. For example,

if services A and B each satisfy their performance target on a VM with 2 CPU

cores and 4 GB of RAM, they might miss their respective performance targets if

co-located on a VM with twice the CPU and RAM capacity – 4 CPU cores and 8

GB of RAM. This is because the service could be, say, cache-intensive and face

interference when sharing the cache, which will drive their performance down. Our

work aims to address the challenge of arriving at the most cost-effective co-location

of services that satisfies their performance targets.

8

Chapter 3

Approach

We now discuss our approach for finding a desired deployment configuration for a

microservice-based application.

3.1 Problem Statement
We assume as input an application S with n services S1, ..., Sn, where each service

Si has i j APIs, denoted by Si:A1, ..., Si:Ai j . We say that each API Si:A j has a

performance target (e.g., measured in terms of time to process a request); we denote

the performance target of Si:A j by Si:At
j.

We also assume as input a compute cluster VM with m VM types V M1, ...,

V Mm, where each VM type has its own hardware specification and cost; we de-

note the cost for V Mi by V Mi
c. We say that a service combination π, formed by

co-locating a subset of S on the same VM, satisfies the performance target if the

performance targets of all APIs of all services in π are satisfied on that VM.

Our goal is to find a deployment configuration Λ for S, which maps service

combinations of S to target VM types, such that: (a) every Si ∈ S is part of exactly

one service combination π in Λ; (b) every service combination π in Λ is mapped

to a VM on which the performance target of π is satisfied; and (c) there is no other

configuration Λ′ such that the total cost of all VM types in Λ′ is lower than in Λ.

That is, we aim at finding the cheapest deployment configuration that can co-

locate multiple services on the same VM and that satisfies the performance targets

of all services in S.

9

Combin. VM Type:
Price ($)

{!1} VM1: 2

{!2} VM1: 2

{!3} VM1: 2

{!1, !2} VM2: 3

{!1, !3} VM3: 10

{!2, !3} VM3: 10

{!1, !2, !3} VM3: $10

(a) Input data

{!3}

10

10

3

2 2

2

10

{!1, !2, !3}

{!2, !3}

{!1, !3}

{!1, !2}

{!2}{!1}

(b) WID Graph and Solution

Figure 3.1: Weighed Independent Domination (WID).

3.2 A First-Approximation Solution
Prior work [63], as well as our experiments in Chapter 5, show that there is no

direct correlation between the cost and the performance of a service on a VM. That

is, using a costlier VM type may not necessarily improve the performance of a

service. The most obvious solution to the problem of finding cheapest deployment

configuration is thus to first order all VM types in VM by their cost and then run

each service combination in S on each VM type one by one, until the cheapest VM

type for each service combination is found. We refer to this solution as Sort and

Find (SF).

Once the best VM type for each service combination is determined, we need to

identify a subset of combinations that satisfy the conditions above. More formally,

given a mapping of service combinations to the cheapest VM type for which each

service combination satisfies its performance target, we need to find the subset of

combinations that includes each service once and only once and has the lowest

possible deployment cost. Consider, for example, an application with only three

services, S1, S2, and S3, which is deployed on a cluster with three VM types, V M1,

V M2, V M3. Let us assume that the cost of these VM types are 2, 3, and 10, respec-

tively. There are seven possible service combinations: {S1}, {S2}, {S3}, {S1, S2},

{S1, S3}, {S2, S3}, and {S1, S2, S3}. For illustration purposes, Figure 3.1a shows,

for each combination, the cost of the cheapest VM type for which the performance

10

target is satisfied. Multiple deployment options are possible for this example: each

of the services could be deployed individually on different instances of V M1; the

overall cost of this solution would be 6. A cheaper deployment would be to deploy

the combination {S1, S2} on V M2 and {S3} on V M1; the cost of this solution would

be 5. A deployment that contains service combinations {S1, S2} and {S1, S3} would

be invalid as S1 would be deployed more than once. Similarly, a deployment that

contains service combinations {S1, S2} only would be invalid as S3 would not be

deployed.

The problem of finding the cheapest valid deployment given the mapping from

a service combination to its cheapest working VM type (like in Figure 3.1a) can

be translated into the Weighed Independent Domination (WID) problem [24]. The

input to WID is a weighted undirected graph G = (V,E), where nodes v ∈ V and

edges e = (v,u) ∈ E have non-negative weights w(v) ≥ 0 and w(v,u) ≥ 0, respec-

tively. WID then finds a subset of nodes D⊆V which satisfy the following criteria:

(1) Independent: no two nodes in D are adjacent. (2) Dominant: any node in V is

either in D or adjacent to a node in D. (3) Least Weight: D minimizes the following

cost function: f (D) = ∑u∈D w(u)+∑v∈V\D min{w(v,u), for u ∈D and (v,u) ∈ E},
which is the sum of the weights of the nodes in D plus the sum of the weights of

the minimum-weight edges connecting nodes in V \D to nodes in D.

To rephrase the deployment detection problem as WID, we define V to be the

set of all possible service combinations. We place an edge e between a pair of nodes

in V iff their corresponding combinations have at least one service in common.

We set the node weights to be the cost of the cheapest VM type on which the

combinations meet their performance target. We do not use edge weights and thus

set them all to 0. Figure 3.1b shows such graph for the mapping in Figure 3.1a.

A solution D produced by the WID algorithm (highlighted in grey in the exam-

ple in Figure 3.1a) results in a cheapest valid deployment Λ: (1) By the Independent

property, every Si ∈ S is part of at most one service combination in Λ because if a

service is part of a combination that was chosen in D, no other service combination

that contains the service is in D. (2) By the Dominant property, every Si ∈ S is

part of at least one service combination in Λ because the service combination {Si}

is either in D or one of its adjacent nodes (that also contain Si) is in D. (3) By

the Least Weight property, there is no other Λ′ such that the total cost of all VM

11

Combination
Optimiser

Execution
Engine Controller

deploy

performance
data

Combination
Selector

Deployment
Planner

Application Cluster

…
=

Deployment

Log

…

Application test

test
\

Figure 3.2: KUBER overview.

types in Λ′ is lower than in Λ because WID’s cost function translates to the sum

of the weights of all nodes in D, i.e., their deployment cost. Thus, minimizing this

function means that no other valid deployment with lower costs exists.

As WID is an NP-hard problem [24], we rely on an iterative greedy algorithm

by Davidson et al., which approximates the result and was shown to outperform ex-

isting work [26]. In a nutshell, the algorithm starts from greedily selecting an initial

set of nodes in D and then iteratively improves the initial result by taking a random

subset of nodes out of D (partial destruction phase) and greedily completing it to

form a valid solution again (reconstruction phase).

Davidson et al. evaluated their approach on randomly generated graphs of vary-

ing sizes (between 100 and 1000 nodes). Yet, our graphs tend to be substantially

larger (more than a million service combinations for an app with 20 services) and

much more dense (as many nodes share common services); we thus modify and

adapt this approach to our scenario, as discussed in Section 3.3.

3.3 Kuber Solution
An overview of KUBER, which further extends the approach outlined in the previ-

ous section, is shown in Figure 3.2. KUBER consists of two main parts. The first

part, Combination Optimizer, improves the SF solution with a more efficient selec-

tion of service combinations to explore. The second part, Execution Engine takes

12

care of service deployment and runtime data collection. We now discuss these two

components in detail.

3.3.1 Combination Optimizer

The SF solution performs a runtime experiment for every non-empty subset of S,

i.e., P(S)-1 times. Such runtime experiments are costly, with respect to both time

and budget. The reduce this cost, Combination Optimizer relies on a number of

strategies, summarized in Algorithm 1.

It first initializes a set of variables: the map M, which keeps, for each service

combination, the cheapest VM type where the performance target of the combina-

tion is satisfied (line 3); Λ, which keeps the best deployment configuration identi-

fied so far (line 4); and Λc, which keeps the cost of that deployment (line 5). The

algorithm then computes the set of all non-empty service combinations of the input

application S and sorts them by the number of services in a combination, i.e., first

the combinations with one service, then combinations with two services, etc. (line

6). It iterates over all combinations in order and, for each combination, explores

all VM types in order (lines 7-30). Before collecting performance data for each

combination π on a VM v, it checks that the following conditions hold:

Condition 1 (lines 10-12): If the cheapest working VM type for at least one subset

of services π̄ ⊂ π is more expensive than v, it implies that the performance target of

π̄ was not met on v. As adding more services to π̄ cannot improve the performance

of services that are already in that set, π cannot meet its performance target on

that VM type either, and this runtime experiment can be skipped altogether. For

example, the algorithm will skip executing the service combination {S1, S2, S3} on

V Mi if a subset of services, say {S1, S2}, does not meet the performance target on

that VM type.

Condition 2 (lines 13-17): If executing π cannot lead to a deployment that is cheaper

than the current solution, executing the experiment is unnecessary and can be

skipped as well. To estimate whether the experiment has a chance to improve the

cost of the current solution, we conservatively assume that still unexplored combi-

nations have a chance to meet their performance target on certain VM types. More

specifically, for each still unexplored combination, we utilize our knowledge about

best VM types selected for its subset combinations (if any) and optimistically as-

13

sume that the target combination will work on the most expensive of those VM

types (lines 33-40).

Like in the previous case, we leverage the idea to order all explored combi-

nations by size, making sure smaller combinations are executed earlier and their

performance data can be propagated to larger combinations. Moreover, we con-

servatively pick the cheapest possible VM type (or V M1 for combinations of one

service) to ensure we do not skip any experiments that have a chance to lead to a

better deployment placement in the future. For example, if S1 and S2 meet their

performance targets on V M2 and V M4, respectively, we optimistically assume that

a still unexplored combination {S1, S2} will meet its performance target on V M4.

We rely on the Deployment Planner component (lines 41-52) to decide whether

an experiment is worthwhile to execute. It accepts as input a map M (from a com-

bination to its best VM type) and an experiment of interest m; it calculates the

deployment solution using our extended version of the WID algorithm (described

below) or returns /0 if at least one of the services does not have any VM type mapped

to it yet (lines 43-45). When m is given, the method ensures m is part of the pro-

duced solution (lines 46-48). Otherwise, it returns any solution for the given map

of combinations (lines 49-51).

To decide whether to execute an experiment (π , v), we pass to the Deployment

Planner a map containing all previously explored and optimistically projected ser-

vice combinations, as well as the experiment of interest (line 14). We only proceed

to actually executing the experiment if placing π on v could indeed lead to a cheaper

deployment that includes this placement. We continue to the next combination oth-

erwise, as placing π on even a more expensive VM type cannot further improve the

cost (lines 15-17).

If placing π on v has the potential to lead to a better solution, we proceed

to executing the experiment and collecting real performance data (line 18). For

combinations that satisfy the performance target on the given VM type, we update

the combination to best VM type map (line 20) and then rely on the Deployment

Planner again to calculate the best current solution and its cost (lines 21-22).

This time, we only pass M as the parameter as we are interested in the best

possible realistic solution rather than a solution that contains (π , v) or that relies on

predicted data.

14

1 Input: Application S = {S1, ..., Sn},
Cluster VM = {V M1, ..., V Mm} (ascending order by VM cost)
Output: Deployment Λ

2 begin
3 M← /0 . A map of combination best VM type
4 Λ← /0 . No solution yet
5 Λ c← ∞ . Upper bound for current solution cost
6 Π← P(S) \ /0 . All non-empty combinations of services in S, arranged by the number of services in a combination
7 while π ∈Π do
8 π = popFirst(Π) . Fetch and remove the first combination in Π

9 foreach v ∈ VM do
10 if ∃π̄ ⊂ π such that M(π̄) = v̄∧ v̄c > vc then

. Condition 1: One of the subsets of π did not meet the performance target on v, hence π cannot meet the
performance target on v⇒ proceed to the next VM type

11 continue
12 end
13 M′ = OptimisticGuess(Π,M) . Optimistically find the best possible VM type for unexplored combinations

. Deployment under this assumption
14 Λ’← DeploymentPlanner(M∪M′,(π,v))
15 if cost(Λ’) ≥ Λc then
16 break . Condition 2: Solution does not lead to a better deployment⇒ explore next combination.
17 end
18 execute(π,v) . Collect runtime performance data
19 if performance targets of π is satisfied on v then
20 M[π]← v . This is the cheapest VM type for π

21 Λ← DeploymentPlanner(M, /0) . current best
22 Λc← cost(Λ) . current best cost
23 Λ’← DeploymentPlanner(M∪M′, /0)
24 if cost(Λ’) 6< Λc then
25 return Λ . Condition 3: No better solution is possible
26 end

. The cheapest VM type for π is found⇒ explore next combination
27 break
28 end
29 end
30 end
31 return Λ

32 end
33 Procedure OptimisticGuess(Π, M)
34 begin
35 M′← /0
36 foreach π ∈Π do
37 M′[π]← the most expensive VM type of all subsets of π in M or V M1 if non of the subsets is in M
38 end
39 return M′

40 end
41 Procedure DeploymentPlanner(M, m =(π , v))
42 begin
43 if ∃s ∈ S such that M[{s}] = /0 then

. Some individual services were not explored yet⇒ no solution
44 return /0
45 end
46 if m 6= /0 then
47 return WID solution for M∪m which includes m
48 end
49 else
50 return WID solution for M
51 end
52 end

Algorithm 1: Combination Optimizer.

15

Condition 3 (lines 23-26): Finally, when a combination π can successfully run on

a VM type v, the algorithm checks whether any further improvements are still

possible. To this end, it uses the Deployment Planner again, this time passing it the

map containing both executed and predicted combinations (line 23). If no solution

that can improve the cost of current deployment (with or without the executed

combination π) is possible, the algorithm terminates and returns the current result

(lines 24-26). Otherwise, it proceeds to exploring the next combination in order

(line 27), as the cheapest VM type for this combination is already identified.

3.3.2 Deployment Planner

As discussed in Section 3.2, we build up on the algorithm by Davidson et al. [26]

for heuristically solving the WID problem. When computing a solution (in both

initial and reconstruction phases), this algorithm iteratively and greedily chooses

the next node to be one that has the highest ratio between the number of edges

to remaining candidate nodes and the weight of the node. The rationale for this

decision is to choose a dominant node (one that has a large number of edges) with a

low weight. For the example in Figure 3.1b, the first node picked would be {S1,S2}
as it has five edges to the neighbor nodes and the weight of 2, giving a ratio of 2.5 –

larger than that of any other node. Then, the selected node and all its neighbors are

removed from the set of possible candidates, to satisfy the Independent property.

For the example in Figure 3.1b, that would remove all but the node {S3}; that node

is selected next to complete the solution.

This algorithm does not scale well for inputs of our size. E.g., for apps with

20 services, the number of nodes would be more than a million and it will contain

more than half a trillion edges; storing this information explicitly is not possible at

this scale. Our main observation is that our graph has a very particular structure –

its nodes are the service combinations and edges represent a partial order over the

set of combinations. To choose the next node in every iteration, we mainly need to

know the number of other candidate nodes a node is connected to. Moreover, when

a particular node is selected, we only need to compute and remove from the set of

future candidates all other nodes it is connected to. Using our knowledge about

the graph structure, we adapt the algorithm by Davidson et al. [26] to compute

this information on-demand, without explicitly storing the underlying graph, thus

16

improving the algorithm’s scalability.

Assuming that a certain number of nodes has already been selected to be part

of the solution, let R be a subset of services that have not yet been included in any

of these nodes. Let r be the number of these services, i.e., r = |R|. The number of

nodes remaining for selection is then 2r−1. Let v be a candidate node; it can have

edges to at most all still unselected nodes composed from services in R but itself:

2r−1−1.

To calculate the exact number of neighbors of v, we consider the services it

contains. Assuming there are r′ such services, there are r− r′ services in R that are

not part of v and there are 2r−r′ − 1 nodes composed from these services. As two

nodes have an edge only if they share at least one service, v has no edges connecting

it to any of these nodes. As such, v has (2r−1−1)− (2r−r′ −1) = 2r−2r−r′ −1

edges.

We use this formula to calculate the number of edges for each remaining candi-

date node and pick the one with the maximal ratio. For the example in Figure 3.1b,

when the algorithm starts, R = {S1,S2,S3} and r = 3. For the node {S1,S2}, r′ = 2,

thus, the number of neighbors is 23−23−2−1 = 5.

After a node is selected, we compute the remaining candidates by leveraging

the fact that nodes are adjacent only if they share at least one service. Thus, the

remaining candidates are nodes that do not share any service with the selected node

v, i.e., the power set of all services in R minus the services in v. In our example,

when {S1,S2} is selected, the remaining nodes are formed by all the combination

of S3, which is the combination {S3} itself.

3.3.3 Execution Engine

This component is responsible for performing the runtime experiments and collect-

ing the performance data for each service combination π on a VM type v (line 18 in

Algorithm 1). To accurately collect such data, we must deploy π on v in isolation.

Yet, services in π interact with the rest of the system, i.e., S \π . To ensure the per-

formance of the services in π is not negatively affected by “lagging” services of the

rest of the system, we deploy each remaining service in S \π in isolation, on a sep-

arate instance of the least expensive VM type (V M1). The Controller component

in Figure 3.2 takes care of such deployment.

17

We assume as input a set of tests that exercise the input application. To collect

response times of APIs of the services in π , Controller executes these tests and, for

each API of a service in π , captures the incoming request and the response times.

Since the response time of an API depends not only on its own execution time

but also on the response times of the outbound service it triggers, we measure and

subtract the response times of such calls, as was also done in earlier work [35]. For

the example in Figure 1.1, when measuring the response time of API of the Order

service, we subtract from its execution time the response times of the outbound

calls to the Payment and Shipping services.

The obtained execution time of each API in π is recorded in a centralized

database (Log in Figure 3.2). Deployment Planner then reads this data to deter-

mine whether π meets the performance target for all APIs on v.

3.4 Implementation
To avoid VM interference, we use a private cluster with three physical machines.

Two of the machines have an Intel Xeon E5-2640 v4 @ 2.40GHz processor with

40 cores, 128 GB of RAM, 25 MB cache, and 63 GB/s Memory bandwidth. The

third machine has an Intel Xeon E5-2680 v4 @ 2.40GHz processor with 56 cores,

256 GB of RAM, 35 MB Cache, 76 GB/s Memory bandwidth.

We create and manage VMs using the OpenNebula cloud computing plat-

form [9] deployed on a separate machine. We use Kubernetes cluster manager [8]

and Istio monitoring system [6] to deploy and monitor microservices. We use Is-

tio’s logging functionality to store the execution time of each API in a time series

database.

Finally, our implementation of the Combination Optimizer and Execution En-

gine components is written in Python and takes around 5000 lines of code. Our

system implementation is publicly available to facilitate further research in this

area [3].

18

Chapter 4

Evaluation Setup

4.1 Research Questions
The goal of our evaluation is to answer the following research questions:

RQ1 (Configuration Selection Strategies): How effective are configuration se-

lection strategies applied by KUBER?

RQ2 (VM Selection Strategies): How effective is the VM selection strategy ap-

plied by KUBER?

RQ3 (Sampling vs. Prediction): How effective is KUBER when compared with a

baseline prediction-based approach?

We now discuss our experimental setup, including our selection of VM types,

subject applications, and baseline approaches for comparison. To facilitate repro-

ducibility, our experimental package is available online [3].

4.2 VM Types
We used the three physical machines in our private cluster to simulate a number of

VM types from Amazon EC2. Specifically, we choose three different families of

VMs suggested for microservice-based applications: the basic A1 family, which

provide cost savings for CPU-intensive workloads; the more expensive T3 family,

which provides burstable general-purpose instances, thus increasing the price of

19

Table 4.1: VM Types

VM Type AWS VM
Type

CPU
Cores

RAM
(GB)

US$/Hour

V M1 A1.medium 1 2 0.0255
V M2 M6g.medium 1 4 0.0385
V M3 A1.large 2 4 0.051
V M4 M6g.large 2 8 0.077
V M5 A1.xlarge 4 8 0.102
V M6 T3.micro 2 1 0.1104
V M7 T3.small 2 2 0.1208
V M8 M6g.xlarge 4 16 0.154
V M9 T3.large 2 8 0.1832
V M10 A1.2xlarge 8 16 0.204
V M11 M6g.2xlarge 8 32 0.308

each VM type; and the higher-performance M6g family.

We picked four VM types from each family (12 VMs in total), starting from

a VM type on which all services of our subject applications can boot and run in-

dividual. That excluded the smallest VM type from the T3 family: T3.nano with

only 0.5 GB of RAM. We could not simultaneously simulate two of the selected

VM types in our cluster: t3.medium and A1.large, because they both have 2 CPU

cores and 4 GB of RAM. We thus excluded t3.medium from our analysis. The

resulting 11 VM types, together with their mapping to the corresponding Amazon

EC2 instance, the number of CPU cores, RAM size, and the cost per hour (as of

January 2020) are given in Table 4.1. We deployed all the VMs corresponding to

the same VM type family onto the same physical machine, allocating our largest

physical machine (56 cores, 256 GB of RAM) to the M6g family and the remaining

two machines (40 cores, 128 GB of RAM) to the T3 and A1 families. The obtained

size and the capacity of our simulated cluster is similar to prior experiments of the

same type [18].

4.3 Subject Applications
We used a recent benchmark of microservice-based applications, called DeathStar-

Bench [35]. It consists of three applications: Hotel Reservation, Media Service,

20

Table 4.2: Subject Applications

Benchmark #Services #APIs Avg. #APIs/Service
Hotel Reservation 8 14 2
Media Service 11 29 3
Social Network 12 27 2
Sock Shop 7 42 6

and Social Network. In addition, we used a popular open-source microservices

demo application called Sock Shop [11]. We selected these applications because

they are explicitly designed to represent real-world systems, are deployable onto

a Kubernetes cluster, and include test suites allowing us to effectively trigger ser-

vices/APIs.

Table 4.2 shows, for each application, the number of services it contains, the

total number of APIs, and the average number of APIs per service. Overall, our

applications contain between 7 and 12 services, with 14 to 42 APIs in total, and

2 to 6 APIs per service, on average. As the performance of an application varies

based on the number of requests it receives (the API load provided by the test) and

the volume of data stored in its associated database(s), we applied the following

strategy to populate applications with realistic data.

For Hotel Reservation, which allows the users to obtain information and rates

of nearby hotels, check hotels’ availability during a given time period, make reser-

vations, and also obtaining recommendations for hotels matching their selection

criteria, we populate the hotel information database with real-world data from

Yelp’s Hotels Dataframe [14]. It contains 438 hotels and 172,159 hotel reviews.

Similarly, for Media Service, which allows users to browse movie information, and

then rent, stream, review, and rate movies, we use data from a real movies database,

TMDB [12], which contains information about 5,000 movies and 5,000 casts.

Similar to Twitter, in the Social Network application, users can create posts

embedded with text, media, and links, can tag users, and broadcast posts to their

followers. The application uses three separate databases for persisting user pro-

files, posts, and media. We load the profiles database from existing social network

data [56] with 962 users and 18,800 relations (representing followers). The volume

of posts and media databases does not affect the performance of the application and

21

we thus only use them for data generated at runtime.

Finally, for Sock Shop, an e-commerce application allowing users to browse

and buy socks, we first searched for all socks sold by Amazon [2]. We learned that

Amazon sells around 40,000 types of socks at the time of writing; we thus loaded

the database with the same number of items.

Each of our subject applications contains a test suite provided by the devel-

opers, which simulates its typical usage scenario. For example, the test suite of

Hotel Reservation simulates the scenario where the user logs in into the applica-

tion, searches for a hotel, gets hotel recommendations, and reserves a hotel. We

set the number of concurrent users served by each application to 165, as specified

by DeathStarBench. We define a workload for an application as a set of API calls

made by concurrent users under the test.

4.4 Performance Targets
We use API execution time to represent API performance, with high performance

translating to low execution time. To set the performance target for an API, we

follow existing work that typically selects targets within a certain percentage of

the best possible performance [28]. We thus assumed that the largest VM type

(in all dimensions) has the best performance [67] and, without loss of generality,

set the targets to be 50% of that performance. That is, we set the individual API

performance targets to be twice their execution time on V M11. Such selection

ensures that performance target can be reached on some but not all VM types.

4.5 Runtime Environment
Given 165 concurrent users and our database load, all user requests terminate

within two minutes of execution on any VM type. We thus picked two minutes

execution time for each test. Deploying and booting services on the right config-

uration of VMs takes another five minutes. We reset the VMs and repeat each

experiment three times, to avoid performance variability due to underlying infras-

tructure. Thus, the total execution time of each experiment is 21 minutes. To avoid

any performance bottlenecks, we make sure to deploy the test scripts and all exter-

nal dependencies of each microservice, including databases.

22

Table 4.3: Average CPU and Memory Utilizations for a Single Service Run-
ning in Isolation

Benchmark
CPU Utilization (%) Memory Utilization (%)
V M1 V M11 V M1 V M11

Social Network 37.7 3.1 30 2
Media Service 26.27 2.91 29.73 1.89

Hotel Reservation 27.13 3.13 28.5 1.8
Sock Shop 33.86 4.57 30.71 1.93

As the WID algorithm is evolutionary, it requires a time limit to stop perform-

ing iterations. We experimented with the algorithm, running it on the largest set of

combinations in our subjects set for 30 minutes. Our experiments showed that the

best solution is achieved within one minute and minimal to no improvements are

achieved afterwards. We thus set one minute as a time limit for the algorithm.

To make sure our VM selection and configuration are appropriate for the se-

lected subject applications and their workload, we run each service on each VM

type in isolation. Table 4.3 shows the average CPU and memory utilization on

the smallest and largest VM types, V M1 and V M11, respectively. As none of our

VMs are overloaded by a single service, we believe our experiments are well-

constructed.

4.6 Baseline Approaches
To answer RQ1, we implemented the basic SF approach described in Section 3.2.

We then augmented it with each of the three conditions described in Section 3.3

one-by-one, producing three different implementations, which we refer to as SF1,

SF2, and SF3. We compared these approaches with KUBER, which uses a combi-

nation of all three conditions simultaneously.

To answer RQ2, instead of ordering VM types by their cost, as SF does, we

used two different strategies for selecting the next VM to explore. The first strategy

selects the next VM at random. The second strategy performs a binary search [48]

over the set of VM types ordered by cost (as our goal is to find the cheapest VM

type that satisfies the performance target). When performing binary search, al-

gorithm first selects the VM type that is in the middle of the list. If the service

23

combination of interest meets its performance target on this VM type, the search

continues recursively to the first half of the list. Otherwise, it proceeds to the sec-

ond half. For fair comparison with KUBER, we applied Conditions 1-3 for both

strategies. We refer to the obtained solutions as RND123 and BS123, respectively.

To answer RQ3, we implemented an approach that borrows and adapts ideas

from a prominent prediction-based approach, PARIS [63], making it work in the

microservices context. The goal of PARIS is to predict the performance of a service

on a VM type. It does so by profiling a set of benchmarks that are assumed to be

similar to the real applications of interest. For each benchmark, PARIS collects

resource utilization (e.g., CPU usage) and performance information on all VM

types, scaling it relatively to a few reference VM types (typically two). Then,

to predict the performance of a service, PARIS collects features of the service

by running it on the reference VM types and uses an ML-based model to predict

performance on the remaining VM types based on the service similarity with the

benchmarks.

To directly apply PARIS for predicting the best VM type for a service combina-

tion, we would need profiling information from all various combinations of bench-

mark services, which is untenable in our setting. We thus use individual bench-

marks to predict the performance of combinations. To fairly evaluate the predic-

tion properties of the approach, without relying on our ability to chose benchmarks

similar to services in our dataset, we opted to use individual services themselves as

benchmarks to train the model. That is, we run single services in isolation on each

VM type and collect resource utilization and performance data. We use this data to

train an ML-based model similar to the one used by PARIS. Then, to predict per-

formance of a combination of services π , we execute π on only two VM types and

use the model to predict the performance on the remaining VM types. To validate

the prediction, we execute a runtime experiment on the cheapest VM where π is

predicted to work and continue to the next predicted VM type, if the performance

target is not met.

To further make sure we do not disadvantage this approach when compared

with KUBER, we apply Conditions 1-3 to this approach as well. That is, we execute

π only on VMs where all subset combinations were shown to work successfully,

we only execute combinations that are expected to improve the deployment cost,

24

and stop the search when no further improvements are possible. We refer to the

obtain approach as P (for prediction).

4.7 Measures and Metrics
For each of the compared approaches, we calculate the cost of the deployment

configuration Λ it finds. While AWS prices VMs per hour, microservice-based

applications run for several days, months, or even years. Thus, without loss of gen-

erality, we calculate the cost of deployment per month. That is, when comparing

the deployment cost found by each of the approaches, we multiply the hourly cost

of each VM type in Λ by 24 hours and 30 days.

As the quality of the solution identified by each of the approaches improves

as a function of the number of experiments it performs, we calculate the deploy-

ment cost identified by each approach as functions of: (1) the search cost, which

represents the amount of money (in US dollars) spent in finding a solution and in-

cludes the cost of VMs used during the experiments, and (2) the total execution

time, which represents the time (in hours) taken by an approach and includes the

time of runtime experiments and WID execution.

25

Chapter 5

Results

Figures 5.1a-5.1d show, for each subject, the deployment cost achieved by each of

the evaluated approaches as a function of the invested search cost. The baseline for

the graphs, i.e., point x=0, is a deployment that places each individual service on

the most expensive VM type. We do not depict this solution in the figure to avoid

clutter, starting from the point where each approach found the cheapest working

VM for each individual service. For example, for the Sock Shop application in

Figure 5.1d, the cost of such deployment is $312 and it takes $2 to find this solution.

We mark with a cross the point on each graph where the corresponding ap-

proach terminates and we list the (search cost, deployment cost) values at this

point, for clarity. E.g., for the Sock Shop application, KUBER terminated after

spending $6, identifying a deployment that costs $238. SF1 spends $13 to find

the same deployment, and SF3 spends $27. While SF found the same deployment

after spending $27, this approach continues to run and explore additional combi-

nations. We stopped approaches which take substantially longer to terminate than

others and do not show their termination points in the figure.

Figures 5.2a-5.2d show similar information: the deployment cost achieved by

each approach as a function of its execution time. For example, Figure 5.2d shows

that it took KUBER 26 hours to terminate with the $238 solution while SF1 termi-

nated after 38 hours.

26

70

80

90

100

110

120

130

140

150

160

170

180

0 20 40 60 80

Search Cost ($)

($4, $83)($15, $83)

($21, $83) ($25, $83)

($23, $83)

($63, $110)

($71, $92)

(a) Hotel Reservation

240

260

280

300

320

340

360

380

400

420

440

0 20 40 60 80 100

Search Cost ($)

($12, $257) ($33, $257) ($82, $257)

($97, $309)

1

2

3

123

123

(b) Media Service

220

240

260

280

300

320

340

360

380

400

0 50 100 150

Search Cost ($)

($24, $238) ($140, $238)
($116, $248)

($126, $298)

($70, $238)

(c) Social Network

230

240

250

260

270

280

290

300

310

320

0 10 20 30 40 50 60

Search Cost ($)

($6, $238)($13, $238)

($27, $238)

($25, $238)

($14, $312)

($56, $238)

($52, $238)

(d) Sock Shop

Figure 5.1: Search cost (a-d) comparison.

5.1 RQ1 (Configuration Selection Strategies)
All sort-and-find approaches evaluated in this research question perform exhaustive

search over the space of combinations. Thus, given enough time and budget, they

all arrive at the optimal solution. Yet, comparing KUBER with SF1, SF2, SF3, and

SF shows that the combination of all conditions that KUBER applies is the most

beneficial for finding lowest-cost deployment at minimal search cost and execution

time: KUBER spends $12 on average (min: 4, max: 24) and runs for 54 hours on

average (min: 26, max: 103). In comparison, SF1 spends $64 on an average (min:

13, max: 140) and runs for 174 hours on average (min: 38, max: 357); SF2 spends

27

70

80

90

100

110

120

130

140

150

160

170

180

0 50 100 150 200

Execution Time (h)

(28h, $83) (91h, $83)(82h, $83)

(186h, $83)

(153h, $83)

(185h, $110)

(197h, $92)

(a) Hotel Reservation

240

260

280

300

320

340

360

380

400

420

440

0 50 100 150 200 250

Execution Time (h)

(57h, $257) (220h, $257)

(247h, $309)

(138h, $257)

1

2

3

123

123

(b) Media Service

220

240

260

280

300

320

340

360

380

400

0 100 200 300 400 500

Execution Time (h)

(103h, $238) (357h, $238)

(253h, $298)

(267h, $238)

(492h, $248)

(c) Social Network

230

240

250

260

270

280

290

300

310

320

0 50 100 150

Execution Time (h)

(26h, $238) (38h, $238)

(95h, $238)

(33h, $312)

(66h, $238)

(178h, $238)

(189h, $238)

(d) Sock Shop

Figure 5.2: Execution time (a-d) comparison.

more than $94 on an average (min: 25, max: >150); SF3 spends more than $57

on an average (min: 15, max >150); and SF spends more than $144 on an average

(min: 126 for the Sock Shop app, not shown in the figure to avoid clutter, max

>150).

Table 5.1 shows time spent by each of the approaches, separately in each of

the phases (setting up VMs for the experiments, executing the experiments, and

running the WIP algorithm) and in total. While KUBER take 53 hours on average

(the last column), the other three approaches execute for hundreds hours on an

average. In fact, the total execution time of all the experiments is more than four

28

Table 5.1: Execution Time of SF, SF1, SF2, SF3, and KUBER (in Hours)

App SF SF1 SF2 SF3 KUBER

Setup Exper. WID Total Setup Exper. WID Total Setup Exper. WID Total Setup Exper. WID Total Setup Exper. WID Total
Hotel Reservation >395 >158 0 >553 55 22 0 77 150 60 16 226 55 22 2 79 15 6 7 28
Media Service >372 >149 0 >521 150 60 0 210 412 165 36 613 90 36 2 128 30 12 15 57
Social Network >362 >145 0 >507 245 98 0 343 322 129 26 477 357 143 5 505 58 23 22 103
Sock Shop >265 >106 0 >371 20 8 0 28 130 52 7 189 60 24 1 85 10 4 12 26
Average >348 >139 0 >487 117 47 0 164 253 101 21 375 140 56 2.5 198 28 11 14 53

29

months.

The differences between the approaches are more pronounced as the size of

the applications grows. For example, for Sock Shop, which is the smallest subject

application with only seven services, the search cost of KUBER is 53% lower than

that of its closest competitor, SF1; for Social Network, the largest application with

12 services, the difference is 82%. Similarly, the execution time of KUBER is lower

than that of SF1 by 32% for Sock Shop and by 71% for Social Network.

Our experiments show that without any termination condition, SF continues

executing experiments that do not improve the overall deployment cost, even if it

arrives at the optimal solution, like in the case of Hotel Reservation, Media Ser-

vice, and Sock Shop applications. SF3 mitigates this issue by inducing a stopping

condition (Condition 3 in Section 3.3) when no better solution is possible. In fact,

for the Social Network application, the largest in our dataset, SF does not reach

the desired solution within the allocated budget/time. Even though this applica-

tion is larger than Media Service by only one service, it has double the number

of combinations (4096 vs. 2048 combinations for Social Network and Media Ser-

vice, respectively). Executing these extra combinations increases search cost and

execution time.

SF1 is the only sort-and-find approach besides KUBER that reaches the optimal

solution for Social Network, demonstrating that the pruning technique preventing

SF1 from running combinations that are expected to fail (because their subset al-

ready failed on the same VM type: Condition 1 in Section 3.3) is the most effective

strategy to reduce the number of unnecessary experiments.

While SF2 (Condition 2 in Section 3.3) by itself performs worse than SF1,

our experiments show that the combination of all conditions applied by KUBER

help it converge on the desired solutions fastest and with the lowest search cost.

That is because while Condition 1 eliminates a large number of lower-cost non-

working VM types via propagation of negative results, Condition 2 eliminates a

small number of experiments on very costly VM types. For example, the cheapest

VM type for which the Order service in Sock Shop can meet its performance target

is V M10; the compilation of Payment and User services can work on V M1; and the

combination of all three services together does not meet the performance target on

any of the given VM types. For that combination, SF1 will not perform runtime

30

experiments for V M1-V M9 and will check V M10 and V M11. While SF2 will ex-

ecute experiments on V M1-V M10, it will determine that placing the combination

of these three services on V M11 (which costs $0.308 per hour) is more expensive

than placing them on V M1 and V M10 separately ($0.0255 + $0.204 = $0.2295) and

will eliminate this experiment. The combination of these conditions is the most

beneficial to improve the efficiency of the search. This observation also explains

why SF1 by itself typically terminates before SF2 and with a lower search cost.

Interestingly, the search cost for SF1 is lower than that of SF3 for the Social

Network and Sock Shop applications but is higher than SF3 for Hotel Reservation

and Media Service. That is because in Social Network and Sock Shop, there are

a few highly interfering services. Placing them on the same VM would require

an expensive VM type to ensure they meet their performance target. In fact, the

optimal solution for both Social Network and Sock Shop involves a combination

of three services placed on V M10. SF1 thus has an advantage due to its ability

to skip executing many combinations of size three or more that contain pairs of

these services, as such pairs are already known to interfere on VM types cheaper

than V M10. As a result, SF1 reaches the optimal solution faster than SF3, which

continues exploring such non-working combinations. On the contrary, in Hotel

Reservation and Media Service, many service pairs works well on cheaper VM

types but larger combinations require costlier VM types. For example, the optimal

deployment for Hotel Reservation includes four pairs of services placed on V M1

and three instances of V M3. Thus, SF3 can quickly determine that additional ex-

periments increase the cost of deployment and stop the execution while SF1 will

keep running these experiment.

Answer to RQ1: Conditions employed by KUBER allow it to arrive at optimal de-

ployments with the minimal search cost and execution time for each of the subject

applications. This is because its Condition 1 (SF1) helps eliminate many relatively

cheap experiments, Condition 2 (SF2) helps eliminate a few relatively expensive

experiments, and Condition 3 (SF 3) provides a global stopping condition. The

savings achieved by KUBER increase as the number of services grows.

31

5.2 RQ2 (VM Selection Strategies)
Comparing the performance of KUBER to that of RND123 and BS123 shows that

KUBER always reaches the optimal solution with lower search cost and execution

time. While RND123 is able to reach the optimal deployment for Hotel Reservation

and Sock Shop, it executes more experiments than KUBER (thus a longer search

time) and also executes more expensive experiments (thus a higher search cost).

That is because it randomly attempts more expensive VM types that do not work,

e.g., for a combination that does not meet its performance target on V M6, which

has 2 CPU cores and 1 GB of RAM, but does meet the target on V M3, with 2 cores

and 4 GB of RAM.

In case of Sock Shop, the technique also fails to terminate soon after fining the

optimal solution. That is because the technique is “lucky” enough to find a solution

while skipping lower-cost experiments for pairs of services, which leads to it trying

a large number of combinations that include these pairs on all the skipped VM

types. For both Media Service and Social Network, RND123 misses the optimal

deployment as it stops after finding working but sub-optimal VM type for many of

the combinations (26 and 50, respectively).

BS123 finds more expensive deployment compared with KUBER for all four

applications (31% increase, on average). This is because BS123 assumes perfor-

mance is correlated with costs, i.e., that a more expensive VM type yields better

performance. Like existing literature [18], we observe that not to be the case in

practice. For example, several combinations that do not meet their performance

target on V M6, which has 2 CPU cores and 1 GB of RAM will could meet the

target on V M3, with 2 cores and 4 GB of RAM. Yet, BS123 will not try this con-

figuration, proceeding to V M9 instead, which leads to a more expensive solution

overall.

Answer to RQ2: The exhaustive search strategy applied by KUBER allows it to

reach the optimal deployment for all subject applications. RND123 VM selection

strategy does not explore the space of VM types systematically and thus could miss

optimal choices. BS123 misses optimal choices as it relies on assumptions that do

not hold in practice.

32

5.3 RQ3 (Sampling vs. Prediction)
Comparing the performance of KUBER to that of P shows that P found a costlier

solution for two out of four subjects: Hotel Reservation and Media Service. This

is due to inaccuracies in predicting optimal VM type for combinations. For Media

Service, P provided incorrect predictions for 20% of combinations it tried, resulting

in (a) unnecessary executions and (b) missing some VM types that could have

worked in practice. In fact, for combinations that were not predicted correctly, P

made two wrong predictions on average, with only a third being a successful one. It

also missed 14 correct placements and, as a result, missed the optimal deployment

cost by around 20% ($309 vs. $257). For Hotel Reservation, the obtained solution

was 11% more expensive than the optimal one found by KUBER ($92 vs. $83).

In this case, P provided incorrect predictions for 7% of combinations it tried and

made one wrong predictions on average.

In all four case studies, including Sock Shop and Social Network applications

where P was able to identify the optimal solution, the search induced higher cost

and longer execution time: P spent $66 vs. $12 for KUBER, on average (450% in-

crease) and executed for 194 vs. 53 hours for KUBER, on average (266% increase).

The increase in search cost is more substantial than in execution time because in-

correct predictions lead the approach to skip less expensive and execute costlier

experiments. For example, in Sock Shop, P incorrectly predicts the combination

of the Order and User services not to meet its performance target on the cheaper

VMs, V M2 and V M3, and executes on a costlier V M10.

Answer to RQ3: Prediction errors cause P to both execute unnecessary experiment

and miss experiments that can lead to optimal deployments. As a result, KUBER

is able to find a substantially less costly deployment for one of the subject applica-

tions. KUBER converges on a solution with lower execution time and search cost

for all subject applications.

33

5.4 Threats to Validity
We now discuss threats to validity of our approach:

5.4.1 External Validity

Our results may be affected by the selection of applications that we used and may

not generalize beyond our subjects. We attempted to mitigate this threat by using a

set of benchmark applications provided by a highly cited related work on microser-

vices. As we used applications of reasonable size and complexity, we believe our

results are reliable. Moreover, our selection of performance targets could influence

the selection of VM types on which subject applications can work successfully. We

mitigated this threat by using the same criteria to calculate targets for all subject

applications and all compared approaches. We also make our implementation and

evaluation setup publicly available [3] to encourage validation and replication of

our results.

5.4.2 Internal Validity

Our implementation of KUBER, the WID algorithm, and our re-implementation of

PARIS as part of building the P solution could have deficiencies. We controlled

for the threat by having collaborators of this thesis reviewing KUBER code. Two

collaborators of the thesis also manually and independently analyzed the obtained

results, discussing their findings and any possible inconsistencies.

34

Chapter 6

Related Work

Existing work on decreasing cloud deployment costs can be divided into two main

categories: identifying cost-effective VM types and identifying interference be-

tween workloads. We discuss these in Sections 6.1 and 6.2. Complementary to

our approach are works that perform dynamic workload adaptations and dynamic

pricing. We briefly outline them in Section 6.3.

6.1 Identifying Cost-effective VM Types
The approaches in this category have the same goal as KUBER: to find the most

cost-effective VM type where an application (task/job/service) satisfies its perfor-

mance target.

6.1.1 Black-box Prediction-based Approaches

Black-box prediction-based approaches [25, 47, 49, 63, 66], aim to infer perfor-

mance of an application by assessing its similarity with previously profiled bench-

marks. For example, AROMA [47] extracts resource consumption patterns (execu-

tion time and CPU, memory, network, and disk utilization) from a set of MapRe-

duce benchmark jobs provided by Hadoop, runs them in a staging cluster of low-

capacity VMs using a reduced workload, and further clusters the jobs by the ex-

tracted patterns. To obtain a resource utilization signature of a new job, it runs

a new job in the staging cluster, using only a fraction of input data. It uses the

35

obtained signature to determine the similarity of the job with a particular cluster,

and applies the cluster’s trained Machine Learning model to predict performance

of that job. PARIS [63], which was extensively discussed in Section 4, uses a

prediction-based approach but, instead of running a job on a staging cluster with

a smaller workload, runs it on a subset of VM types and infers its performance on

other VM types.

6.1.2 White-box Prediction-based Approaches

White-box prediction-based approaches assume certain properties for the applica-

tions to build an analytical model. Specifically, OptEx [58], relies on benchmarks

containing domain-specific libraries and aims to infer the performance of a target

job based on the similarity of the libraries used in that job and in the benchmarks.

All prediction-based approaches heavily rely on similarity of the profiled work-

loads with each other. As our evaluation shows, assuming such similarity can lead

to erroneous predictions. Moreover, in the context of microservice-based applica-

tions, profiling various possible combinations of services becomes a challenging

and expensive task by itself. Sampling-based approaches described below aim to

address this problem.

6.1.3 Black-box Sampling-based Approaches

Black-box sampling-based approaches [18, 23, 39] do not assume any application

properties or similarity to existing benchmarks. Instead, they typically rely on VM

similarity metrics (e.g., CPU cores, frequency, memory specifications, etc.) to pre-

dict the performance and execution time of a workload on a new VM type using

data collected from already executed VMs. These approaches iteratively update

their prediction models by selecting the next best VM type to sample. For ex-

ample, CherryPick [18] uses an ML-based optimization technique to predict the

VM type where the cost of running the job (price of the VM for the duration of

the job execution) is minimized. It then samples this VM type, collects runtime

data, and updates the ML model. Arrow [39] improves CherryPick by augmenting

VM similarity metrics with additional information, such as I/O wait. Instead of

finding the best VM type for a job, Micky [40] finds one VM type that may work

36

nearly best for multiple jobs, allowing the users to reduce the search cost at the ex-

pense of inevitably finding sub-optimal solutions. It uses a reinforcement learning

technique to predict optimal VM type by balancing exploration (running dissimilar

VM types) and exploitation (running similar VM types). Vanir [21] combines the

benefits of both prediction and sampling by using a similarity threshold to decide

between the approaches: it profiles a new job and scores it based on the similar-

ity with previously executed jobs. If sufficiently similar, the job is passed to a

prediction-based approach; otherwise, it is passed to a sampling-based approach.

Once the new job is executed, Vanir updates its performance model for future op-

timization. Similarly, Scout [41] combines prediction- and sampling-based tech-

niques. It uses performance predictions similar to that of PARIS [63] to improve

CherryPick [18] by avoiding running experiments on VM types that are predicted

not to work.

Our work largely falls into this category. Yet, while most black-box sampling-

based approaches focus on predicting execution time given the specification of a

job and a VM, we assess the performance through direct sampling, focusing on

addressing an orthogonal scalability problem induced by a large number of service

combinations.

6.1.4 White-box Sampling-based Approaches

White-box sampling-based approaches [32, 55, 60, 61] assume certain application

properties, e.g., that computation scales linearly with data. They mainly work

by building an analytical performance model specific to an application, executing

workloads in a carefully selected subset of VMs and estimating performance of

the same workload for different configurations (e.g., on other VMs or for larger

input data). For example, Ernest [60] builds a mathematical performance model

of a job based on the behavior of a job on small samples of data and then predicts

its performance on larger data and cluster size. Such approaches are not easily

extendable beyond applications with fixed internal structure, e.g., Spark jobs, and

thus have limited applicability for general-purpose applications, like microservices.

37

6.2 Identifying Interference between Workloads
Interference occurs when multiple applications share common resources, such as

CPU, cache, memory, storage, and network, which affects the performance of these

applications. A few approaches, such as Bubble-Up [50] and Bubble-Flux [64],

aim at identifying interference between jobs by creating a micro-benchmark (called

a bubble) that can incrementally increase pressure on a particular resource. To mea-

sure maximum interference tolerated by an application, they co-locate the bubble

with the application and increase pressure on the resource until the application

faces performance issues. To further improve scalability and avoid exploring each

resource individually, Paragon [28] and Quasar [29] first collect information about

interference for a large set of benchmarks and then use the similarity between

benchmarks and new jobs to make predictions. While such approaches can be

further integrated with our work to improve performance, they rely on the assump-

tion that a complete physical machine is available for testing and only the bubble

or application can occupy the resource. Such assumption is not always practical

for organizations that do not have access to a private cloud and have to perform the

analysis on VMs of a cloud provider, which are co-located with other VMs.

6.3 Other Approaches
An number of autoscaling approaches have been proposed in industry and academia.

These approaches aim at provisioning resources to applications at runtime based on

the dynamically changing workload. That is, given that the number of user requests

fluctuates over time, these approaches increase or decrease the amount of resources

allocated to the application, making sure it satisfies its performance target. In the

simplest form, rule-based approaches employed in industry [1, 7] require the user

to define a set of scaling-in and scaling-out conditions. The autoscaler then makes

scaling decisions only when the conditions are met. For example, Amazon au-

toscaling service can add a number of VM instance, as specified by the user in the

autoscaling policy, if CPU utilization reaches 70% or remove a number of instances

if CPU utilization decreases below 40%. Such solutions induce extra burden on the

user and also result in inefficient resource utilization due to coarse-grained utiliza-

tion thresholds.

38

To address these issues, several approaches aim at automatically predicting the

anticipated application workload [22, 31, 34, 37, 38, 42, 54, 65, 68]. Others focus

on find the maximal load supported by each VM type, in order to assign the right

VM types to the application [27, 33, 36, 53, 57, 59] and use this information to

intelligently pick a VM type at runtime. The goal of KUBER is different. It does

not focus on predicting workloads. Also, instead of fining the maximal load for

each VM type, it terminates the search when the cheapest VM type on which a

combination of services satisfy its performace target is identified. Yet, KUBER

could be extended by ideas proposed in these approaches as part of future work, to

find optimal deployment for dynamically changing workloads.

39

Chapter 7

Summary and Conclusion
7.1 Limitations and Future work
We identify a number of limitations of our approach and directions for possible

future work:

1. Approaches for adapting to changing workload: KUBER currently accepts

as input an application test that can produce a fixed workload. In reality, the

workload can fluctuate over time and optimal deployments produced under test

scenarios may miss the performance target for a different workload. Autoscaling

approaches, discussed in Chapter 6, address the workload fluctuation problem by

dynamically provisioning resources to applications at runtime. Yet, re-running the

KUBER from scratch for each new workload is impractical. Future work could

look at approaches to identify the optimal deployment incrementally, during au-

toscaling, without performing the complete search for each new setup.

2. Approaches to account for services shared between applications: KUBER

assumes that all services belong to one application and produces co-locations with

services of that application. In reality, services can be shared between microservice

applications; placing shared services as part of the optimal deployment of one ap-

plication can negatively affect the performance of other applications. Future work

adapting KUBER to such scenarios is needed.

3. Approaches for adapting to changing applications: As developers change

their applications, e.g., to fix bugs and introduce new features, its resource con-

sumption might change. Future work could look at approaches for assessing the

40

impact of changes in the application and incrementally adapting solutions produced

by KUBER to work in new versions.

4. Approaches to deal with services that are not part of combination under
test: When evaluating the performance of a particular service combination, our

approach requires deploying all other services that are not part of the combination

on separate machines. As part of future work, investigating other approaches for

accurately evaluating the performance of a combination, including approaches that

rely on mocking of other services, is needed.

5. Approaches for adapting current interference analysis tools to work on
shared infrastructure: As discussed in Chapter 6, current interference analysis

approaches [28, 29, 50, 64] rely on the assumption that a complete physical ma-

chine is available for testing and can be occupied by the application under test.

Finding interfering pairs of services accurately on the cloud VMs could be another

productive direction for possible future work. If successful, KUBER could be ex-

tended to use such techniques to further prune interfering combinations without

running them.

6. Approaches to account for co-located VM interference in a public cloud: If

KUBER is executed on a public cloud, performance fluctuations due to interference

with co-located VMs could affect the accuracy of the obtained results. Future

work is needed that can produce optimal deployments taking fluctuations in public

clouds into account.

7.2 Conclusion
As cloud providers typically offer a variety of virtual machine (VM) types, each

with its own hardware specification and cost, and microservice-based applications

contain multiple services that can be co-located on different VM types, selecting

the cheapest VM types for deploying a microservice-based application becomes a

time-consuming and costly task. This thesis formally defined the problem of iden-

tifying an optimal deployment for a microservice-based application and proposed

a scalable solution that addresses this problem, implemented in a tool named KU-

BER. We empirically evaluated KUBER on four open-source microservice-based

applications and showed that it can identify the desired deployment faster and with

lower search cost than existing alternatives.

41

Bibliography

[1] Amazon Auto-Scaling Service. https://aws.amazon.com/autoscaling/, . →
page 38

[2] Amazon Socks. https://www.amazon.com/s?k=socks, . → page 22

[3] Supplementary Materials. https://resess.github.io/artifacts/Kuber. → pages
5, 18, 19, 34

[4] Amazon Elastic Compute Cloud. https://aws.amazon.com/ec2. → page 2

[5] Instance Performance Variability.
https://forums.aws.amazon.com/thread.jspa?threadID=22830. → page 7

[6] Istio Distributed Tracing.
https://istio.io/latest/docs/tasks/observability/distributed-tracing/. → page 18

[7] Kubernetes Horizontal Pod Autoscale.
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/, .
→ page 38

[8] Kubernetes. https://kubernetes.io/, . → page 18

[9] OpenNebula. https://opennebula.io/. → page 18

[10] Monitoring Microservices: Divide and Conquer.
https://engineering.salesforce.com/
monitoring-microservices-divide-and-conquer-acca62b209cc. → page 7

[11] A Microservices Demo Application: Sock Shop.
https://microservices-demo.github.io/. → pages x, 2, 21

[12] TMDB 5000 Movie Dataset.
https://www.kaggle.com/tmdb/tmdb-movie-metadata. → page 21

42

https://aws.amazon.com/autoscaling/
https://www.amazon.com/s?k=socks
https://resess.github.io/artifacts/Kuber
https://aws.amazon.com/ec2
https://forums.aws.amazon.com/thread.jspa?threadID=22830
https://istio.io/latest/docs/tasks/observability/distributed-tracing/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/
https://opennebula.io/
https://engineering.salesforce.com/monitoring-microservices-divide-and-conquer-acca62b209cc
https://engineering.salesforce.com/monitoring-microservices-divide-and-conquer-acca62b209cc
https://microservices-demo.github.io/
https://www.kaggle.com/tmdb/tmdb-movie-metadata

[13] The Psychology of Web Performance. https://blog.uptrends.com/
web-performance/the-psychology-of-web-performance/. → page 7

[14] The Yelp Dataset.
https://hanlululu.github.io/SocialGraphYelp.io/Page1_Dataset.html. → page
21

[15] Microservices: a Definition of This New Architectural Term.
https://martinfowler.com/articles/microservices.html, 2014. → page 1

[16] How Uber Monitors 4,000 Microservices.
https://www.cncf.io/case-studies/uber/, 2019. → page 1

[17] Netflix Architecture: How Much Does Netflix’s AWS Cost?
https://www.cloudzero.com/blog/netflix-aws, 2021. → page 1

[18] O. Alipourfard, H. Liu, J. Chen, S. Venkataraman, M. Yu, and M. Zhang.
CherryPick: Adaptively Unearthing the Best Cloud Configurations for Big
Data Analytics. In Proc. of the Symposium on Networked Systems Design
and Implementation (NSDI), pages 469–482, 2017. → pages
1, 3, 20, 32, 36, 37

[19] Amazon. Amazon EC2 Instance Types - Amazon Web Services.
https://aws.amazon.com/ec2/instance-types/, . → pages 2, 7

[20] Amazon. Azure Virtual Machine Series.
https://azure.microsoft.com/en-au/pricing/details/virtual-machines/series/, .
→ page 7

[21] M. Bilal, M. Canini, and R. Rodrigues. Finding the Right Cloud
Configuration for Analytics Clusters. In Proc. of the Symposium on Cloud
Computing (SoCC), pages 208–222, 2020. → page 37

[22] X. Bu, J. Rao, and C.-Z. Xu. Coordinated Self-configuration of Virtual
Machines and Appliances Using a Model-free Learning Approach. IEEE
transactions on parallel and distributed systems, 24(4):681–690, 2012. →
page 39

[23] M. Casimiro, D. Didona, P. Romano, L. Rodrigues, W. Zwaenepoel, and
D. Garlan. Lynceus: Cost-efficient Tuning and Provisioning of Data
Analytic Jobs. In Proc. of the International Conference on Distributed
Computing Systems (ICDCS), pages 56–66, 2020. → page 36

43

https://blog.uptrends.com/web-performance/the-psychology-of-web-performance/
https://blog.uptrends.com/web-performance/the-psychology-of-web-performance/
https://hanlululu.github.io/SocialGraphYelp.io/Page1_Dataset.html
https://martinfowler.com/articles/microservices.html
https://www.cncf.io/case-studies/uber/
https://www.cloudzero.com/blog/netflix-aws
https://aws.amazon.com/ec2/instance-types/
https://azure.microsoft.com/en-au/pricing/details/virtual-machines/series/

[24] S.-C. Chang, J.-J. Liu, and Y.-L. Wang. The Weighted Independent
Domination Problem in Series-parallel Graphs. Intelligent Systems and
Applications, 274:77–84, 2015. → pages 3, 11, 12

[25] A. Chung, J. Park, and G. Ganger. Stratus: Cost-aware Container
Scheduling in the Public Cloud. In Proc. of the ACM Symposium on Cloud
Computing (SoCC), pages 121–134, 2018. → page 35

[26] P. P. Davidson, C. Blum, and J. A. Lozano. The weighted independent
domination problem: Ilp model and algorithmic approaches. In Proc. of the
European Conference on Evolutionary Computation in Combinatorial
Optimization (EvoCOP), pages 201–214, 2017. → pages 4, 12, 16

[27] J. Dejun, G. Pierre, and C.-H. Chi. Resource provisioning of web
applications in heterogeneous clouds. In Proc. of the conference on Web
application development (WEBAPPS), pages 5–5, 2011. → page 39

[28] C. Delimitrou and C. Kozyrakis. Paragon: QoS-aware scheduling for
heterogeneous datacenters. In Proc. of the International Conference on
Architectural Support for Programming Languages and Operating Systems
(ASPLOS), pages 77–88, 2013. → pages 22, 38, 41

[29] C. Delimitrou and C. Kozyrakis. Quasar: Resource-efficient and QoS-aware
Cluster Management. In Proc. of the International Conference on
Architectural Support for Programming Languages and Operating Systems
(ASPLOS), page 127–144, 2014. → pages 38, 41

[30] Docker. Docker. https://www.docker.com/. → page 7

[31] X. Dutreilh, A. Moreau, J. Malenfant, N. Rivierre, and I. Truck. From Data
Center Resource Allocation to Control Theory and Back. In Proc. of the
International Conference on Cloud Computing (CLOUD), pages 410–417,
2010. → page 39

[32] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and R. Fonseca. Jockey:
Guaranteed Job Latency in Data Parallel Clusters. In Proc. of the european
conference on Computer Systems (EuroSys), pages 99–112, 2012. → page
37

[33] H. Fernandez, G. Pierre, and T. Kielmann. Autoscaling web applications in
heterogeneous cloud infrastructures. In Proc. of the International
Conference on Cloud Engineering (IC2E), pages 195–204, 2014. → page 39

44

https://www.docker.com/

[34] A. Gambi, G. Toffetti, C. Pautasso, and M. Pezze. Kriging controllers for
cloud applications. IEEE Internet Computing, 17(4):40–47, 2012. → page
39

[35] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno,
J. Hu, B. Ritchken, B. Jackson, et al. An Open-source Benchmark Suite for
Microservices and their Hardware-software Implications for Cloud & Edge
Systems. In Proc. of the International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), pages 3–18,
2019. → pages 18, 20

[36] A. Gandhi, M. Harchol-Balter, R. Raghunathan, and M. A. Kozuch.
Autoscale: Dynamic, Robust Capacity Management for Multi-tier Data
Centers. ACM Transactions on Computer Systems (TOCS), 30(4):1–26,
2012. → page 39

[37] M. Ghobaei-Arani, S. Jabbehdari, and M. A. Pourmina. An Autonomic
Resource Provisioning Approach for Service-based Cloud Applications: A
Hybrid Approach. Future Generation Computer Systems, 78:191–210,
2018. → page 39

[38] D. Grimaldi, V. Persico, A. Pescapé, A. Salvi, and S. Santini. A
Feedback-control Approach for Resource Management in Public Clouds. In
Proc. of the Global Communications Conference (GLOBECOM), pages 1–7,
2015. → page 39

[39] C.-J. Hsu, V. Nair, V. W. Freeh, and T. Menzies. Arrow: Low-Level
Augmented Bayesian Optimization for Finding the Best Cloud VM. In Proc.
of the International Conference on Distributed Computing Systems
(ICDCS), pages 660–670, 2018. → pages 1, 36

[40] C.-J. Hsu, V. Nair, T. Menzies, and V. Freeh. Micky: A Cheaper Alternative
for Selecting Cloud Instances. In Proc. of International Conference on
Cloud Computing (CLOUD), pages 409–416, 2018. → page 36

[41] C.-J. Hsu, V. Nair, T. Menzies, and V. W. Freeh. Scout: An Experienced
Guide to Find the Best Cloud Configuration. Technical report, 2018. →
pages 1, 37

[42] W. Iqbal, M. N. Dailey, and D. Carrera. Unsupervised Learning of Dynamic
Resource Provisioning Policies for Cloud-hosted Multitier Web
Applications. IEEE Systems Journal, 10(4):1435–1446, 2015. → page 39

45

[43] H. Jayathilaka, C. Krintz, and R. Wolski. Service-level Agreement
Durability for Web Service Response Time. In Proc. of the International
Conference on Cloud Computing Technology and Science (CloudCom),
pages 331–338, 2015. → page 7

[44] D. N. Jha, S. Garg, P. P. Jayaraman, R. Buyya, Z. Li, and R. Ranjan. A
Holistic Evaluation of Docker Containers for Interfering Microservices. In
Proc. of the International Conference on Services Computing (SCC), pages
33–40, 2018. → page 8

[45] M. Kambadur, T. Moseley, R. Hank, and M. A. Kim. Measuring
Interference between Live Datacenter Applications. In Proc. of the
International Conference on High Performance Computing, Networking,
Storage and Analysis (SC), pages 1–12, 2012. → page 7

[46] Y. Koh, R. Knauerhase, P. Brett, M. Bowman, Z. Wen, and C. Pu. An
Analysis of Performance Interference Effects in Virtual Environments. In
Proc. of the International Symposium on Performance Analysis of Systems &
Software (ISPASS), pages 200–209, 2007. → page 7

[47] P. Lama and X. Zhou. Aroma: Automated Resource Allocation and
Configuration of Mapreduce Environment in the Cloud. In Proc. of the
International Conference on Autonomic Computing (ICAC), pages 63–72,
2012. → pages 1, 35

[48] D. H. Lehmer. Teaching combinatorial tricks to a computer. In Proc. of
Symposia in Applied Mathematics, pages 179–193, 1960. → page 23

[49] X. Li, M. A. Salehi, M. Bayoumi, and R. Buyya. CVSS: A Cost-efficient
and QoS-aware Video Streaming Using Cloud Services. In Proc. of the
International Symposium on Cluster, Cloud and Grid Computing (CCGrid),
pages 106–115, 2016. → page 35

[50] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa. Bubble-up:
Increasing Utilization in Modern Warehouse Scale Computers via Sensible
Co-locations. In Proc. of the International Symposium on Microarchitecture
(MICRO), pages 248–259, 2011. → pages 38, 41

[51] Microsoft. Azure Linux Virtual Machines Pricing.
https://azure.microsoft.com/en-ca/pricing/details/virtual-machines/linux/. →
page 7

46

https://azure.microsoft.com/en-ca/pricing/details/virtual-machines/linux/

[52] Microsoft. Chapter 1: Service Oriented Architecture (SOA).
https://web.archive.org/web/20160206132542/https:
//msdn.microsoft.com/en-us/library/bb833022.aspx, 2016. → page 6

[53] H. Nguyen, Z. Shen, X. Gu, S. Subbiah, and J. Wilkes. AGILE: Elastic
Distributed Resource Scaling for Infrastructure-as-a-Service. In Proc. of the
International Conference on Autonomic Computing (ICAC), pages 69–82,
2013. → page 39

[54] P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal,
and A. Merchant. Automated Control of Multiple Virtualized Resources. In
Proc. of the European conference on Computer systems (EuroSys), pages
13–26, 2009. → page 39

[55] K. Rajan, D. Kakadia, C. Curino, and S. Krishnan. Perforator: Eloquent
Performance Models for Resource Optimization. In Proc. of the Symposium
on Cloud Computing (SoCC), pages 415–427, 2016. → page 37

[56] R. A. Rossi and N. K. Ahmed. The Network Data Repository with
Interactive Graph Analytics and Visualization. In Proc. of the AAAI
Conference on Artificial Intelligence (AAAI), 2015. → page 21

[57] U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh. A Cost-aware Elasticity
Provisioning System for the Cloud. In Proc. of the International Conference
on Distributed Computing Systems (ICDCS), pages 559–570, 2011. → page
39

[58] S. Sidhanta, W. Golab, and S. Mukhopadhyay. Optex: A Deadline-aware
Cost Optimization Model for Spark. In Proc. of the International
Symposium on Cluster, Cloud and Grid Computing (CCGrid), pages
193–202, 2016. → page 36

[59] N. Vasić, D. Novaković, S. Miučin, D. Kostić, and R. Bianchini. Dejavu:
Accelerating Resource Allocation in Virtualized Environments. In Proc. of
the International conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 423–436, 2012. →
page 39

[60] S. Venkataraman, Z. Yang, M. Franklin, B. Recht, and I. Stoica. Ernest:
Efficient Performance Prediction for Large-scale Advanced Analytics. In
Proc. of the Symposium on Networked Systems Design and Implementation
(NSDI)), pages 363–378, 2016. → pages 1, 37

47

https://web.archive.org/web/20160206132542/https://msdn.microsoft.com/en-us/library/bb833022.aspx
https://web.archive.org/web/20160206132542/https://msdn.microsoft.com/en-us/library/bb833022.aspx

[61] A. Verma, L. Cherkasova, and R. H. Campbell. Aria: Automatic Resource
Inference and Allocation for Mapreduce Environments. In Proc. of the
International Conference on Autonomic Computing (ICAC), pages 235–244,
2011. → page 37

[62] Y. Wang, H. Kadiyala, and J. Rubin. Promises and Challenges of
Microservices: An Exploratory Study. Empirical Software Engineering, 26
(63), 2021. → page 6

[63] N. Yadwadkar, B. Hariharan, J. E. Gonzalez, B. Smith, and R. Katz.
Selecting the Best VM Across Multiple Public Clouds: A Data-driven
Performance Modeling Approach. In Proc. of the Symposium on Cloud
Computing (SoCC), page 452–465, 2017. → pages 1, 10, 24, 35, 36, 37

[64] H. Yang, A. Breslow, J. Mars, and L. Tang. Bubble-flux: Precise online qos
management for increased utilization in warehouse scale computers. ACM
SIGARCH Computer Architecture News, 41(3):607–618, 2013. → pages
38, 41

[65] L. Yazdanov and C. Fetzer. Vscaler: Autonomic Virtual Machine Scaling. In
Proc. of the International Conference on Cloud Computing (CLOUD), pages
212–219, 2013. → page 39

[66] N. Zacheilas and V. Kalogeraki. ChEsS: Cost-Effective Scheduling Across
Multiple Heterogeneous Mapreduce Clusters. In Proc. of International
Conference on Autonomic Computing (ICAC), pages 65–74, 2016. → page
35

[67] L. Zhao, Y. Yang, K. Zhang, X. Zhou, T. Qiu, K. Li, and Y. Bao. Rhythm:
Component-distinguishable Workload Deployment in Datacenters. In Proc.
of the European Conference on Computer Systems (EuroSys), pages 1–17,
2020. → page 22

[68] Q. Zhu and G. Agrawal. Resource Provisioning with Budget Constraints for
Adaptive Applications in Cloud Environments. IEEE Transactions on
Services Computing, 5(4):497–511, 2012. → page 39

48

Appendix A

Other papers

During my studies, I have also contributed to two other publications that are not

included in this thesis:

• Yingying Wang, Harshavardhan Kadiyala, Julia Rubin. Promises and Chal-

lenges of Microservices: An Exploratory Study. Journal of Empirical Software

Engineering, Volume 26, Issue 4, 2021.

• Adalberto R Sampaio, Harshavardhan Kadiyala, Bo Hu, John Steinbacher,

Tony Erwin, Nelson Rosa, Ivan Beschastnikh, Julia Rubin. Supporting mi-

croservice evolution (short paper), IEEE International Conference on Software

Maintenance and Evolution (ICSME), 2017.

49

	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	Acknowledgments
	Dedication
	1 Introduction
	1.1 Overview
	1.2 Insights
	1.3 Contributions
	1.4 Structure

	2 Background
	2.1 Microservice-based Applications
	2.2 Cloud Infrastructure

	3 Approach
	3.1 Problem Statement
	3.2 A First-Approximation Solution
	3.3 Kuber Solution
	3.3.1 Combination Optimizer
	3.3.2 Deployment Planner
	3.3.3 Execution Engine

	3.4 Implementation

	4 Evaluation Setup
	4.1 Research Questions
	4.2 VM Types
	4.3 Subject Applications
	4.4 Performance Targets
	4.5 Runtime Environment
	4.6 Baseline Approaches
	4.7 Measures and Metrics

	5 Results
	5.1 RQ1 (Configuration Selection Strategies)
	5.2 RQ2 (VM Selection Strategies)
	5.3 RQ3 (Sampling vs. Prediction)
	5.4 Threats to Validity
	5.4.1 External Validity
	5.4.2 Internal Validity

	6 Related Work
	6.1 Identifying Cost-effective VM Types
	6.1.1 Black-box Prediction-based Approaches
	6.1.2 White-box Prediction-based Approaches
	6.1.3 Black-box Sampling-based Approaches
	6.1.4 White-box Sampling-based Approaches

	6.2 Identifying Interference between Workloads
	6.3 Other Approaches

	7 Summary and Conclusion
	7.1 Limitations and Future work
	7.2 Conclusion

	Bibliography
	A Other papers

