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Abstract

While there are well-developed tools for maximizing a submodular function f(S) subject to
a matroid constraint S ∈ M, there is much less work on the corresponding supermodular
maximization problems. We develop new techniques for attacking these problems inspired by
the continuous greedy method applied to the multi-linear extension of a submodular func-
tion. We first adapt the continuous greedy algorithm to work for general twice-continuously
differentiable functions. Our results are based on a new notion of one-sided smoothness of
an objective. Reminiscent of how Lipschitz smoothness bounds convergence rates in convex
optimization, one-sided smoothness controls the approximability of maximizing a monotone,
non-linear function. If F : [0, 1]n → R≥0 is one-sided σ-smooth, then it yields an approxima-
tion factor depending only on σ. We apply the new algorithm to a broad class of quadratic
supermodular functions arising in diversity maximization. We also develop new methods for
rounding quadratics over a matroid polytope. These are based on extensions to swap rounding
and approximate integer decomposition. Together with the adapted continuous greedy this
leads to a O(σ3/2)-approximation. This is the best asymptotic approximation known for this
class of diversity maximization and we give some evidence for why we believe it may be tight.

We then consider general (non-quadratic) functions. We give a broad parameterized family
of monotone functions which include submodular functions and the just-discussed supermodular
family of discrete quadratics. The new family is defined by restricting the one-sided smooth-
ness condition to the boolean hypercube; such set functions are called γ-meta-submodular.
We develop local search algorithms with approximation factors that depend only on γ. We
show that the γ-meta-submodular families include well-known function classes including meta-
submodular functions (γ = 0), proportionally submodular (γ = 1), and diversity functions
based on negative-type distances or Jensen-Shannon divergence (both γ = 2) and (semi-)metric
diversity functions.

We then focus on maximizing a specific 1-meta-submodular function in a distributed setting.
This has applications in machine learning and recommender systems. As an application, we
model the multi-label feature selection problem as such an optimization problem. This com-
bined with our optimization algorithm leads to the first distributed multi-label feature selection
method.
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Lay Summary

In a wide variety of applications, one needs to find the (near) best value for a function. Sub-
modular functions are a class of functions for which we can find such near best value. They
have many applications in many different areas, including, but not limited to, machine learning,
game theory, and automatic summarization. Maybe the most important reason for their nice
behaviour is the diminishing return property. In this work, we investigate the optimization for
functions that do not satisfy this property.
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Preface

Chapters 2, 3, and 4 are based on a joint work with Richard Santiago and Bruce Shepherd. A
version of this has been published on arXiv [34]. Chapter 5 is based on a joint work with Mark
Schmidt and a version of it is published in AISTATS 2019 [33].
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Chapter 1

Introduction

In optimization problems, given a function f : D → R and C ⊆ D, the goal is to find the
element x ∈ C to maximize/minimize the function in C. Optimization problems arise in many
areas including but not limited to machine learning, scheduling, and resource allocation.

Optimization has many branches. Two of the most studied of these branches are linear
optimization and convex optimization. A linear optimization problem in canonical form is
stated as follows.

maximize cTx

subject to Ax ≤ b
and x ≥ 0,

(1.1)

where c ∈ Rn, b ∈ Rm, A ∈ Rm×n, and the domain of x is Rn. We call cTx the objective
function; Ax ≤ b and x ≥ 0 are called the constraints. We say the point x is feasible if Ax ≤ b
and x ≥ 0. The set of all feasible points is called the feasible region/area. A linear optimization
problem is polynomial time solvable if there is a polynomial time separation oracle which given
x, either confirms that x satisfies all the constraints or it returns one of the violated constraints
(inequalities) [35, 36]. If such a separation oracle exists, for any ε > 0, standard methods can
find a solution whose difference with the optimal solution is at most ε. We call this an additive
approximation.

Linear optimization is a subclass of the more general class of convex optimization problems.
A function is called convex if

f(x) + f(y)

2
≥ f(

x+ y

2
), (1.2)

for any x and y in the domain of f . For a vector z and function f , we say that f is convex in
z direction if for any x and x+ λz (λ ≥ 0) in the domain of f ,

f(x) + f(x+ λz)

2
≥ f(

x+ (x+ λz)

2
).

We define the concavity in a similar way as convexity. We say that a function f is concave if

f(x) + f(y)

2
≤ f(

x+ y

2
), (1.3)

for any x and y in the domain of f . Similarly, we define the concavity in a direction. We say
that a function is convex/concave in forward directions if it is convex/concave in z direction
for any z ≥ 0.

1



Chapter 1. Introduction

A function f is affine if there exists c ∈ Rn and d ∈ R that f(x) = cTx + d. It is easy to
check that any affine function is convex. A convex optimization problem in standard form is
stated as the following.

minimize f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m

and hi(x) = 0, i = 1, . . . , p,

(1.4)

where f and gi’s are convex functions and hi’s are affine functions. Many classes of convex
optimization problems admit polynomial time algorithms that find an additive approximation.

Linear optimization and convex optimization problems possess a lot of nice properties which
are exploited to find solutions very close to the optimal solution. Perhaps the most fundamental
property is that the feasible region and the objective function are continuous. This allows, for
example, the use of gradient methods. In contrast when the domain of the objective function
is discrete, it is not possible to use gradient methods in a straitforward way. Problems of this
form are considered discrete optimization problems. One important subclass of these problems
is combinatorial optimization in which the domain of the objective function is the power set
(i.e., the set of all subsets) of a ground set. Such functions are called set functions.

A combinatorial optimization problem is usually stated as the following

maximize f(S)

subject to S ∈ I,
(1.5)

where f : 2[n] → R and I ⊆ 2[n]. Usually I is a combinatorial family of subsets (e.g., a matroid).
Modular (linear) functions are extensively studied in the context of combinatorial optimiza-

tion. A function f : 2[n] → R is modular if

f(S) =
∑
s∈S

f({s}), (1.6)

for any S ∈ 2[n]. The traveling salesman problem is an example of a combinatorial optimization
problem with a modular objective function. In this problem f is defined on the power set of
the set of edges of a complete graph G = (V,E). Each edge e ∈ E has a weight. Because f is
modular, these weights determine f . In the traveling salesman problem, the family of feasible
sets I is all the cycles of size |V |. One can see that the size of I is exponential in terms of |V |
and |E| and we suspect that this problem is not easy to solve. This suspicion is actually correct
in the sense that it has been shown that the traveling salesman problem is NP-hard.

Many problems in combinatorial optimization are NP-hard and therefore there is not any
known polynomial time algorithm that can find the optimal solution. In the absence of such an
algorithm, combinatorial optimization research has often focused on multiplicative approxima-
tion algorithms or in short approximation algorithms. Let P be an optimization problem with
a non-negative objective function f : 2[n] → R≥0 and for an instance of P like P , let OPT(P )
be the optimal solution of P and ALG(P ) be the output of algorithm ALG on P . We call ALG
an α-approximation algorithm for P if for any instance P , its returned solution satisfies the
following.

2



1.1. Submodular Functions and Matroids

1

α
f(ALG(P )) ≤ f(OPT(P )) ≤ αf(ALG(P )) (1.7)

The reason for defining such a multiplicative approximation is that many combinatorial
optimization problems do not admit an additive approximation (e.g., the traveling salesman
problem).

1.1 Submodular Functions and Matroids

Submodular functions are another class of set functions that are extensively studied in combi-
natorial optimization. Recently, many applications are found for these functions stemming from
machine learning, social networks, recommendation systems, etc [53]. A function f : 2[n] → R
is called submodular if

f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ), (1.8)

for any S, T ⊆ [n]. It is easy to see that any modular function is also a submodular function.
Similarly we say that a function is supermodular if

f(S) + f(T ) ≤ f(S ∪ T ) + f(S ∩ T ), (1.9)

for any S, T ⊆ [n]. It has been shown that a function is submodular if and only if

f(S ∪ {i})− f(S) ≥ f(T ∪ {i})− f(T ), (1.10)

for any S ⊆ T ⊆ [n] and i ∈ [n] \ T [70]. This is called the diminishing return property. There
are many examples of set functions that admit this diminishing return property. One important
example is the class of coverage functions which includes the set cover problem, vertex cover
problem, etc.

This property also occurs in a class of combinatorial structures called matroids. A pair
M = ([n], I) is a matroid if I ⊆ 2[n] is a family of subsets that satisfies the following conditions:
1) if S ∈ I and T ⊆ S then T ∈ I (hereditary property); 2) if S, T ∈ I and |S| < |T | then there
exist i ∈ T \ S such that S ∪ {i} ∈ I (exchange property) [71].

The subsets in I are called independent sets of the matroid M and the subsets in 2[n] \ I
are called dependent sets of M. A base of M is a maximal independent set. A circuit of M is
a minimal dependent set. By the exchange property, it is easy to show that all the bases of a
matroid have an equal size. The size of a base is called the rank of the matroid M. We define
the rank function r : 2[n] → Z≥0 of a matroid as the following. For any S ⊆ [n], r(S) is equal
to the size of the largest independent set of the matroid which is a subset of S. It has been
shown that the rank function of a matroid is submodular [71].

1.2 Continuous Relaxations of Set Functions

As mentioned, working in a continuous space has many advantages. Because of this, it is
a common practice in combinatorial optimization to transform the problem to a continuous
space, find the optimum solution (or a solution close to the optimum) in the continuous space,

3



1.3. Convex Polytopes

and transform back the continuous solution to the discrete space. This last step is often called
the rounding.

Usually this transformation to the continuous space is done by using a continuous relaxation
of the set function. Let f : {0, 1}[n] → R (or f : 2[n] → R) be a set function. The function
F : [0, 1][n] → R is a continuous relaxation (or continuous extension) of f if

F (1S) = f(S), (1.11)

for any S ⊆ [n]. Two important continuous relaxations considered in the study of submodular
functions are the Lovasz extension and the multi-linear extension.

The Lovasz extension of a set function is defined as

FL(x) = E[f({i : xi ≥ λ})], (1.12)

where the expectation is over λ sampled from a uniform distribution on [0, 1]. It is shown
that FL is convex if and only if f is submodular [60]. This relaxation is usually used for the
problem of minimizing a submodular function. The multi-linear extension is another important
continuous relaxation of set functions which is used for submodular maximization and plays an
important role in our results.

Definition 1 (Multi-linear extension). Let px(R) be the probability of picking the set R with
respect to x if each element v ∈ [n] is picked independently with probability xv. In other words

px(R) =
∏
v∈R

xv
∏

v∈[n]\R

(1− xv). (1.13)

Then the multi-linear extension of f : 2[n] → R is

F (x) =
∑
R⊆[n]

f(R)px(R) = ER∼x[f(R)]. (1.14)

The multi-linear extension can be viewed as the expected value of the function if the input
set is picked randomly with respect to x. In general, the multi-linear extension of a submodular
function is neither convex nor concave. However, it admits convexity/concavity properties in
specific directions which has been exploited for the maximization of submodular functions.
More specifically, it is concave in the forward directions and for any i, j ∈ [n], it is convex in
ei − ej direction [18].

1.3 Convex Polytopes

In addition to extending the domain of the function to a continuous space, we need to extend
the feasible (search) region to the continuous space. For this, we first need some notations. We
define the characteristic vector of a subset S ⊆ [n] as the following.

1S :=

{
(1S)i = 1, i ∈ S
(1S)i = 0, i /∈ S

4



1.4. Motivation

With this, we can consider the feasible subsets as points/vectors in the continuous space [0, 1][n]

but these points still form a discrete set. The convex hull of a set of points like Q is defined as
the following.

CQ := {
∑
p∈Q

λpp :
∑
p∈P

λp = 1, λ ≥ 0}

A convex polytope is the convex hull of finitely many points. A convex polytope also can
be represented as the intersection of finitely many half-spaces. For brevity, we call a convex
polytope just a polytope. For a family of subsets I, we call the convex hull of the characteristic
vectors of elements of I its corresponding polytope. This polytope is the continuous extension
of the feasible space we use in this work but in general, any convex subset of R[n] that contains
the corresponding polytope is a convex continuous extension of the feasible space. A polytope
Q is a convex corner or a downwards-closed polytope if it satisfies the following conditions. 1)
If x ∈ Q then x ≥ 0; 2) If x ∈ Q and 0 ≤ y ≤ x then y ∈ Q. If I has the hereditary property,
its corresponding polytope is a downwards-closed polytope.

1.4 Motivation

In the past decade, the catalogue of algorithms available to combinatorial optimizers has been
substantially extended to new settings which allow submodular objective functions. For in-
stance, while classical work [31, 63, 64] already established a 1

2 -approximation for maximizing
a non-negative monotone submodular function subject to a matroid constraint, it was not until
recently when the work from [18, 81] achieved a tight (1 − 1

e )-approximation for this prob-
lem. The latter required the development of new continuous optimization machinery for the
associated multi-linear relaxation. These developments in submodular maximization were oc-
curring at the same time that researchers found a wealth of new applications for these models
[16, 28, 42, 46, 49, 54, 57, 58, 67, 76].

The related supermodular maximization models (submodular minimization) also offer an
abundance of applications, but they appeared to be highly intractable even under simple car-
dinality constraints [77]. One exception came from a specific model for diversity maximization.
Given a set function f(S) which measures the ‘diversity’ amongst elements of a set S, a problem
of broad interest is to find a set S of maximum diversity subject to a prescribed bound on its
cardinality |S| ≤ k, or more generally, subject to a matroid M constraint:

(DivMax) max{f(S) : S ∈M}.

One class of diversity functions that has wide applications in machine learning are the so-
called remote-clique functions [1, 33, 85]. These are based on having a dis-similarity measure
d(u, v) between each pair of objects u, v in the ground set. The corresponding max-sum problem
is then to maximize f(S) :=

∑
u,v∈S A(u, v) [21, 51]. If A(u, v) ≥ 0, then one easily checks that f

is supermodular. We sometimes abuse nomenclature and conflate A with its associated diversity
function f . These functions are essentially a special case of what we term discrete quadratic
functions. Namely, a function which is the restriction of a quadratic xTAx

2 + bTx to the boolean
hypercube (A is symmetric, non-negative, 0-diagonal, and b ≥ 0). Our results regarding these
functions is of potential interest for non-convex quadratic programming.

5



1.5. Preliminaries

Discrete quadratic diversity functions are a very broad family and the associated problem
DivMax is ostensibly intractable in the sense that it includes the densest subgraph problem
[11]. However, for metric diversity functions (remote-clique function when A forms a metric),
there is a 2-approximation subject to a cardinality constraint [39, 68]. Moreover, this has been
generalized to the case of matroid constraint [1, 11]. They give a 10.22-approximation for
maximizing these functions subject to a matroid constraint. In [11], Borodin et al consider the
maximization of the sum of a monotone submodular function and a metric diversity function
subject to a matroid constraint. They show that the local search algorithm achieves a 2-
approximation. Their technique carries over to the weaker notion of σ-semi-metric diversity
functions (that is, satisfying a σ-approximate triangle inequality for σ ≥ 1); in [84] this analysis
is shown to yield a 2σ-approximation under a cardinality constraint and a 2σ2-approximation
under a matroid constraint. More generally, Borodin et al. [12, 13] introduce the class of
proportionally submodular (monotone) functions which include these metric diversity functions
as well as monotone submodular functions. Ultimately, we define the parameterized class of
γ-meta submodular funtcions which includes these well-known function classes including meta-
submodular functions (γ = 0), proportionally submodular (γ = 1), and diversity functions
based on negative-type distances or Jensen-Shannon divergence (both γ = 2) and (semi-)metric
diversity functions.

The preceding results motivate the key impetus for our work, namely, to explain and explore
the reasons for the fortunate cases when supermodular maximization is actually tractable. We
argue that a one-sided smoothness parameter governs the degree to which we can approximate
these problems. Two driving questions become: (Q1) Find a parameterized family of supermod-
ular functions which contains metric, and more generally σ-semi-metric, diversity functions and
remains tractable in terms of σ. (Q2) A second motivating question is to find a parameterized
tractable family of monotone set functions which includes all monotone submodular functions
and the aforementioned diversity functions.

In Chapter 2, we investigate these questions from a continuous optimization perspective.
In Chapter 3, we connect these with the corresponding discrete optimization problems by
presenting rounding algorithms. In Chapter 4, we focus on discrete algorithms but interestingly,
we use continuous properties the analysis of these algorithms. In Chapter 5, we study the
maximization of a special class of our functions in the distributed setting and investigate one
of its applications.

1.5 Preliminaries

In this section, we discuss some basic properties of set functions and their multi-linear extensions
which are widely used in this work. The proofs are mainly algebraic and the reader can skip
them.

We widely use the gradient and the Hessian of the multi-linear extension in the analysis of
our results. The following lemma gives a description of the gradient and the Hessian at point
x.
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Lemma 1 ([81]). Let F be the multi-linear extension of a set function f . Then

∇iF (x) =
∑

R⊆[n]−i

[
(f(R+ i)− f(R))

∏
v∈R

xv
∏

v∈[n]\(R+i)

(1− xv)
]
, (1.15)

and

∇2
ijF (x)

=
∑

R⊆[n]−i−j

[f(R+ i+ j)− f(R+ i)− f(R+ j) + f(R)]
∏
v∈R

xv
∏

v∈[n]\(R+i+j)

(1− xv) (1.16)

Proof. One can see that

F (x) =
∑
R⊆[n]

f(R)px(R)

= xi
∑

R⊆[n]−i

[
f(R+ i)

∏
v∈R

xv
∏

v∈[n]\(R+i)

(1− xv)
]

+ (1− xi)
∑

R⊆[n]−i

[
f(R)

∏
v∈R

xv
∏

v∈[n]\(R+i)

(1− xv)
]
.

Therefore we have

∇iF (x) =
∑

R⊆[n]−i

[
(f(R+ i)− f(R))

∏
v∈R

xv
∏

v∈[n]\(R+i)

(1− xv)
]
.

For the second part of the lemma, we use a similar formulation of F (x).

F (x) = xixj
∑

R⊆[n]−i−j

f(R+ i+ j)
∏
v∈R

xv
∏

v∈[n]\(R+i+j)

(1− xv)

+ xi(1− xj)
∑

R⊆[n]−i−j

f(R+ i)
∏
v∈R

xv
∏

v∈[n]\(R+i+j)

(1− xv)

+ (1− xi)xj
∑

R⊆[n]−i−j

f(R+ j)
∏
v∈R

xv
∏

v∈[n]\(R+i+j)

(1− xv)

+ (1− xi)(1− xj)
∑

R⊆[n]−i−j

f(R)
∏
v∈R

xv
∏

v∈[n]\(R+i+j)

(1− xv)

This formulation implies the second part of the lemma.

The following lemma gives a description of the gradient and the Hessian on integral points.

Lemma 2. Let F be the multi-linear extension of a set function f . Then

∇iF (1S) = f(S + i)− f(S − i), (1.17)

and

∇2
ijF (1S) = ∇jF (1S+i)−∇jF (1S−i)

= f(S + i+ j)− f(S + i− j)− f(S − i+ j) + f(S − i− j)
(1.18)
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Proof. When x = 1S , the only non-zero summand of (1.15) in Lemma 1 is for R = S − i.
Therefore

∇iF (1S) = f((S − i) + i)− f(S − i).

The result is concluded by noting that S+ i = (S− i) + i. For the second part, we can see that
when x = 1S , the only non-zero summand of (1.16) in Lemma 1 is for R = S− i− j. Therefore

∇2
ijF (1S) = f((S − i− j) + i+ j)− f((S − i− j) + i)− f((S − i− j) + j) + f(S − i− j).

Checking that (S−i−j)+i+j = S+i+j, (S−i−j)+i = S+i−j, and (S−i−j)+j = S−i+j
concludes the result.

For the brevity of notation, we define the following.

Definition 2. We define Bi(S) := ∇iF (1S) = f(S + i)− f(S − i) which is called the marginal
gain of adding i to S. We also define

Aij(S) := ∇2
ijF (1S) = f(S + i+ j)− f(S + i− j)− f(S − i+ j) + f(S − i− j),

which is called a second-order difference for i, j ∈ [n].

One can see that a function is submodular if and only if Aij(S) ≤ 0 for any i, j ∈ [n], and
S ⊆ [n] [71]. The following result formulates the gradient and the Hessian of the multi-linear
extension in terms of the new notation.

Corollary 1. Let F be the multi-linear extension of a set function f . Then

∇iF (x) =
∑
R⊆[n]

Bi(R)px(R),

and

∇2
ijF (x) =

∑
R⊆[n]

Aij(R)px(R)

Proof. First note that Bi(R+ i) = Bi(R). Now by Lemma 1 we have

∇iF (x) =
∑

R⊆[n]−i

(f(R+ i)− f(R))
∏
v∈R

xv
∏

v∈[n]\(R+i)

(1− xv)

= xi
∑

R⊆[n]−i

(f(R+ i)− f(R))
∏
v∈R

xv
∏

v∈[n]\(R+i)

(1− xv)

+ (1− xi)
∑

R⊆[n]−i

(f(R+ i)− f(R))
∏
v∈R

xv
∏

v∈[n]\(R+i)

(1− xv),
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where the second equality holds because xi + (1− xi) = 1. Hence,

∇iF (x) =
∑

R⊆[n]−i

(f(R+ i)− f(R))
∏

v∈R+i

xv
∏

v∈[n]\(R+i)

(1− xv)

+
∑

R⊆[n]−i

(f(R+ i)− f(R))
∏
v∈R

xv
∏

v∈[n]\R

(1− xv)

=
∑

R⊆[n]−i

Bi(R+ i)px(R+ i) +
∑

R⊆[n]−i

Bi(R)px(R)

=
∑
R⊆[n]

Bi(R)px(R).

For the second part, we note that xixj + (1− xi)xj + xi(1− xj) + (1− xi)(1− xj) = 1, and
Aij(R+ i+ j) = Aij(R+ i) = Aij(R+ j) = Aij(R). Therefore by Lemma 1, we have

∇2
ijF (x) =

∑
R⊆[n]−i−j

(f(R+ i+ j)− f(R+ i)− f(R+ j) + f(R))
∏
v∈R

xv
∏

v∈[n]\(R+i+j)

(1− xv)

= xixj
∑

R⊆[n]−i−j

Aij(R+ i+ j)
∏
v∈R

xv
∏

v∈[n]\(R+i+j)

(1− xv)

+ (1− xi)xj
∑

R⊆[n]−i−j

Aij(R+ j)
∏
v∈R

xv
∏

v∈[n]\(R+i+j)

(1− xv)

+ xi(1− xj)
∑

R⊆[n]−i−j

Aij(R+ i)
∏
v∈R

xv
∏

v∈[n]\(R+i+j)

(1− xv)

+ (1− xi)(1− xj)
∑

R⊆[n]−i−j

Aij(R)
∏
v∈R

xv
∏

v∈[n]\(R+i+j)

(1− xv).

Hence,

∇2
ijF (x) =

∑
R⊆[n]−i−j

Aij(R+ i+ j)
∏

v∈R+i+j

xv
∏

v∈[n]\R

(1− xv)

+
∑

R⊆[n]−i−j

Aij(R+ j)
∏

v∈R+j

xv
∏

v∈[n]\(R+i)

(1− xv)

+
∑

R⊆[n]−i−j

Aij(R+ i)
∏

v∈R+i

xv
∏

v∈V \(R+i)

(1− xv)

+
∑

R⊆[n]−i−j

Aij(R)
∏
v∈R

xv
∏

v∈[n]\R

(1− xv),

9



1.5. Preliminaries

and therefore

∇2
ijF (x) =

∑
R⊆[n]−i−j

Aij(R+ i+ j)px(R+ i+ j) +
∑

R⊆[n]−i−j

Aij(R+ j)px(R+ j)

+
∑

R⊆[n]−i−j

Aij(R+ i)px(R+ i) +
∑

R⊆[n]−i−j

Aij(R)px(R)

=
∑
R⊆[n]

Aij(R)px(R).

The following result describes the connection between the terms Aij and Bi. One can see
it as a discrete integral formula.

Lemma 3. Let f : 2[n] → R be a normalized set function (i.e., f(∅) = 0), i ∈ [n], and
R = {v1, . . . , vr} ⊆ [n]. Moreover, let Rm = {v1, . . . , vm} for 1 ≤ m ≤ r and R0 = ∅. Then

Bi(R) = f({i}) +
r∑
j=1

Aivj (Rj−1). (1.19)

Proof. First, we consider the case where i /∈ R. Then Bi(R) = f(R + i) − f(R) and the right
hand side of (1.19) is equal to

f(Rr−1 + i+ vr)− f(Rr−1 − i+ vr)− f(Rr−1 + i− vr) + f(Rr−1 − i− vr)
+ f(Rr−2 + i+ vr−1)− f(Rr−2 − i+ vr−1)− f(Rr−2 + i− vr−1) + f(Rr−2 − i− vr−1)
+ · · ·
+ f(R1 + i+ v2)− f(R1 − i+ v2)− f(R1 + i− v2) + f(R1 − i− v2)
+ f(R0 + i+ v1)− f(R0 − i+ v1)− f(R0 + i− v1) + f(R0 − i− v1)
+ f({i})
= f(R+ i)− f(R)− f(Rr−1 + i) + f(Rr−1)

+ f(Rr−1 + i)− f(Rr−1)− f(Rr−2 + i) + f(Rr−2)

+ · · ·
+ f(R2 + i)− f(R2)− f(R1 + i) + f(R1)

+ f(R1 + i)− f(R1)− f(R0 + i) + f(R0)

+ f({i})
= f(R+ i)− f(R)

The last equality holds because the third and the fourth elements of each line cancel out the
first and the second element of the next line (except for the last two lines), respectively. For
the last two lines, note that f(R0) = f(∅) = 0 and f(R0 + i) = f({i}).
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Now, we consider the case that i ∈ R. Let i = vj . Then Bi(R) = f(R)− f(R − i) and the
right hand side of (1.19) is equal to

f(Rr−1 + i+ vr)− f(Rr−1 − i+ vr)− f(Rr−1 + i− vr) + f(Rr−1 − i− vr)
+ f(Rr−2 + i+ vr−1)− f(Rr−2 − i+ vr−1)− f(Rr−2 + i− vr−1) + f(Rr−2 − i− vr−1)
+ · · ·
+ f(Rj + i+ vj+1)− f(Rj − i+ vj+1)− f(Rj + i− vj+1) + f(Rj − i− vj+1)

+ f(Rj−1 + i+ vj)− f(Rj−1 − i+ vj)− f(Rj−1 + i− vj) + f(Rj−1 − i− vj)
+ f(Rj−2 + i+ vj−1)− f(Rj−2 − i+ vj−1)− f(Rj−2 + i− vj−1) + f(Rj−2 − i− vj−1)
+ · · ·
+ f(R1 + i+ v2)− f(R1 − i+ v2)− f(R1 + i− v2) + f(R1 − i− v2)
+ f(R0 + i+ v1)− f(R0 − i+ v1)− f(R0 + i− v1) + f(R0 − i− v1)
+ f({i})

Now note that for any set S, S+ i− i 6== S− i+ i. Hence the right hand side of (1.19) is equal
to

f(R)− f(R− i)− f(Rr−1) + f(Rr−1 − i)
+ f(Rr−1)− f(Rr−1 − i)− f(Rr−2) + f(Rr−2 − i)
+ · · ·
+ f(Rj+1)− f(Rj+1 − i)− f(Rj) + f(Rj−1)

+ f(Rj)− f(Rj)− f(Rj−1) + f(Rj−1)

+ f(Rj)− f(Rj−1)− f(Rj−2 + i) + f(Rj−2)

+ · · ·
+ f(R2 + i)− f(R2)− f(R1 + i) + f(R1)

+ f(R1 + i)− f(R1)− f(R0 + i) + f(R0)

+ f({i})
= f(R)− f(R− i).

Like before the equality holds because the last two terms of each line cancels out the first two
terms of the next line except for the last two lines, the first f(Rj) line and the f(Rj+1) line.
The terms of the first f(Rj) line cancel each other out, while the last two terms of the f(Rj+1)
line cancel the first two terms of the second f(Rj) line.

1.6 Our Contributions

In Chapter 2, we introduce the notion of one-sided smoothness which generalizes the convexity
in the forward direction property of the multi-linear extension of submodular functions. We
first see a couple of examples for these functions. Then we show this property is enough to
find an approximate solution for the maximum of an arbitrary monotone continuous function
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subject to a downwards-closed polytope. We improve our approximation factor for a class
of functions that admit non-positive third-order derivatives. We then investigate this newly
introduced smoothness property on the sub-domains of the function. We show that the multi-
linear extension of any monotone set function satisfies the one-sided smoothness condition on
some sub-domain of the function and using this, we present an approximation algorithm for
maximizing such multi-linear extension. We also investigate the sub-domain smoothness for
the class of meta-submodular functions defined by Kleinberg et al.

In Chapter 3, we mostly focus on the integrality gap of the multi-linear extension of one-sided
smooth functions and also rounding algorithms for finding integral solutions. We first investigate
the integrality gap of the multi-linear extension of a general one-sided smooth function. Then
we present a rounding algorithm for functions with non-positive third-order derivatives when
the problem is subject to a cardinality constraint. Then we present two rounding algorithms for
functions with zero third-order derivative (quadratic multi-linear functions). Finally we show
that our rounding gap for these functions is almost tight.

In Chapter 4, by restricting the one-sided smoothness condition to only integral points and
specific directions, we introduce a new class of set functions called γ-meta-submodular (for
γ = 0, it is equivalent to meta-submodular functions defined by Kleinberg et al). We show that
this class of functions contains the set functions with a one-sided smooth multi-linear extension.
We give various examples for γ-meta-submodular functions. Then we give algorithms inspired
by the local search (local swap) algorithm for finding an approximate solution for these functions
subject to a matroid constraint. Like before we improve our approximation factor for functions
with non-positive third-order difference.

In Chapter 5, we consider the maximization of γ-meta-submodular functions in distributed
and streaming settings. We give an approximation algorithm for a specific 1-meta-submodular
function subject to a cardinality constraint in these settings. We see that even this specific
example of γ-meta-submodular functions has interesting applications in machine learning. More
specifically, we show that the multi-label feature selection problem can be modeled as such an
optimization problem. This modeling combined with our distributed algorithm results in the
first distributed method for the multi-label feature selection problem. We then empirically
compare our method with centralized multi-label feature selection methods and see that its
performance is comparable or in some cases is even better than current centralized multi-label
feature selection methods.

At the end of each chapter, we mention some potential directions for future research.

12



Chapter 2

One-Sided Smoothness

In 1978 Fisher et al. [31, 63, 64] gave a 1/2-approximation for max{f(S) : S ∈M} whereM is
a matroid and f is non-negative monotone submodular. In the special case of uniform matroids,
M = {S : |S| ≤ k}, they gave a, provably tight, (1 − 1/e)-approximation. Whether this ratio
could be achieved for general matroids remained open for 35 years. Partly motivated by interest
in the submodular welfare problem, Calinescu, Chekuri, Pál and Vondrak [18, 81] gave such a
(1− 1/e)-approximation algorithm. This was based on a new (non-convex) relaxation followed
by an elegant application of lossless pipage rounding of the fractional solution to a vertex of the
matroid polytope. We examine both phases of their framework for clues to the question (Q1)
on supermodular maximization.

At the heart of their approach is the problem of maximizing the multi-linear extension of
a submodular set function over a downwards-closed polytope. Submodularity in this context
ensures some nice properties for the multi-linear extension. For instance, concavity along the
forward directions is used to bound a Taylor series expansion in the continuous greedy analysis
[81]. Since non-submodular multi-linear extensions will not have this concavity property, we
propose a “smoothness” condition which guarantees an alternative bound based on Taylor
series. A continuously twice differentiable function F : [0, 1]n → R is called one-sided σ-smooth
at x 6= ~0 if for any u ∈ [0, 1]n

uT∇2F (x)u ≤ σ · ||u||1
||x||1

uT∇F (x).

We call such a function F one-sided σ-smooth if it is σ-smooth at any non-zero point of its
domain. One can see that this property captures the concavity in the forward direction for
σ = 0. As we see, approximation algorithms exist for maximizing these nonlinear functions
due to a bound on their second derivatives in terms of their gradient. This is the essential
ingredient in several of the main results. The following result describes a property of one-sided
smoothness that plays a key role in the analysis of both our continuous and discrete (local
search) algorithms.

Lemma 4. Let x ∈ [0, 1]n\{~0}, u ∈ [0, 1]n and ε > 0 such that x+εu ∈ [0, 1]n. Let F : [0, 1]n →
R be a non-negative, monotone function which is one-sided σ-smooth on {y|x + εu ≥ y ≥ x}.
Then

uT∇F (x+ εu) ≤
(
||x+ εu||1
||x||1

)σ
(uT∇F (x)).

Proof. Let g(t) := uT∇F (x+ tu). By the Chain Rule we have g′(t) = uT∇2F (x+ tu)u.
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By one-sided σ-smoothness on {y|x+ εu ≥ y ≥ x}, for any 0 ≤ t ≤ ε,

g′(t) = uT∇2F (x+tu)u ≤ σ ||u||1
||x+ tu||1

uT∇F (x+tu) = σ
||u||1

||x+ tu||1
g(t) ≤ σ ||u||1

||x+ tu||1
(g(t)+c),

for any c > 0. Therefore, using that g(t) + c > 0 for all t (since g(t) ≥ 0), we have

g′(t)

g(t) + c
≤ σ ||u||1
||x+ tu||1

. (2.1)

We integrate both sides of (2.1) with respect to t. On the left hand side we get∫ ε

0

g′(t)

g(t) + c
dt = ln(g(t) + c)

∣∣∣∣ε
0

= ln(
g(ε) + c

g(0) + c
),

and on the right hand side we get

σ

∫ ε

0

||u||1
||x+ tu||1

dt = σ ln(||x+ tu||1)
∣∣∣∣ε
0

= σ ln(
||x+ εu||1
||x||1

),

where we use that ||u||1 =
∑

i ui = d
dt

∑
i(xi + tui) = d

dt ||x+ tu||1.
Therefore ln( g(ε)+cg(0)+c) ≤ σ ln( ||x+εu||1||x||1 ), and hence g(ε) + c ≤

(
||x+εu||1
||x||1

)σ
(g(0) + c). Since this

holds for any c > 0 taking the limit yields the desired result.

Before going further, we give some examples of one-sided σ-smooth functions.

Proposition 1. Let f : 2[n] → R and F be its multi-linear extension. Then f is submodular if
and only if F is one-sided 0-smooth.

Proof. A set function f is submodular if and only if Aij(S) ≤ 0 for all S ⊆ [n] and i, j ∈ [n] [71].
Let f be submodular. Then by Corollary 1,∇2

ijF (x) = ER∼x[Aij(R)] ≤ 0, for any x ∈ [0, 1]n.

It follows that uT∇2F (x)u ≤ 0 for any u ∈ [0, 1]n, and thus F is one-sided 0-smooth.
For the opposite direction, let F be one-sided 0-smooth and let u = ei + ej . Then

uT∇2F (x)u = 2∇2
ijF (x) ≤ 0 for all x 6= 0. Moreover, by continuity of ∇2F (x), the inequality

also holds at x = 0. We then have that Aij(S) = ∇2
ijF (1S) ≤ 0 for all S ⊆ [n], and thus f is

submodular.

Another example is the multi-linear extension of discrete quadratic functions when the
corresponding distance function is semi-metric. A distance function A is σ-semi-metric (σ ≥ 0)
if A(i, j) ≤ σ(A(i, k) +A(j, k)) for any i, j, and k in [n].

Proposition 2. Let A ∈ Rn×n be a symmetric, 0-diagonal matrix. Let b ∈ Rn and b ≥ 0. Then
F (x) = 1

2x
TAx+ bTx is one-sided 2σ-smooth if A is σ-semi-metric.
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Proof. Note that ∇2F (x) = A and ∇F (x) = Ax+ b. Therefore for any i, j we have

σ(∇iF (x) +∇jF (x)) ≥ σ(
n∑
k=1

A(i, k)xk +
n∑
k=1

A(j, k)xk) =
n∑
k=1

σ(A(i, k) +A(j, k))xk

≥
n∑
k=1

A(i, j)xk = ||x||1A(i, j) = ||x||1∇2
ijF (x),

where the first inequality follows from b ≥ 0 and the last inequality holds because A is σ-semi-
metric. Now we have,

uT∇2F (x)u =
n∑
i=1

n∑
j=1

uiuj∇2
ijF (x) ≤ σ

||x||1

n∑
i=1

n∑
j=1

uiuj(∇iF (x) +∇jF (x))

=
σ

||x||1
(
n∑
i=1

n∑
j=1

uiuj∇iF (x) +
n∑
i=1

n∑
j=1

uiuj∇jF (x))

=
σ

||x||1
(

n∑
i=1

ui∇iF (x)(

n∑
j=1

uj) +

n∑
i=1

ui(

n∑
j=1

uj∇jF (x)))

=
σ

||x||1
(||u||1

n∑
i=1

ui∇iF (x) + ||u||1
n∑
j=1

uj∇jF (x))

= 2σ

(
||u||1
||x||1

)
(uT∇F (x)).

Hence F is one-sided 2σ-smooth.

In the next section, we proceed to investigate the maximization of one-sided σ-smooth
functions.

2.1 Maximizing One-Sided Smooth Functions and Jump-Start
Continuous Greedy

We give an adaptation of the continuous greedy process which yields approximation factors that
are upper-bounded by a function of the smoothness parameter σ. These results are used in a 2-
phase (relax and round) algorithm for maximizing a discrete quadratic function. Interestingly,
however, one-sided smoothness also plays a role in the analysis of a local search algorithm
discussed in the next section.

Algorithm 2.1 is for maximizing a monotone one-sided σ-smooth function over a polytime
separable downwards-closed polytope. Unlike the classical continuous greedy, our algorithm
starts from a non-zero point, which allows us to take advantage of Lemma 4. Because of this,
we call our algorithm jump-start continuous greedy. The algorithm actually can start from zero
for downwards-closed polytopes in which the size of all of the maximal points are the same,
e.g., matroids. The reason is that we know that the algorithm always chooses a maximal point
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2.1. Maximizing One-Sided Smooth Functions and Jump-Start Continuous Greedy

Algorithm 2.1: Jump-start continuous greedy

1 Input: A monotone one-sided σ-smooth function F : [0, 1]n → R≥0, a polytime separable
downwards-closed polytope P , and c ∈ (0, 1)

2 v∗ ← arg maxx∈P ||x||1
3 x(0)← cv∗

4 vmax(x)← arg maxv∈P {vT∇F (x)}
5 for t ∈ [0, 1] do
6 Solve x′(t) = (1− c)vmax(x(t)) with boundary condition x(0) = cv∗

7 return x(1) ;

and after some time our vector will be sizable compare to the maximum point in the polytope.
So using a similar argument to ours, we can get the same bound for such polytopes even if we
start from zero. However, this is not the case for all the polytopes and the size of their maximal
points might be different. For these polytopes, we can’t guarantee that starting from zero, the
size of the vector gets large enough to be able to use Lemma 4. Therefore in general we need
to start from a non-zero point that is within a constant factor of the maximum point in the
polytope.

Theorem 1. Let F : [0, 1]n → R≥0 be a monotone one-sided σ-smooth function. Let c ∈ (0, 1)
and P be a polytime separable, downwards-closed, polytope. If we run the jump-start continuous
greedy process (Algorithm 2.1) then x(1) ∈ P and F (x(1)) ≥ [1− exp (−(1− c)( c

c+1)
σ
)] · OPT

where OPT := max{F (x) : x ∈ P}.

Proof. For each t ∈ [0, 1] we have

x(t) = x(0) + (1− c)
∫ t

0
vmax(x(τ)) dτ = cv∗ + (1− c)

∫ t

0
vmax(x(τ)) dτ. (2.2)

Since P is convex and v∗ ∈ P , we have that x(t) ∈ P as long as y(t) :=
∫ t
0 vmax(x(τ)) dτ ∈ P .

Given that each vmax(x(τ)) ∈ P and also ~0 ∈ P , it follows that y(t) is a convex combination of
points in P , and hence belongs to P .

Let x∗ ∈ P be such that F (x∗) = OPT . Also let x ∈ {x(t) : 0 ≤ t ≤ 1} and u = (x∗−x)∨0,
i.e., x∗ ∨ x = x+ u. We have by Taylor’s Theorem that for some ε ∈ (0, 1):

F (x∗ ∨ x) = F (x) + uT∇F (x+ εu) ≤ F (x) +

(
||x+ εu||1
||x||1

)σ
uT∇F (x)

≤ F (x) +

(
||x+ u||1
||x||1

)σ
uT∇F (x)

where the first inequality follows from Lemma 4. Hence

uT∇F (x) ≥ 1(
||x+u||1
||x||1

)σ (F (x ∨ x∗)− F (x)) ≥ 1(
||x+u||1
||x||1

)σ (OPT − F (x)), (2.3)

where the last inequality follows from monotonicity since then F (x∨ x∗) ≥ F (x∗) = OPT . We
also have that

vmax(x) · ∇F (x) ≥ x∗ · ∇F (x) ≥ u · ∇F (x),

16



2.1. Maximizing One-Sided Smooth Functions and Jump-Start Continuous Greedy

where the first inequality follows by definition of vmax and the fact that x∗ ∈ P , and the second
inequality from the fact that x∗ ≥ u and ∇F ≥ 0. Combining this with (2.3) yields:

vmax(x) · ∇F (x) ≥ 1(
||x+u||1
||x||1

)σ (OPT − F (x)). (2.4)

By the choice of x(0) we have that ||x(0)||1 ≥ c||w||1 for any w ∈ P . Since u ∈ P and x(t) is
non-decreasing in each component (because vmax is always non-negative), we thus have

||x+ u||1
||x||1

≤ 1 +
||u||1
||x||1

≤ 1 +
||u||1
||x(0)||1

≤ 1 +
1

c
=
c+ 1

c
.

Hence we deduce that
1(

||x+u||1
||x||1

)σ ≥ (
c

c+ 1
)σ (2.5)

for any x ∈ {x(t) : 0 ≤ t ≤ 1}. Let us define ρ to be the righthand side quantity above.
Intuitively, (2.4) indicates that the direction vmax makes at least a ρ “fractional progress”
towards OPT.

Moreover, we can use the Chain Rule to get

d

dt
F (x(t)) = ∇F (x(t)) · x′(t) = ∇F (x(t)) · (1− c)vmax(x(t)) ≥ ρ(1− c)[OPT −F (x(t))], (2.6)

where the last inequality follows from (2.4) and (2.5).
We solve the above differential inequality by multiplying by eρ(1−c)t.

d

dt
[eρ(1−c)t · F (x(t))] = ρ(1− c)eρ(1−c)t · F (x(t)) + eρ(1−c)t · d

dt
F (x(t))

≥ ρ(1− c)eρ(1−c)t · F (x(t)) + ρ · eρ(1−c)t(1− c)[OPT − F (x(t))]

= ρ(1− c)eρ(1−c)t ·OPT.

where the inequality follows from Equation (2.6).
Integrating the LHS and RHS of the above equation between 0 and t we get

eρ(1−c)t · F (x(t))− e0 · F (x(0)) ≥ ρ(1− c)OPT
∫ t

0
eρ(1−c)τdτ

= ρ(1− c)OPT · [ e
ρ(1−c)t

ρ(1− c)
− 1

ρ(1− c)
] = OPT · [eρ(1−c)t − 1].

Hence

F (x(t)) ≥ [1− 1

eρ(1−c)t
]OPT +

F (x(0))

eρ(1−c)t
≥ [1− 1

eρ(1−c)t
]OPT,

where the last inequality follows from the fact that F is non-negative. Substituting t = 1 and
ρ = ( c

c+1)σ gives the desired result.
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Our bound depends on the constant number c and also σ. Since c is part of the input, one
question is what is the best value for c. This is answered in the following result.

Proposition 3. For any σ > 0 the best approximation guarantee in Theorem 1 is attained at

c =

√
σ2 + 6σ + 1− (σ + 1)

2
.

Proof. We need to find the maximizer of g(c) = (1− c)( c
c+1)σ where c ∈ [0, 1]. Hence, we solve

g′(c) = 0.

g′(c) =
σcσ−1(c+ 1)σ − (σ + 1)cσ(c+ 1)σ − σ(c+ 1)σ−1cσ + σ(c+ 1)σ−1cσ+1

(c+ 1)2σ
= 0

⇒ σcσ−1(c+ 1)σ−1 − σcσ(c+ 1)σ−1 = cσ(c+ 1)σ

⇒ σcσ−1(c+ 1)σ−1(1− c) = cσ(c+ 1)σ

⇒ σ(1− c) = c(c+ 1)⇒ c2 + (1 + σ)c− σ = 0⇒ c =
−(σ + 1)±

√
σ2 + 6σ + 1

2

The only solution in (0, 1) is −(σ+1)+
√
σ2+6σ+1

2 and this yields the proposition.

2.2 Jump-Start Continuous Greedy for Second-Order Smooth
Functions

If we assume that σ is a constant, then the jump-start continuous greedy finds a constant
factor approximation. However, the approximation factor is exponential in σ, so one immediate
question is that if it is possible to improve it to a polynomial in terms of σ. We conjecture
that this is possible for general one-sided σ-smooth functions. More specifically, we conjecture
that it should be cubic in terms of σ. As a more immediate answer, we improve it to linear for
a special class of one-sided σ-smooth functions that admit non-positive third-order derivative.
This can be considered as having one-sided 0-smoothness for the derivatives. In terms of set
functions, it is related to the class of second-order submodular functions considered in [52].
These are the functions that their marginal gains (derivatives) admit submodularity.

Theorem 2. Let F : [0, 1]n → R≥0 be a monotone one-sided σ-smooth function with non-
positive third order partial derivatives. Let c ∈ (0, 1) and P be a polytime separable, downwards-
closed, polytope. If we run the jump-start continuous greedy process (Algorithm 2.1) then x(1) ∈
P and F (x(1)) ≥ [1− exp (−2c(1−c)

2c+σ )] ·OPT where OPT := max{F (x) : x ∈ P}. In particular,

taking c = 1/2 we get F (x(1)) ≥ [1− exp (− 1
2σ+2)] ·OPT and so F (x(1)) ≥ 1

2σ+3 ·OPT (since
ex ≥ x+ 1 for x < 1).

Proof. For each t ∈ [0, 1] we have

x(t) = x(0) + (1− c)
∫ t

0
vmax(x(τ)) dτ = cv∗ + (1− c)

∫ t

0
vmax(x(τ)) dτ. (2.7)
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2.2. Jump-Start Continuous Greedy for Second-Order Smooth Functions

Since P is convex and v∗ ∈ P , we have that x(t) ∈ P as long as y(t) :=
∫ t
0 vmax(x(τ)) dτ ∈ P .

Given that each vmax(x(τ)) ∈ P and also ~0 ∈ P , it follows that y(t) is a convex combination of
points in P , and hence belongs to P .

Let x∗ ∈ P be such that F (x∗) = OPT . Also let x ∈ {x(t) : 0 ≤ t ≤ 1} and u = (x∗−x)∨0,
i.e., x∗ ∨ x = x + u. By Taylor’s Theorem and non-positivity of the third order derivatives of
F we have

F (x∗ ∨ x) ≤ F (x) + uT∇F (x) +
1

2
uT∇2F (x)u ≤ F (x) +

(
1 +

σ||u||
2||x||

)
uT∇F (x)

≤ F (x) +
(

1 +
σ

2c

)
uT∇F (x),

where the second inequality follows from smoothness, and the third from the fact that ||x(t)|| ≥
||x(0)|| = c||v∗|| ≥ c||u||. Thus

uT∇F (x) ≥
( 2c

2c+ σ

)(
F (x ∨ x∗)− F (x)

)
≥
( 2c

2c+ σ

)(
OPT − F (x)

)
, (2.8)

where the last inequality follows from monotonicity. We also have that

vmax(x) · ∇F (x) ≥ x∗ · ∇F (x) ≥ u · ∇F (x),

where the first inequality follows by definition of vmax and the fact that x∗ ∈ P , and the second
inequality from the fact that x∗ ≥ u and ∇F ≥ 0. Combining this with (2.8) yields:

vmax(x) · ∇F (x) ≥
( 2c

2c+ σ

)(
OPT − F (x)

)
, (2.9)

for any x ∈ {x(t) : 0 ≤ t ≤ 1}. Let us denote ρ = 2c/(2c + σ). We can use the Chain Rule to
get

d

dt
F (x(t)) = ∇F (x(t)) ·x′(t) = ∇F (x(t)) ·(1−c)vmax(x(t)) ≥ ρ(1−c)

[
OPT −F (x(t))

]
, (2.10)

where the last inequality follows from (2.9).
We solve the above differential inequality by multiplying by eρ(1−c)t.

d

dt
[eρ(1−c)t · F (x(t))] = ρ(1− c)eρ(1−c)t · F (x(t)) + eρ(1−c)t · d

dt
F (x(t))

≥ ρ(1− c)eρ(1−c)t · F (x(t)) + ρ · eρ(1−c)t(1− c)[OPT − F (x(t))]

= ρ(1− c)eρ(1−c)t ·OPT.

where the inequality follows from Equation (2.10).
Integrating the LHS and RHS of the above equation between 0 and t we get

eρ(1−c)t · F (x(t))− e0 · F (x(0)) ≥ ρ(1− c)OPT
∫ t

0
eρ(1−c)τdτ

= ρ(1− c)OPT · [ e
ρ(1−c)t

ρ(1− c)
− 1

ρ(1− c)
] = OPT · [eρ(1−c)t − 1].
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Hence

F (x(t)) ≥ [1− 1

eρ(1−c)t
]OPT +

F (x(0))

eρ(1−c)t
≥ [1− 1

eρ(1−c)t
]OPT,

where the last inequality follows from the fact that F is non-negative. Substituting t = 1 and
ρ = 2c/(2c+ σ) gives the desired result.

In the next section, we investigate the smoothness of the multi-linear extension of general
monotone functions.

2.3 Sub-domain Smoothness of General Monotone Set
Functions

In general, we do not need the smoothness on the whole domain of the function in order to be
able to find an approximation. Hence, we can look at functions that only admit the one-sided
smoothness on a specific subset of their domain. This sub-domain smoothness, for example,
appears in the multi-linear extension of monotone set functions. In this section, we discuss
the sub-domain smoothness of these functions and provide an adaptation of the jump-start
continuous greedy algorithm that can be used for maximizing the multi-linear extension of a
general monotone set function (Algorithm 2.2).

Proposition 4. Let f : 2[n] → R be a non-negative, monotone function and F be its multi-
linear extension. Let x ∈ [0, 1]n such that xv > 0 for each v ∈ [n]. Then there is a σ ≥ 0, such
that F is one-sided σ-smooth at x. Moreover, let z ∈ [0, 1]n whose smallest component value is
zmin > 0. Then F is n

zmin
-smooth on {x : 1 ≥ x ≥ z}.

Proof. Let i, j ∈ [n]. By Lemma 1 we have

∇2
ijF (x) =

∑
R⊆[n]

Aij(R)px(R) =
∑
R⊆[n]

(Bi(R+ j)−Bi(R− j))px(R)

=
∑
R⊆[n]

Bi(R+ j)px(R)−
∑
R⊆[n]

Bi(R− j)px(R).

We first show that there is γij > 0 such that

||x||1∇2
ijF (x) ≤ γij(∇iF (x) +∇jF (x)). (2.11)

Since f is monotone, the right hand side is non-negative. Hence, if ∇2
ijF (x) is non-positive, the

inequality holds for any γij > 0. Therefore, we assume that ∇2
ijF (x) is positive which implies
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2.3. Sub-domain Smoothness of General Monotone Set Functions

that
∑

R⊆[n]Bi(R+ j)px(R) > 0 by monotonicity. Hence

0 < ∇2
ijF (x) ≤

∑
R⊆[n]

Bi(R+ j)px(R)

=
∑

R⊆[n]−j

Bi(R+ j)px(R) +
∑

R⊆[n]−j

Bi((R+ j) + j)px(R+ j)

=
∑

R⊆[n]−j

Bi(R+ j)(px(R) + px(R+ j)) =
∑

R⊆[n]−j

Bi(R+ j)(
1− xj
xj

px(R+ j) + px(R+ j))

=
∑

R⊆[n]−j

Bi(R+ j)(
1

xj
px(R+ j)) =

1

xj

∑
R⊆[n]−j

Bi(R+ j)px(R+ j)

≤ 1

xj
(
∑

R⊆[n]−j

Bi(R)px(R) +
∑

R⊆[n]−j

Bi(R+ j)px(R+ j)) =
1

xj

∑
R⊆[n]

Bi(R)px(R)

=
1

xj
∇iF (x).

Hence, we conclude that∇iF (x) ≥ ∇2
ijF (x) and so if∇2

ijF (x) is positive, then∇iF (x)+∇jF (x)

is also positive. Now, set γij = 0 if ∇2
ijF (x) is non-positive and otherwise we set

γij =
||x||1∇2

ijF (x)

∇iF (x) +∇jF (x)
≤ ||x||1

∇2
ijF (x)

(xi + xj)∇2
ijF (x)

=
||x||1
xi + xj

. (2.12)

Let γ = 2 max{i,j}⊆[n] γij . Then for u ∈ [0, 1]n, we have by (2.12)

uT∇2F (x)u =
n∑
i=1

n∑
j=1

uiuj∇2
ijF (x) ≤ 1

||x||1

n∑
i=1

n∑
j=1

γijuiuj(∇iF (x) +∇jF (x))

≤ γ

2

1

||x||1

n∑
i=1

n∑
j=1

uiuj(∇iF (x) +∇jF (x))

=
γ

2

1

||x||1
(

n∑
i=1

n∑
j=1

uiuj∇iF (x) +

n∑
i=1

n∑
j=1

uiuj∇jF (x))

=
γ

2

1

||x||1
(

n∑
i=1

ui∇iF (x)(

n∑
j=1

uj) +

n∑
i=1

ui(

n∑
j=1

uj∇jF (x)))

=
γ

2

1

||x||1
(||u||1

n∑
i=1

ui∇iF (x) + ||u||1
n∑
j=1

uj∇jF (x))

= γ

(
||u||1
||x||1

)
(uT∇F (x)).

Now for the second part of the proof we must choose a γ that works for all x ≥ z and each
i, j. By (2.12) it is sufficient to choose γ = maxi,j{ ||x||1xi+xj

: x ∈ [0, 1]n, x ≥ z} ≤ n
zmin

.
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Algorithm 2.2: Jump-start continuous greedy for monotone functions

1 Input: A monotone set function f , its multi-linear extension F , a polytime separable,
downwards-closed polytope P ⊆ [0, 1]n and c ∈ (0, 1).

2 v∗ ← arg maxx∈P ||x||1
3 x(0)← c( 1

||v∗||1+1

1[n]

n + ||v∗||1
||v∗||1+1v

∗)

4 vmax(x)← arg maxv∈P {vT∇F (x)}
5 for t ∈ [0, 1] do

6 Solve x′(t) = (1− c)vmax(x(t)) with boundary condition x(0) = c( 1
||v∗||1+1

1[n]

n + ||v∗||1
||v∗||1+1v

∗)

7 return x(1) ;

Using this sub-domain smoothness property, we show that Algorithm 2.2 finds an approx-
imation for the multi-linear extension of a general monotone set function. The bound is not
good but it is interesting that such an algorithm works for such a general class of functions.

Theorem 3. Let f : 2[n] → R be a non-negative, monotone set function and F be its multi-
linear extension. Let c ∈ (0, 1) and P be a polytime separable, downwards-closed, convex polytope
such that 1{i} ∈ P for any i ∈ [n]. Let σ be the one-sided smoothness parameter on {y|y ≥
c( 1
||v∗||1+1

1[n]

n + ||v∗||1
||v∗||1+1v

∗)} where, v∗ = arg maxx∈P ||x||1. Then Algorithm 2.2 outputs x(1) ∈ P
such that

F (x(1)) ≥ [1− exp (−(1− c)( c

c+ 2
)
σ
)] ·OPT

where OPT := max{F (x) : x ∈ P}.

Proof. We know that 1{i} ∈ P for any i ∈ [n] and so a convex combination of these is also in

the polytope which means
1[n]

n ∈ P . Hence, since v∗ ∈ P and P is convex,

(
1

||v∗||1 + 1

1[n]

n
+
||v∗||1
||v∗||1 + 1

v∗) ∈ P.

For each t ∈ [0, 1] we have

x(t) = x(0) + (1− c)
∫ t

0
vmax(x(τ)) dτ (2.13)

Since P is convex and ( 1
||v∗||1+1

1[n]

n + ||v∗||1
||v∗||1+1v

∗) ∈ P , we have that x(t) ∈ P as long as y(t) :=∫ t
0 vmax(x(τ)) dτ ∈ P . Given that each vmax(x(τ)) ∈ P and also ~0 ∈ P , it follows that y(t) is a

convex combination of points in P , and hence belongs to P .
Let x∗ ∈ P be such that F (x∗) = OPT . Let y ≥ x(0) and u = (x∗−y)∨0, i.e., x∗∨y = y+u.

Note that all the coordinate of x(0) are non-zero. We have by Taylor’s Theorem that for some
ε ∈ (0, 1):

F (x∗ ∨ y) = F (y) + uT∇F (y + εu) ≤ F (y) +

(
||y + εu||1
||y||1

)σ
uT∇F (y)

≤ F (y) +

(
||y + u||1
||y||1

)σ
uT∇F (y)
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where the first inequality follows from Proposition 4 and Lemma 4. Hence

uT∇F (y) ≥ 1(
||y+u||1
||y||1

)σ (F (y ∨ x∗)− F (y)) ≥ 1(
||y+u||1
||y||1

)σ (OPT − F (y)), (2.14)

where the last inequality follows from monotonicity since then F (y ∨ x∗) ≥ F (x∗) = OPT .
The definition of vmax implies that vmax(y)·∇F (y) ≥ x∗ ·∇F (y). Since f is monotonic, ∇F ≥ 0.
Hence since u = (x∗− y)∨ 0 ≤ x∗, we also have x∗ · ∇F (y) ≥ u · ∇F (y). Combining these with
(2.14) yields:

vmax(y) · ∇F (y) ≥ 1(
||y+u||1
||y||1

)σ (OPT − F (y)). (2.15)

By the choice of x(0) we have that for any w ∈ P ,

||x(0)||1 = ||c( 1

||v∗||1 + 1

1[n]

n
+
||v∗||1
||v∗||1 + 1

v∗)||1 = c
||v∗||21 + 1

||v∗||1 + 1
=
c

2

2(||v∗||21 + 1)

||v∗||1 + 1

≥ c

2
||v∗||1 ≥

c

2
||w||1

Since u ∈ P and x(t) is non-decreasing in each component (because vmax is always non-
negative), we thus have

||x(t) + u||1
||x(t)||1

≤ 1 +
||u||1
||x(t)||1

≤ 1 +
||u||1
||x(0)||1

≤ 1 +
2

c
=
c+ 2

c
.

Hence we deduce that
1(

||x(t)+u||1
||x(t)||1

)σ ≥ (
c

c+ 2
)σ

for all x(t). Let us define ρ to be the righthand side quantity above. Intuitively, (2.15) indicates
that the direction vmax makes at least a ρ “fractional progress” towards OPT.
Moreover, we can use the Chain Rule to get

d

dt
F (x(t)) = ∇F (x(t)) ·x′(t) = ∇F (x(t)) · (1− c)vmax(x(t)) ≥ ρ(1− c)[OPT −F (x(t))], (2.16)

where the last inequality follows from Equation (2.15).
We solve the above differential inequality by multiplying by eρ(1−c)t.

d

dt
[eρ(1−c)t · F (x(t))] = ρ(1− c)eρ(1−c)t · F (x(t)) + eρ(1−c)t · d

dt
F (x(t))

≥ ρ(1− c)eρ(1−c)t · F (x(t)) + ρ · eρ(1−c)t(1− c)[OPT − F (x(t))]

= ρ(1− c)eρ(1−c)t ·OPT.

where the inequality follows from Equation (2.16).
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Integrating the LHS and RHS of the above equation between 0 and t we get

eρ(1−c)t · F (x(t))− e0 · F (x(0)) ≥ ρ(1− c)OPT
∫ t

0
eρ(1−c)τdτ

= ρ(1− c)OPT · [ e
ρ(1−c)t

ρ(1− c)
− 1

ρ(1− c)
] = OPT · [eρ(1−c)t − 1].

Hence

F (x(t)) ≥ [1− 1

eρ(1−c)t
]OPT +

F (x(0))

eρ(1−c)t
≥ [1− 1

eρ(1−c)t
]OPT,

where the last inequality follows from the fact that F is nonnegative. Taking t = 1 we get

F (x(1)) ≥ [1− 1

eρ(1−c)
]OPT.

Substituting ρ = ( c
c+2)σ gives the desired result.

In the next section, we investigate the subdomain smoothness of meta-submodular functions
defined by Kleinberg et al [48] and its implication for maximizing them subject to matroid
constraints.

2.4 Maximizing Meta-Submodular Functions of Kleinberg et
al

Kleinberg et al [48] defined meta-submodular functions as set functions that satisfy the sub-
modular property for non-disjoint sets S, T ⊆ [n].

f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T )

As shown in [48], one can see that in terms of our notation, a meta-submodular function sat-
isfies Aij(S) ≤ 0 for any non-empty S ⊆ [n]. This results in a sub-domain smoothness property
for these functions that can be used for maximizing them subject to matroid constraints.

Proposition 5. Let f be a non-negative, monotone, meta-submodular function of Kleinberg et
al [48] and F be its multi-linear extension. Then for any v ∈ [n], F is one-sided 0-smooth on
{x ∈ [0, 1]n : x ≥ 1{v}}.

Proof. By meta-submodularity, for any set R, we have |R|Aij(R) ≤ 0. This means that for any
non-empty R, Aij(R) ≤ 0. Since xv = 1, the probability of picking a set that does not include
v is zero. Therefore, we have

∇2
ijF (x) =

∑
R⊆[n]

Aij(R)px(R) =
∑

R⊆[n]−v

Aij(R+ v)px(R+ v) ≤ 0.

Hence for u ∈ [0, 1]n,

uT∇2F (x)u = 2
∑

{i,j}⊆[n]

uiuj∇2
ijF (x) ≤ 0.
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In the rest of this section, we provide an adaptation of the continuous greedy algorithm
for maximizing these meta-submodular function over a polytime separable, downwards-closed
polytope. We also show that the pipage rounding algorithm can be used to round the solution
of the continuous greedy over a matroid polytope. This generalizes the result of Kleinberg
et al [48] from uniform matroids to general matroid constraints. More specifically, it gives a
(1 − 1

e − o(1))-approximation for maximizing these meta-submodular functions subject to a
matroid constraint.

Theorem 4. There is a randomized (1− 1
e−o(1))-approximation for maximizing a non-negative,

monotone, meta-submodular function of Kleinberg et al subject to a matroid constraint.

Given a matroid M = ([n], I), and an independent set R ∈ I, we denote by MR =
([n]− R, IR) the contraction of M by R. That is, I ∈ IR if and only if R ∪ I ∈ I. We denote
by PR ⊆ [0, 1][n]−R its associated matroid polytope. We also define an extended version of PR,
as P̄R = {x ∈ [0, 1]n : x|R = 0, x|[n]−R ∈ PR}, where x|R ∈ [0, 1]R denotes the restriction of x
to the components in R. That is, P̄R is obtained by extending the contracted polytope PR to
the original space [0, 1]n, and setting all components xi = 0 for i ∈ R.

Theorem 5. Let f be a non-negative monotone 0-meta submodular function and F be its multi-
linear extension. Let M = ([n], I) be a matroid, P (M) its corresponding polytope, and R ∈ I
an independent set. Then, the continuous greedy process described in Algorithm 2.3, outputs a
vector x ∈ P (M) satisfying x ≥ 1R and

F (x) ≥ [1− e−1] ·OPTR

where OPTR := max{F (x) : x ≥ 1R}.

Proof. For each t ∈ [0, 1] we have

x(t) = x(0) +

∫ t

0
vmax(x(τ)) dτ = 1R +

∫ t

0
vmax(x(τ)) dτ. (2.17)

Note that x ∈ P̄R if and only if x is a convex combination x =
∑m

i=1 λi1Si of some indepen-
dent sets Si ∈ IR (i.e. R∪Si ∈ I). Thus, 1R+x = 1R+

∑m
i=1 λi1Si =

∑m
i=1 λi[1R+1Si ] ∈ P (M)

since 1R+1Si ∈ P (M) for each i ∈ [m]. Given that each vmax(x(τ)) ∈ P̄R for each τ , it follows
that (

∫ t
0 vmax(x(τ)) dτ) ∈ P̄R and therefore x(t) ∈ P (M). Moreover, it is clear that x(t) ≥ 1R.

Let U := {y + 1R : y ∈ P̄R}, or equivalently, U = {x ∈ P (M) : x|R = 1R}. Let x, x∗ ∈ U
be such that F (x∗) = OPTR and u = (x∗ − x) ∨ 0, i.e., x∗ ∨ x = x + u. By Theorem 16, we
know that F is one-sided 0-smooth at U . Hence, we have by Taylor’s Theorem that for some
ε ∈ (0, 1):

F (x∗ ∨ x) = F (x) + uT∇F (x+ εu) ≤ F (x) +

(
||x+ εu||1
||x||1

)0

uT∇F (x) = F (x) + uT∇F (x)

where the inequality follows from Lemma 4. Hence

uT∇F (x) ≥ F (x ∨ x∗)− F (x) ≥ OPTR − F (x). (2.18)

25



2.4. Maximizing Meta-Submodular Functions of Kleinberg et al

Algorithm 2.3: Jump-start continuous greedy for contracted matroids

1 Input: A monotone set function f , its multi-linear extension F , a matroid M, an independent
set R, and its extended contracted polytope P̄R

2 x(0)← 1R

3 vmax(x)← arg maxv∈P̄R
{vT∇F (x)}

4 for t ∈ [0, 1] do
5 Solve x′(t) = vmax(x(t)) with boundary condition x(0) = 1R

6 return x(1) ;

We also have that

vmax(x) · ∇F (x) ≥ (x∗ − 1R) · ∇F (x) ≥ u · ∇F (x),

where the first inequality follows by definition of vmax and the fact that x∗−1R ∈ P̄R, and the
second inequality from the fact that x∗ − 1R ≥ u and ∇F ≥ 0. Combining this with (2.18)
yields:

vmax(x) · ∇F (x) ≥ OPTR − F (x). (2.19)

We can now use the Chain Rule to get

d

dt
F (x(t)) = ∇F (x(t)) · x′(t) = ∇F (x(t)) · vmax(x(t)) ≥ OPTR − F (x(t)), (2.20)

where the last inequality follows from Equation (2.19).
We solve the above differential inequality by multiplying by et.

d

dt
[et · F (x(t))] = et · F (x(t)) + et · d

dt
F (x(t)) ≥ et · F (x(t)) + et[OPTR − F (x(t))] = et ·OPTR.

where the inequality follows from Equation (2.20).
Integrating the LHS and RHS of the above equation between 0 and t we get

et · F (x(t))− e0 · F (x(0)) ≥ OPTR
∫ t

0
eτdτ = OPTR · [et − 1].

Hence

F (x(t)) ≥ [1− 1

et
]OPTR +

F (x(0))

et
≥ [1− 1

et
]OPTR,

where the last inequality follows from the fact that F is nonnegative. Taking t = 1 we get

F (x(1)) ≥ [1− 1

e
]OPTR.

This now leads to the following result.
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Algorithm 2.4: Refinement subroutine

Input: A vector x ∈ [0, 1]n and two components i, j ∈ {1, 2, . . . , n}
1 Let S = {S ⊆ V : i ∈ S, j /∈ S}
2 Compute S∗ = arg minS∈S [r(S)− x(S)] and let ξ∗ = r(S∗)− x(S∗)
3 if xj < ξ∗ then
4 xi ← xi + xj , xj ← 0, S′ ← {j}
5 else
6 xi ← xi + ξ∗, xj ← xj − ξ∗, S′ ← S∗

7 Output (x, S′)

Corollary 2. Let f be a non-negative monotone meta-submodular function of Kleinberg et al
and F be its multi-linear extension. LetM = ([n], I) be a matroid, and P (M) its corresponding
polytope. For each i ∈ [n], let xi denote the output of Algorithm 2.3, run with R = {i}, and let
x̄ = arg maxi∈[n] F (xi). Then x̄ ∈ P (M) and

F (x̄) ≥ [1− e−1] ·max{f(S) : S ∈ I}.

Proof. Let O = arg maxS∈I f(S) and i ∈ O. Then 1O ≥ 1{i}, and hence

F (x̄) ≥ F (xi) ≥ (1− 1

e
) ·max{F (x) : x ≥ 1{i}} ≥ (1− 1

e
)F (1O) = (1− 1

e
)f(O).

where the second inequality follows from Theorem 5.

Hence, we can find a (1 − 1/e)-approximate fractional solution by running the continuous
greedy process n times. By standard techniques (see [18, 81]), one may discretize the continuous
greedy process to obtain a finite algorithm achieving a (1− 1/e− o(1))-approximation. In fact,
it may be the case that a more careful analysis provides a clean (1− 1/e)-approximation.

We now discuss a randomized technique that allows to round efficiently in the matroid
polytope. This rounding technique was initially introduced by Ageev and Sviridenko [3], and
later adapted for matroid polytopes by Calinescu et al. [17]. This rounding procedure is known
as randomized pipage rounding and we describe it in Algorithm 2.5 (also note that it uses
Algorithm 2.4 as a subroutine).

By monotonicity we may assume that the output x∗ of the continuous greedy algorithm is
without loss of generality in the base polytope. We then have the following.

Theorem 6. Let f : 2[n] → R≥0 be a meta-submodular set function of Kleinberg et al and
F : [0, 1]n → R≥0 its multilinear extension. Let M be a matroid and x∗ ∈ B(M) be the output
of Corollary 2 over M. Then Algorithm 2.5 outputs in polynomial time a random base B of
M such that E[1B] = x∗ and E[f(B)] ≥ F (x∗).

Proof. It is well known [17] that the randomized pipage rounding algorithm finishes in polyno-
mial time. We next argue that there is no loss (on expectation) in the objective value during
the rounding. Let x∗ be the output of Corollary 2. Hence x∗i∗ = 1 for some i∗ ∈ [n], and by
Proposition 5 it follows that F is 0-smooth over the region R := {x ∈ [0, 1]n : xi∗ = 1}, that is,
∇2
ijF (x) ≤ 0 for all x ∈ R.
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Algorithm 2.5: Pipage rounding

Input: A vector x ∈ [0, 1]n and a matroid polytope P (M)
1 while x not integral do
2 S ← V
3 while S has fractional variables do
4 Choose i, j ∈ S fractional
5 (x+, S+)← Refinement Subroutine (x, i, j)
6 (x−, S−)← Refinement Subroutine (x, j, i)
7 if x = x+ = x− then
8 S ← S ∩ S+

9 else

10 p← ||x+−x||
||x+−x−||

11 With probability p
12 x← x−, S ← S ∩ S−
13 Otherwise
14 x← x+, S ← S ∩ S+

15 Output x

Given any x ∈ R and i∗ 6= i, j ∈ [n], let φx(t) := F (x + t(1{i} − 1{j})). Then φ′′x(t) =
−2∇2

ijF (x+ t(1{i} − 1{j})) ≥ 0, since x+ t(1{i} − 1{j}) ∈ R. Hence φx is convex.
Let x be the current point during the rounding procedure, and i, j be the current changing

coordinates. The next point is then given by x′ = x + t(1{i} − 1{j}), where t is a random
variable such that E[t] = 0. Then conditioning on the current point x and changing coordinates
i, j, by Jensen’s inequality we get E[F (x′|x, i, j)] = E[φx(t)] ≥ φx(0) = F (x). Since this is true
for any choice of i, j that could be modified at that step, the result follows.

Note that Corollary 2 and Theorem 6 now prove Theorem 4.

2.5 Future Work

As we mentioned, we conjecture that a polynomial approximation in terms of σ is possible for
a general one-sided σ-smooth function. This is the most important potential problem from
this section that can be addressed. One way to attack this might be to improve the bound in
Lemma 4.

Another interesting future direction is to find more examples of functions that admit one-
sided smoothness or sub-domain smoothness. We discuss this a little more in Chapter 4.
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Chapter 3

Integrality Gap and Rounding
Algorithms

The continuous problem of maximizing a one-sided smooth function in and by itself is inter-
esting. In combinatorial optimization, however, we are mostly interested in optimizing discrete
set functions. Specifically we are interested in maximizing set functions whose multi-linear
extensions are one-sided smooth. Therefore it is important to know how far the solutions to
jump-start continuous greedy are from feasible discrete solutions. For a subclass of one-sided
smooth functions, we approved this by designing rounding algorithms to actually find an integral
solution based on a fractional solution. For general one-sided smooth functions, we investigate
this directly.

Let I be a set system with the hereditary property and PI be the convex hull of {1S : S ∈ I}.
For a function F : [0, 1][n] → R≥0, we say that the integrality gap of F over PI is α if for any
x ∈ PI , there is a S ∈ I such that F (x) ≤ αF (1S). In this chapter, we first discuss the
integrality gap of set functions with smooth multi-linear extension. We give an upper-bound
for this that compares the best fractional solution with an approximate local optima in the
discrete space. After this, we focus on subclasses of functions that have additional smoothness
conditions on their first-order derivatives. We give three different rounding algorithms for these
functions. We also give worst-case lower-bounds for the integrality gap of such functions. We
also discuss the implications of our rounding results to inapproximability results.

3.1 Integrality Gap of One-sided Smooth Multi-Linear
Extensions Over Matroids

Our first result bounds the integrality gap over a matroid polytope for the multi-linear extension
of a set function when the multi-linear extension is one-sided smooth. The following result
bounds the integrality gap of a set function with a ones-sided smooth multi-linear extension
over a matroid. This result uses an approximate local optima in a discrete space for such a
bound. Hence this implies that a local search (local swap) algorithm that finds an approximate
local optima actually finds an approximation for the problem of maximizing a set function with
a one-sided σ-smooth multi-linear extension subject to a matroid constraint. We investigate
the local search algorithm for a more general class of function in Chapter 4; this requires new
analysis and techniques.

We first provide a key lemma for bounding the Taylor series expansion of smooth multi-
linear extension. Then we show that the local search algorithm finds a solution which is within
O(σ22σ)-approximation of the optimal solution of the matroid polytope.
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3.1. Integrality Gap of One-sided Smooth Multi-Linear Extensions Over Matroids

Lemma 5. Let F : [0, 1]n be a one-sided σ-smooth function where F (~0) ≥ 0. Then xT∇F (x) ≤
(σ + 1)F (x) and xT∇2F (x)x ≤ σ(σ + 1)F (x).

Proof. Given x ∈ [0, 1]n, let hx(t) = F (tx) and gx(t) = xT∇F (tx) where t ∈ R. Note that
gx(t) = h′x(t) and xT∇2F (tx)x = g′x(t). Since F is one-sided σ-smooth, for 0 ≤ t ≤ 1 we have

g′x(t) = xT∇2F (tx)x ≤ σ(
||x||1
||tx||1

)(xT∇F (tx)) = σ
1

t
gx(t).

Therefore,
tg′x(t) ≤ σgx(t),

and integrating both sides, we get∫ 1

0
tg′x(t)dt ≤

∫ 1

0
σgx(t)dt.

Applying the integration by parts formula to the left hand side, we get

tgx(t)

∣∣∣∣1
0

−
∫ 1

0
gx(t)dt ≤ σ

∫ 1

0
gx(t)dt.

It follows that

1 · gx(1)− 0 · gx(0) = xT∇F (x) ≤ (σ + 1)

∫ 1

0
gx(t)dt.

By using gx(t) = h′x(t) we have

xT∇F (x) ≤ (σ+ 1)

∫ 1

0
h′x(t)dt = (σ+ 1)(hx(1)−hx(0)) = (σ+ 1)(F (x)−F (~0)) = (σ+ 1)F (x).

By one-sided σ-smoothness we have

xT∇2F (x)x ≤ σxT∇F (x).

Hence,
xT∇2F (x)x ≤ σ(σ + 1)F (x).

The following integrality gap result also implies that if the multi-linear extension of a set
function is one-sided smooth then the approximate local search algorithm can be used for finding
an approximate solution.

Theorem 7. Let f be a non-negative, monotone set function such that its multi-linear extension
F is one-sided σ-smooth, for some non-negative integer σ. Let M = ([n], I) be a matroid of
rank r and P be its associated polytope. Let x ∈ P be such that ||x||1 = c where c ∈ {1, . . . , r}.
Let S ∈ I of size c be an approximate local optima such that S ⊆ supp(x), i.e., for any a ∈ S
and b ∈ supp(x) \ S such that S − a+ b ∈ I,

(1 +
ε

n2
)f(S) ≥ f(S − a+ b),

where ε > 0. Then if σ = O(c), F (x) ≤ O(σ2σ)f(S) and if σ = ω(c), F (x) ≤ O(σ22σ)f(S).

30
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Proof. Let u = (1S ∨ x) − 1S , i.e. 1S ∨ x = 1S + u. It follows that ||u||1 ≤ ||x||1 = c. By
Taylor’s Theorem and Lemma 4 we have that for some ε ∈ (0, 1)

F (1S ∨ x) = F (1S + u) = F (1S) + uT∇F (1S + εu) ≤ F (1S) + uT∇F (1S)

(
||1S + εu||1
||1S ||1

)σ
.

Using that |S| = c, ε ∈ (0, 1), and ||u||1 ≤ c, we get

F (x) ≤ F (1S ∨ x) ≤ F (1S) + uT∇F (1S)

(
2c

c

)σ
≤ f(S) + 2σuT∇F (1S). (3.1)

Let e ∈ supp(u). Because of the exchange property, there is an a ∈ S such that S − a +
e ∈ I. Because of the selection of S, we know that (1 + ε

n2 )f(S) ≥ f(S − a + e). Hence
ε
n2 f(S) +Ba(S − a) ≥ Be(S − a). Therefore, We have

∇eF (1S) = Be(S) = Be(S − a) +Aae(S − a) ≤ Be(S − a) + σ(
Be(S − a) +Ba(S − a)

c− 1
)

≤ c− 1 + 2σ

c− 1
Ba(S − a) +

(c− 1 + σ)ε

(c− 1)n2
f(S)

Let S = {a1, . . . , ac} such that Ba1(S − a1) ≥ · · · ≥ Bac(S − ac). Bounding Be(S) with
Bai(S − ai) where i is large is better. Let Ri = {ei1, . . . , eiki} be the set of elements in supp(u)
that are exchangeable with ai but are not exchangeable with any of ai+1, . . . , ac. It is obvious
that Ri’s partition supp(u). Let ti =

∑
e∈Ri

ue. By contradiction, we show that if i ≤ c − 1

then
∑i

j=1 tj ≤ i. We know that for R ⊆ [n] and y ∈ P we have
∑

e∈R ye ≤ rM(R) where rM

is the rank function of the matroid. If
∑i

j=1 tj > i then rM(
⋃i
j=1Ri) > i. This means that

there is R ⊆
⋃i
j=1Ri such that |R| ≥ i+ 1 and R ∈ I. Now because of the exchange properties

of matroids, we can add elements of S to R until they are the same size. Call this new set R′.
Let TS = S \ R′ and TR = R′ \ S. |TS | = |TR| = i + 1. Therefore, there is a perfect matching
of exchangeablity between TR and TS [70]. This contradicts our assumption because elements
in
⋃i
j=1Ri are only exchangeable with a1, . . . , ai. Now, we have

uT∇F (1S) =
∑

e∈supp(u)

ue∇eF (1S) ≤
c∑
j=1

∑
e∈Ri

ue(
c− 1 + 2σ

c− 1
Baj (S − aj) +

(c− 1 + σ)ε

(c− 1)n2
f(S))

=
c∑
j=1

tj(
c− 1 + 2σ

c− 1
Baj (S − aj) +

(c− 1 + σ)ε

(c− 1)n2
f(S))

=
c− 1 + 2σ

c− 1
(
c∑
j=1

tjBaj (S − aj)) +
c(c− 1 + σ)ε

(c− 1)n2
f(S). (3.2)

By Lemma 5, we know that

c∑
j=1

Baj (S − aj) = 1
T
S∇F (1S) ≤ (σ + 1)F (1S).
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We also know that Ba1(S − a1) ≥ · · · ≥ Bac(S − ac),
∑c

j=1 tj = ||u||1 ≤ c, and
∑i

j=1 tj ≤ i for
i = 1, . . . , c− 1. Now, we show that

c∑
j=1

tjBaj (S − aj) ≤ (σ + 1)f(S).

We try to find the maximizer of the above. Fix the value of Baj (S − aj)’s. For any j < k, if
we increase the value of tj by ε and decrease the value of tk by ε, the value of the summation
will increase. This means that the maximum happens when t1, . . . , tb||u||1c are equal to one and
td||u||1e is equal to ||u||1 − b||u||1c. Therefore,

c∑
j=1

tjBaj (S − aj) ≤
c∑
j=1

Baj (S − aj) ≤ (σ + 1)f(S).

Therefore, by (3.2), we have

uT∇F (1S) ≤ c− 1 + 2σ

c− 1
(σ + 1)f(S) +

c(c− 1 + σ)ε

(c− 1)n2
f(S).

Hence, if σ = O(c) then uT∇F (1S) ≤ O(σ)f(S) and if σ = ω(c) then uT∇F (1S) ≤ O(σ2)f(S).
Combining this with (3.1) yields the result.

In the next sections, we discuss rounding algorithms for some subclasses of set functions
with a one-sided smooth multi-linear extension.

3.2 Pipage Rounding for Second-Order Smooth Functions

In this section, we consider set functions that have a one-sided σ-smooth multi-linear extension
and the third-order derivatives of their multi-linear extension are non-positive. As we mentioned
before, these functions are related to second-order submodular function defined in [52].

Definition 3 ([52]). A set functions f : 2[n] → R is called second-order-submodular if Bi(S ∪
R)−Bi(S) ≥ Bi(T ∪R)−Bi(T ) for any S ⊆ T , R ⊆ [n] \ T , and i ∈ [n] \ (T ∪R).

In Section 3.5, we show super-constant lower bounds for rounding discrete quadratics over
matroids. This also implies super-constant lower bounds for the functions we consider in this
section. However we show that for uniform matroids, there is a constant-factor rounding algo-
rithm for such functions.

We analyze the pipage rounding algorithm (Algorithm 3.1) for our purpose. This algorithm,
in each round, picks two fractional elements and makes (at lease) one of them integral. In case
of submodular functions, this is a lossless procedure but as we will see in our case it is not.
However we show that the loss is efficiently bounded.

Recall that given a vector x ∈ [0, 1]n and i ∈ [n], we denote by x − i the vector resulting
from setting the i’th coordinate of x to zero. That is, (x− i)j = xj for all j 6= i and (x− i)i = 0.
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Lemma 6. Let f be a set function and F be its multi-linear extension. Let x ∈ [0, 1]n and
i 6= j ∈ [n] such that ∇iF (x− i− j) ≥ ∇jF (x− i− j). Consider the vector y = x+ ε(ei − ej),
where ei denotes the characteristic vector of i ∈ [n], and ε = min{xj , 1− xi}. That is,

yk =


xi + ε = min{1, xi + xj}, k = i

xj − ε = max{0, xi + xj − 1}, k = j

xk, o.w.

Then F (y) + max{0, xixj∇2
ijF (x)} ≥ F (x).

Proof. For any z ∈ [0, 1]n, we have

F (z) =
∑
R⊆[n]

f(R)
∏
v∈R

zv
∏
v/∈R

(1− zv)

= zizj
∑

R⊆[n]−i−j

f(R+ i+ j)
∏
v∈R

zv
∏

v/∈R+i+j

(1− zv)

+ zi(1− zj)
∑

R⊆[n]−i−j

f(R+ i)
∏
v∈R

zv
∏

v/∈R+i+j

(1− zv)

+ (1− zi)zj
∑

R⊆[n]−i−j

f(R+ j)
∏
v∈R

zv
∏

v/∈R+i+j

(1− zv)

+ (1− zi)(1− zj)
∑

R⊆[n]−i−j

f(R)
∏
v∈R

zv
∏

v/∈R+i+j

(1− zv)

= zizj
∑

R⊆[n]−i−j

(
f(R+ i+ j)− f(R+ i)− f(R+ j) + f(R)

) ∏
v∈R

zv
∏

v/∈R+i+j

(1− zv)

+ zi
∑

R⊆[n]−i−j

(
f(R+ i)− f(R)

) ∏
v∈R

zv
∏

v/∈R+i+j

(1− zv)

+ zj
∑

R⊆[n]−i−j

(
f(R+ j)− f(R)

) ∏
v∈R

zv
∏

v/∈R+i+j

(1− zv)

+
∑

R⊆[n]−i−j

f(R)
∏
v∈R

zv
∏

v/∈R+i+j

(1− zv)

= zizj∇2
ijF (z − i− j) + zi∇iF (z − i− j) + zj∇jF (z − i− j) + F (z − i− j).

Note that x− i− j = y − i− j. Also, by definition of ε we have ε ≥ xj − xi, and hence

yiyj = (xi + ε)(xj − ε) = xixj + ε(xj − xi − ε) ≤ xixj .
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3.2. Pipage Rounding for Second-Order Smooth Functions

It follows that

F (x) = xixj∇2
ijF (x− i− j) + xi∇iF (x− i− j) + xj∇jF (x− i− j) + F (x− i− j)

= xixj∇2
ijF (y − i− j) + xi∇iF (y − i− j) + xj∇jF (y − i− j) + F (y − i− j)

≤ xixj∇2
ijF (y − i− j) + yi∇iF (y − i− j) + yj∇jF (y − i− j) + F (y − i− j)

= (xixj − yiyj)∇2
ijF (y − i− j) + yiyj∇2

ijF (y − i− j) + yi∇iF (y − i− j)
+ yj∇jF (y − i− j) + F (y − i− j)
= (xixj − yiyj)∇2

ijF (x− i− j) + F (y)

≤ (xixj − yiyj) max{0,∇2
ijF (x− i− j)}+ F (y)

≤ xixj max{0,∇2
ijF (x− i− j)}+ F (y)

= max{0, xixj∇2
ijF (x)}+ F (y),

where the first inequality follows from the assumption ∇iF (x − i − j) ≥ ∇jF (x − i − j), and
the last equality follows from ∇2

ijF (x− i− j) = ∇2
ijF (x) (see Lemma 1).

Now, using this bound, we are able to analyze the total loss of the pipage rounding algorithm.

Theorem 8. Let f be a non-negative, monotone, second-order-submodular function and F be
its multi-linear extension. Let x ∈ [0, 1]n such that ||x||1 = k. Then Algorithm 3.1 finds S ⊆ [n]
such that |S| = k and 6f(S) ≥ F (x).

Proof. Let z ∈ [0, 1]n and zF be its fractional part (coordinates). Also let z′ be z after one step
of pipage rounding algorithm (Algorithm 8). By Lemma 6, we have

F (z) ≤ F (z′) + max{0, zizj∇2
ijF (z)}. (3.3)

By second-order-submodularity, Lemma 16, and monotonicity, we have

1

2
(zF )T∇2F (z)(zF ) ≤ 1

2
(zF )T∇2F (zF )(zF ) ≤ F (zF ) ≤ F (z).

Therefore,

zizj∇2
ijF (z) = min

{q,q′}⊂supp(zF )
zqzq′∇qq′F (z) ≤ 1(|supp(zF )|

2

)F (z)

Hence, by non-negativity of f , we have

max{0, zizj∇2
ijF (z)} ≤ 1(|supp(zF )|

2

)F (z)

Using this and (3.3), we have (|supp(zF )|
2

)
− 1(|supp(zF )|

2

) F (z) ≤ F (z′) (3.4)
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3.2. Pipage Rounding for Second-Order Smooth Functions

Algorithm 3.1: Pipage rounding for functions with non-positive third-order derivative
under cardinality constraint

1 Input: A fractional solution x = (xi) ∈ [0, 1]n where
∑
i∈[n] xi = k.

2 while the sum of fractional coordinates of x is greater than 2 do
3 xF ← fractional coordinates of x;
4 {i, j} ← arg min{q,q′}⊂supp(xF ) xqxq′∇qq′F (x);

5 if xi + xj ≤ 1 then
6 if ∇iF (x− i− j) ≥ ∇jF (x− i− j) then
7 xi ← xi + xj ;
8 xj ← 0;

9 else
10 xj ← xi + xj ;
11 xi ← 0;

12 else
13 if ∇iF (x− i− j) ≥ ∇jF (x− i− j) then
14 xj ← xi + xj − 1;
15 xi ← 1;

16 else
17 xi ← xi + xj − 1;
18 xj ← 1;

19 xF ← fractional coordinates of x;

20 xI ← integral coordinates of x;
21 {i, j} ← arg max{q,q′}⊂supp(xf )(d(q, q′) + g(q) + g(q′) +

∑
v∈supp(xI)(d(q, v) + d(q′, v)));

22 S ← supp(xI);
23 {i, j} ← arg max{q,q′}⊂supp(xF )Bq(S) +Bq′(S) +Aqq′(S);

24 xi ← 1;
25 xj ← 1;

26 for q ∈ supp(xF )− i− j do
27 xq ← 0;
28 return supp(x);

Let x1 be the initial vector in Algorithm 8 and xi+1 be the vector after i’th iteration of
the loop. Also, let ni = |supp(xi)|. If the loop iterates t times, we have n ≥ n1 > n2 > · · · >
nt ≥ 3 because in each iteration, the number of integral coordinate increases by at least 1, and

||xt||1 > 2 (the loop’s condition). By (3.4), for i = 1, . . . , t, we have F (xi+1) ≥ n2
i−ni−2
ni(ni−1)F (xi).

Let xt+2 be the final vector in the algorithm (it is integral). We show that F (xt+2) ≥ 1
2F (xt+1).

Let xF be the fractional part of the xt+1, xI be its integral part, S = supp(xI), and

{i, j} = arg max
{q,q′}⊂supp(xf )

(Bq(S) +Bq′(S) +Aqq′(S)).

Note that ||xF ||1 = 2 because the norm of the fractional part decreases by at most 1 at any
iteration and also it is always an integer. Therefore, because of the selection of i, j, we have
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3.2. Pipage Rounding for Second-Order Smooth Functions

(
∑

{q,q′}⊂supp(xF )

xqxq′)(Bi(S) +Bj(S) +Aij(S))

≥
∑

{q,q′}⊂supp(xF )

xqxq′(Bq(S) +Bq′(S) +Aqq′(S))

=
∑

{q,q′}⊂supp(xF )

xqxq′Bq(S) +
∑

{q,q′}⊂supp(xF )

xqxq′Bq′(S) +
∑

{q,q′}⊂supp(xF )

xqxq′Aqq′(S)

=
∑

q∈supp(xF )

∑
q′∈supp(xF )

q′ 6=q

xqxq′Bq(S) +
∑

{q,q′}⊂supp(xF )

xqxq′Aqq′(S)

=
∑

q∈supp(xF )

xq(2− xq)Bq(S) +
∑

{q,q′}⊂supp(xF )

xqxq′Aqq′(S)

≥
∑

q∈supp(xF )

xqBq(S) +
∑

{q,q′}⊂supp(xF )

xqxq′Aqq′(S)

= (xF )T∇F (xI) +
1

2
(xF )T∇F (xI)(xF )

The second inequality holds because ||xf ||1 =
∑

q∈supp(xF ) xq = 2 and xq is fractional, i.e.,
xq < 1. By the Lagrange multipliers’ method and the fact that

∑
q∈supp(xF ) xq = 2, we can

conclude that ∑
{q,q}⊂supp(xF )

xqxq′ ≤ 2,

and the equality happens when all xq = 2/(|supp(xF )|). Using non-negativity and monotonicity
of f , the Taylor’s theorem, the above inequalities, and Lemma 3, we have

F (xt+1) = F (xI) + (xF )T∇F (xI) +
1

2
(xF )T∇F (xI)(xF )

≤ 2F (xI) + (
∑

{q,q′}⊂supp(xF )

xqxq′)(Bi(S) +Bj(S) +Aij(S))

= (2−
∑

{q,q′}⊂supp(xF )

xqxq′)F (xI)

+ (
∑

{q,q′}⊂supp(xF )

xqxq′)(F (xI) +Bi(S) +Bj(S) +Aij(S))

= (2−
∑

{q,q′}⊂supp(xF )

xqxq′)F (xI) + (
∑

{q,q′}⊂supp(xF )

xqxq′)F (xI + 1{i,j})

≤ 2F (xI + 1{i,j}) = 2F (xt+2)
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3.3. Quadratic Coverage Rounding for Discrete Quadratic Functions

By the above inequalities, we have

F (xt+2) ≥ (

t∏
i=1

(
ni
2

)
− 1(

ni
2

) )
1

2
F (x1) ≥ (

n∏
i=3

(
i
2

)
− 1(
i
2

) )
1

2
F (x1) ≥ (

n∏
i=3

i2 − i− 2

i(i− 1)
)
1

2
F (x1)

= (

n∏
i=3

(i+ 1)(i− 2)

i(i− 1)
)
1

2
F (x1) =

n+ 1

3(n− 1)
(

n−1∏
i=3

(i− 1)(i+ 1)

(i+ 1)(i− 1)
)
1

2
F (x1)

=
n+ 1

3(n− 1)

1

2
F (x1) ≥ 1

6
F (x1).

In the following sections, we investigate rounding algorithms for general matroid constraints.

3.3 Quadratic Coverage Rounding for Discrete Quadratic
Functions

In this section and the next one, we consider the discrete quadratic functions and their multi-
linear extensions. Let M = ([n], I) be a matroid and PM be its polytope. We consider the
integrality gap for the quadratic program: maxF (x) : x ∈ PM. Here F is a non-negative,
quadratic multi-linear function F (x) = 1

2x
TAx+ bTx such that A, b ≥ 0 and A is a symmetric,

zero diagonal matrix.
This class is of interest for a variety of reasons. It is a natural family since these are just

restrictions to the hypercube of quadratic forms 1
2x

TAx+ bTx. This family also coincides with
the class of second-order-modular functions introduced in [52].

Definition 4 ([52]). A set functions f : 2[n] → R is called second-order modular if Bi(S ∪R)−
Bi(S) = Bi(T ∪R)−Bi(T ) for any S ⊆ T , R ⊆ [n] \ T , and i ∈ [n] \ (T ∪R).

The following lemma characterize the structure of second-order modular functions.

Lemma 7. f is a second-order modular function if and only if there exist symmetric d :
[n]× [n]→ R, and g : [n]→ R such that

f(R) =
∑
{i,j}⊂R

d(i, j) +
∑
i∈R

g(i).

If f is also supermodular (submodular), then d is non-negative (non-positive).

Proof. Sufficiency is easy since

Bi(S ∪R)−Bi(S) = (g(i) +
∑

m∈S∪R
d(m, i))− (g(i) +

∑
m∈S

d(m, i)) =
∑
m∈R

d(m, i)

= (g(i) +
∑

m∈T∪R
d(m, i))− (g(i) +

∑
m∈T

d(m, i))

= Bi(T ∪R)−Bi(T ).
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3.3. Quadratic Coverage Rounding for Discrete Quadratic Functions

To prove necessity, we first show that if i, j ∈ [n] and S ⊆ [n] − i − j then, by second-order
modularity

Bj(S + i)−Bj(S) = Bj([n]− j)−Bj([n]− i− j),

because S ⊆ [n]− i ([n]− i plays the role of T in the definition of second-order modular). Now,
let d(i, j) = Bj([n]− j)−Bj([n]− i− j) and g(i) = Bi(∅). Note that d is symmetric because

d(i, j) = Bj([n]− j)−Bj([n]− i− j) = (f([n])− f([n]− j))− (f([n]− i)− f([n]− i− j))
= (f([n])− f([n]− i))− (f([n]− j)− f([n]− i− j))
= Bi([n]− i)−Bi([n]− i− j) = d(j, i).

For any m, let Rm = {v1, . . . , vm}, and set R0 = ∅. Consider a set R = {v1, . . . , vr}. Then we
have

f(R) =
r−1∑
m=0

(f(Rm + vm+1)− f(Rm)) =
r−1∑
m=0

Bvm+1(Rm)

=
r−1∑
m=0

(
m∑
t=1

(Bvm+1(Rt)−Bvm+1(Rt−1)) +Bvm+1(R0)) telescoping sum

=

r−1∑
m=0

(
m∑
t=1

(Bvm+1([n]− vm+1)−Bvm+1([n]− vt − vm+1)) +Bvm+1(R0))

=

r−1∑
m=0

m∑
t=1

d(vt, vm+1) +

r−1∑
m=0

g(vm+1).

If f is supermodular, i, j ∈ [n], and R ⊆ [n]− i− j, we have

f(R+ i+ j)− f(R+ i) ≥ f(R+ j)− f(R).

Therefore,

g(j) +
∑
v∈R+i

d(v, j) ≥ g(j) +
∑
v∈R

d(v, j),

which means d(i, j) ≥ 0. Similarly, if f is submodular, d is non-positive.

In the special case when b = 0 and A(u, v) forms a metric, the discrete quadratic class
corresponds to metric diversity functions and, as pointed out, the maximization problem over a
matroid constraint has a 2-approximation [1, 11]. As we established in Proposition 2, discrete
quadratics have interesting behaviour with respect to their one-sided smoothness. The previous
mentioned metric diversity functions have one-sided smoothness σ = 2. Negative type distances
are another important class of distance functions.

Definition 5. Let d : [n] × [n] → R≥0 be a distance function with the corresponding distance
matrix D ∈ Rn×n≥0 where Da,b = d(a, b). We say d is a negative-type distance if for any x ∈ Rn

with ||x||1 = 0 we have xTDx ≤ 0.
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If A is a negative type distance, then the corresponding problems have been shown to admit
a PTAS [19, 20]. Another well-known distance measure is the Jensen-Shannon divergence used
to measure dis-similarity of two probability distributions. Both JS and negative-type distances
have associated smoothness parameter σ = 4.

Proposition 6. Any negative-type distance d : [n]× [n]→ R≥0 is 2-semi-metric.

Proof. Let x = 0.5ea + 0.5eb − ec. We know

xTDx = 0.5d(a, b)− d(a, c)− d(b, c) ≤ 0.

Therefore d(a, b) ≤ 2d(a, c) + 2d(b, c) and d is 2-semi metric.

Jensen-Shannon Divergence is a function which measures dis-similarity between probability
distributions. It is well-known that if d is a JS measure, then

√
d is a metric. Hence JS distances

form a 2-semi-metric by the following result.

Proposition 7. Let d : [n] × [n] → R≥0 be a distance function such that
√
d(·, ·) is a metric.

Then d(·, ·) is a 2-semi-metric.

Proof. By definition, we have √
d(i, j) ≤

√
d(i, k) +

√
d(j, k).

Therefore,
d(i, j) ≤ d(i, k) + d(j, k) + 2

√
d(i, k)d(j, k).

We also know that

d(i, k) + d(j, k)− 2
√
d(i, k)d(j, k) = (

√
d(i, k)−

√
d(j, k))2 ≥ 0.

Hence,
d(i, j) ≤ 2(d(i, k) + d(j, k)).

For general σ ≥ 0, let Oσ denote the family of discrete quadratic functions which are one-
sided σ-smooth. Now that we have seen some examples for such functions, we discuss the
rounding algorithms for them.

Gaps for such quadratic programmes may be unbounded even for graphic matroids if we
allow parallel edges. Fortunately these large gaps transpire due to a simple reason, namely
that the matroids have very small circuits. This is encapsulated in the following integrality gap
upper bound.

Theorem 9. Let F be a non-negative, quadratic multi-linear polynomial and M be a matroid
with rank r and minimum circuit size c ≥ 3. If x∗ ∈ PM, then there is an independent set I of
M such that (3 + 2r

c−2)F (1I) ≥ F (x∗).
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We actually prove the following decomposition result. For x∗ ∈ PM, we define the coverage

of a pair u, v to be the quantity x∗(u)x∗(v). Let Cov ∈ R(n2) be the vector with entries
Cov(u, v) = x∗(u)x∗(v). As F is quadratic it is linear in these coverage values and the vector

x∗: F (x∗) =
∑

u6=v(
A(u,v)

2 )Cov(u, v) +
∑

v b(v)x∗(v). For a set X we say its coverage set is
cov(X) = {{u, v} : u, v ∈ X,u 6= v}. A quadratic coverage of x∗ is a collection C = {1Ii , µi} of
weighted independent sets with properties (1) for each u 6= v,

∑
i:{u,v}⊆cov(Ii) µi ≥ Cov(u, v),

and (2) for each v,
∑

i:Ii3v µi ≥ x
∗(v). Recall that A, b ≥ 0. It follows that

∑
i µiF (1Ii) ≥ F (x∗)

and hence if the size
∑

i µi ≤ K, then some Ii satisfies F (1Ii) ≥
F (x∗)
K . This bound depends on

the fact that entries of A are non-negative. By condition (1) of quadratic coverages, we have∑
i µi1cov(Ii) ≥ Cov and by condition (2),

∑
i µi1Ii ≥ x∗. Therefore, for such a collection we

have
∑

i µiF (1Ii) ≥ F (x∗). This reasoning shows that to deduce Theorem 9, it suffices to find
a quadratic coverage with

∑
i µi ≤ (3 + 2r

c−2).

Theorem 10. Let F (x) = 1
2x

TAx + bTx be a non-negative, quadratic multi-linear polynomial
and M be a matroid with rank r = r([n]) and minimum circuit size c ≥ 3. If x∗ ∈ PM, then it
has a quadratic coverage of size at most 3 + 2r

c−2 .

Proof. We start with an arbitrary representation of x∗ as a convex combination of independent
sets:

∑
i λi1Bi .

First note that Cov(u, v) = (
∑

Bi3u λi)(
∑

Bj3v λj) =
∑

(i,j):Bi3u,Bj3v λiλj . Hence an or-

dered pair (Bi, Bj) contributes λiλj to Cov(u, v) if u ∈ Bi, v ∈ Bj . This implies that if
Bi = Bj , then this contributes exactly λ2i for every u, v ∈ Bi. If Bi 6= Bj , then the unordered
pair {Bi, Bj} contributes to coverages as follows. It contributes 2λiλj for every u, v ∈ Bi ∩ Bj
and λiλj for each uv ∈ δ(Bi−Bj , Bj −Bi, Bi ∩Bj). Here for disjoint node sets X1, X2, . . . , Xp

we define δ(X1, X2, . . . , Xp) to be the set of edges which have endpoints in distinct sets from

the Xi’s. Hence we can express the coverage vector Cov for x∗ in R(n2) as:∑
i

λ2i · 1cov(Bi) +
∑
i<j

λiλj · (2 · 1cov(Bi∩Bj) + 1δ(Bi−Bj ,Bj−Bi,Bi∩Bj)). (3.5)

We now define a quadratic coverage, that is, a weighted collection of independent sets
satisfying conditions (1) and (2). In particular, for each i ≤ j we define a family of independent
sets Ii,j which will take care of all coverages associated with terms λiλj in (3.5). In the case
where i = j, this is easy. We just include the set Bi with weight µi = λ2i . Now consider the
case where i < j which is trickier. For each set I in this family, we always associate the weight
µI = λiλj and so this amounts to finding a family which satisfies∑

I∈Ii,j
1cov(I) ≥ 2 · 1cov(Bi∩Bj) + 1δ(Bi−Bj ,Bj−Bi,Bi∩Bj). (3.6)

We return to this construction later but we note that condition (2) will follow easily as long as
we guarantee that for each v, i and j 6= i, if Bi 3 v, then the family Ii,j includes at least one set
I which contains v. Since we have µI = λiλj for any such I, we derive the desired inequality
(2):

∑
I3v µI ≥

∑
Bi3v(

∑
j λiλj) =

∑
Bi3v λi = x∗(v).
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If we can achieve this construction so that |Ii,j | ≤ K for each i, j, then we have a quadratic
coverage whose size is

∑
i µi+

∑
i<j

∑
I∈Ii,j µI =

∑
i λ

2
i+
∑

i<j λiλj |Ii,j | ≤
∑

i λ
2
i+
∑

i<j λiλjK ≤
1 +K/2. The last inequality follows since the λi are a convex combination.

We now define Ii,j for a fixed pair i, j and show how to find the desired independent sets
Ii,j = {Ii,jk : k = 1, 2, . . . ,K}, where K is defined later. First, if |Bi ∩Bj | ≥ 1, then we include
the sets Bi, Bj . This takes care of the double-coverage of pairs in Bi ∩ Bj as well as any pairs
u, v with u ∈ Bi∩Bj and v ∈ Bi∆Bj . Let Sij = Bi \Bj and Sji = Bj \Bi. Note that the excess
coverage from these sets Bi, Bj is to contribute an extra λiλj to each pair in cov(Sij)∪cov(Sji).
It now remains to cover the edges in δ(Sij , Sji).

Let t = b(c− 1)/2c and m = |Bi ∩Bj | ≥ 0. Decompose Bj \Bi into ` = d(r−m)/te disjoint
independent sets by ripping out sets of size t greedily, possibly the last being smaller than t. Call
these C1, C2, . . . , C`. For each k ≤ `, we extend Ck to an independent set Ri,jk in Bi∆Bj only
adding elements from Bi \Bj . Hence this set will have used all elements of Bi except a subset,

call it Zk, of size at most t. Let Ci,jk = Zk ∪ Ck and note that |Ci,jk | ≤ 2t ≤ c− 1 and hence it

is also independent. We now examine the pairs covered by Ci,jk , Ri,jk . Let u ∈ Ck, v ∈ Bi \ Bj ,
then either u, v is covered by Ri,jk , or v ∈ Zk in which case it is covered by Ci,jk .

Finally, we count the number of sets for a given family. There are two cases depending on
whether Bi∩Bj = ∅ or not. If the intersection is empty, then we just build 2d rt e. Since t ≥ c−2

2 ,
this is at most 2 · (1 + 2r

c−2). In the other case we have m ≥ 1, and we add the sets Bi, Bj up

front and then we add 2d r−mt e more sets. Hence the overall number of sets in this case is at
most 2 + 2 · ( 2r

c−2 −
2
c−2 + 1).

It follows that K ≤ 2 · (2 + 2r
c−2), and thus we have a quadratic coverage of size at most

1 + K
2 ≤ 3 + 2r

c−2 , as we wanted to show.

The bound given in Theorem 9 is good for matroids that do not have small circuits. For
example, in case of uniform matroids, the size of the smallest circuit is one more than the rank
of the matroid. Therefore this bound is actually constant for uniform matroids. However for
general matroids the rank could be large and the size of the smallest circuit be small. In the
next section, we give another bound that works better for such matroids.

3.4 Swap Rounding For Quadratic Multi-Linear Extensions

The swap rounding algorithm is previously used for rounding modular and submodular func-
tions over matroid polytopes and other combinatorial structures [22, 71]. In this section, we
analyze a modified version of the swap rounding algorithm (Algorithm 3.2) and we show that
it finds an integral solution which is an O(1 + σ

r )-approximation of the initial fractional solu-
tion. This algorithm starts from a convex combination of the bases of the matroid and in each
round, it merges two of the bases in the convex combination. Note that by Carathéodory’s
theorem, any maximal point in the matroid polytope can be written as the convex combination
of characteristic vectors of n+ 1 bases [37].

First we define some notation. Let d(S) =
∑
{i,j}⊆S d(i, j) and d(S, S′) =

∑
i∈S
∑

j∈S′ d(i, j)
and g(S) =

∑
i∈S g(i). The following result provides a decomposition of the multi-linear exten-
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Algorithm 3.2: Swap rounding for monotone second-order-modular functions under ma-
troid constraints
1 Input: A matroid M = ([n], I), its base polytope P , and a fractional solution x ∈ P . A set

function f(S) =
∑
i∈S g(i) +

∑
{i,j}⊆S d(i, j).

2 Find λ1 = (λ1, λ2, . . . , λp) and I1 = (I1, I2, . . . , Ip) such that x =
∑p
i=1 λiIi, λi ≥ 0 (for any i),∑p

i=1 λi = 1, and Ii’s are bases of the matroid;
3 I ′1 ← I1;
4 λ′1 ← λ1;
5 for k = 1, . . . , p− 1 do
6 (I ′k+1,Mk)←MergeBases(Ik,λk);

7 λ′k+1 ← λ′k + λk+1;

8 Ik+1 ← (I ′k+1, Ik+2, . . . , Ip);

9 λk+1 ← (λ′k+1, λk+2, . . . , λp);

10 t← arg maxk=1,...,p−1{
∑

(i,j)∈Mk
d(i, j)};

11 (I∗,M∗)←MergeBases((I ′t, It+1),(0.5, 0.5));
12 return arg max{f(I∗), f(I ′p)};

13 Function MergeBases(I = (I1, I2, . . . , Im) , λ = (λ1, λ2, . . . , λm)):
14 M ← ∅;
15 while I1 6= I2 do
16 Pick i ∈ I1 \ I2 and j ∈ I2 \ I1 such that I1 − i+ j ∈ I and I2 − j + i ∈ I;
17 M ←M ∪ {(i, j)};
18 if g(i) + λ1d(i, I1 − i) + λ2d(i, I2 − j) +

∑m
k=3 λkd(i, Ik) ≥

g(j) + λ1d(j, I1 − i) + λ2d(j, I2 − j) +
∑m
k=3 λkd(j, Ik) then

19 I2 ← I2 − j + i;
20 else
21 I1 ← I1 − i+ j;

22 return (I1,M);

23 End Function

sion of a quadratic function based on the convex decomposition of a point to the bases of the
matroid.

Lemma 8. Let f(S) =
∑

i∈S g(i)+
∑
{i,j}⊆S d(i, j) where g : [n]→ R≥0 and d : [n]× [n]→ R≥0

with d(i, i) = 0 for all i ∈ [n]. Let b ∈ Rn be a vector such that bi = g(i) and A ∈ Rn×n be a
matrix such that Aij = d(i, j). Then the multi-linear extension of f is F (x) = 1

2x
TAx + xT b.

Moreover, if x =
∑p

k=1 λk1Ik for some scalars λk’s and subsets Ik ⊆ [n], then

F (x) =

p∑
k=1

λkg(Ik) +

p∑
k=1

λ2kd(Ik) +

p−1∑
k=1

p∑
`=k+1

λkλ`d(Ik, I`). (3.7)
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Proof. For the first part of the lemma note that

F (x) =
∑
S⊆[n]

f(S)
∏
k∈S

xk
∏

k∈[n]\S

(1− xk) =
∑
S⊆[n]

(g(S) + d(S))
∏
k∈S

xk
∏

k∈[n]\S

(1− xk)

=
∑
S⊆[n]

(
∑
i∈S

g(i))
∏
k∈S

xk
∏

k∈[n]\S

(1− xk) +
∑
S⊆[n]

(
∑
{i,j}⊆S

d(i, j))
∏
k∈S

xk
∏

k∈[n]\S

(1− xk)

=
∑
i∈[n]

g(i)
∑
S⊆[n]
i∈S

(
∏
k∈S

xk
∏

k∈[n]\S

(1− xk)) +
∑

{i,j}⊆[n]

d(i, j)
∑
S⊆[n]
{i,j}⊆S

(
∏
k∈S

xk
∏

k∈[n]\S

(1− xk)).

Hence

F (x) =
∑
i∈[n]

g(i)xi
∑

S⊆[n]−i

(
∏
k∈S

xk
∏

k∈[n]−i\S

(1− xk))

+
∑

{i,j}⊆[n]

d(i, j)xixj
∑

S⊆[n]−i−j

(
∏
k∈S

xk
∏

k∈[n]−i−j\S

(1− xk))

=
∑
i∈[n]

g(i)xi +
∑

{i,j}⊆[n]

d(i, j)xixj = xT b+
1

2
xTAx.

To see the second part, observe that

bTx = bT (
∑
k

λk1Ik) =
∑
k

λk(b
T
1Ik) =

∑
k

λkg(Ik),

and

xTAx = (

p∑
k=1

λk1Ik)A(

p∑
`=1

λ`1I`) =

p∑
k,`=1

λkλ`1IkA1I` =

p∑
k,`=1

λkλ`d(Ik, I`)

=

p∑
k=1

λ2kd(Ik, Ik) + 2
∑
k<`

λkλ`d(Ik, I`) = 2

p∑
k=1

λ2kd(Ik) + 2

p−1∑
k=1

p∑
`=k+1

λkλ`d(Ik, I`).

Using this we can bound the loss of each merge in the swap rounding algorithm.

Lemma 9. Let M = ([n], I) be a matroid and P be its corresponding base polytope. Let
F (z) = 1

2z
TAz + zT b where A, b ≥ 0 and A is a symmetric matrix such that its diagonal is

zero. Let f(S) = F (1S) for any S ⊆ [n]. Let x =
∑p

i=1 λi1Ii ∈ P where Ii’s are bases of the
matroid,

∑p
i=1 λi = 1, and λi ≥ 0, for i = 1, . . . , p. Let (I ′,M) be the output of MergeBases

(defined in Algorithm 3.2) on (I1, . . . , Ip) and (λ1, . . . , λp). Let y = (λ1 + λ2)1I′ +
∑p

i=3 λi1Ii.
Then F (x) ≤ F (y) + λ1λ2

∑
(i,j)∈M d(i, j).

Proof. Let I01 = I1 and I02 = I2 (the original inputs of the function). Let Im1 and Im2 be
the resulting I1 and I2 after the m-th iteration of the while loop. Let xm = λ11Im1 + λ21Im2 +
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∑p
k=3 λk1Ik . Let im, jm be the elements we pick at the m-th iteration of the loop. We show that

F (xm−1) ≤ F (xm) + λ1λ2d(im, jm) and this yields the desired result using a simple recursion
argument. Without loss of generality, we assume

g(im) + λ1d(im, I
m−1
1 − im) + λ2d(im, I

m−1
2 − jm) +

p∑
k=3

λkd(im, Ik)

≥ g(jm) + λ1d(jm, I
m−1
1 − im) + λ2d(jm, I

m−1
2 − jm) +

p∑
k=3

λkd(jm, Ik) (3.8)

We have

F (xm−1) = λ1g(Im−11 ) + λ2g(Im−12 ) +

p∑
k=3

λkg(Ik) + λ21d(Im−11 ) + λ22d(Im−12 ) +

p∑
k=3

λ2kd(Ik)

+ λ1λ2d(Im−11 , Im−12 ) + λ1

p∑
k=3

λkd(Im−11 , Ik)

+ λ2

p∑
k=3

λkd(Im−12 , Ik) +

p−1∑
k=3

p∑
k′=k+1

λkλk′d(Ik, Ik′)

= λ1g(Im−11 ) + λ2g(Im−12 − jm) +

p∑
k=3

λkg(Ik) + λ21d(Im−11 ) + λ22d(Im−12 − jm) +

p∑
k=3

λ2kd(Ik)

+ λ1λ2d(Im−11 , Im−12 − jm) + λ1

p∑
k=3

λkd(Im−11 , Ik) + λ2

p∑
k=3

λkd(Im−12 − jm, Ik)

+

p−1∑
k=3

p∑
k′=k+1

λkλk′d(Ik, Ik′) + λ2g(jm) + λ22d(jm, I
m−1
2 − jm) + λ1λ2d(jm, I

m−1
1 − im)

+ λ2

p∑
k=3

λkd(jm, Ik) + λ1λ2d(im, jm)

≤ λ1g(Im−11 ) + λ2g(Im−12 − jm) +

p∑
k=3

λkg(Ik) + λ21d(Im−11 ) + λ22d(Im−12 − jm)

+

p∑
k=3

λ2kd(Ik) + λ1λ2d(Im−11 , Im−12 − jm) + λ1

p∑
k=3

λkd(Im−11 , Ik) + λ2

p∑
k=3

λkd(Im−12 − jm, Ik)

+

p−1∑
k=3

p∑
k′=k+1

λkλk′d(Ik, Ik′) + λ2g(im) + λ22d(im, I
m−1
2 − jm) + λ1λ2d(im, I

m−1
1 − im)

+ λ2

p∑
k=3

λkd(im, Ik) + λ1λ2d(im, jm),

where the first equality follows from Lemma 8 and the inequality holds because of (3.8). By
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the above inequality, and the fact that Im1 = Im−11 and Im2 = Im−12 − jm + im, we have

F (xm−1) ≤ λ1g(Im1 ) + λ2g(Im2 ) +

p∑
k=3

λkg(Ik) + λ21d(Im1 ) + λ22d(Im2 ) +

p∑
k=3

λ2kd(Ik)

+ λ1λ2d(Im1 , I
m
2 ) + λ1

p∑
k=3

λkd(Im1 , Ik) + λ2

p∑
k=3

λkd(Im2 , Ik)

+

p−1∑
k=3

p∑
k′=k+1

λkλk′d(Ik, Ik′) + λ1λ2d(im, jm).

By Lemma 8, the right hand side is equal to F (xm) + λ1λ2d(im, jm) and therefore

F (xm−1) ≤ F (xm) + λ1λ2d(im, jm).

Using these, we can bound the total loss of the swap rounding algorithm in the next theorem.

Theorem 11. Let M([n], I) be a matroid of rank r and P be its corresponding base polytope.
Let F (z) = 1

2z
TAz + zT b where A, b ≥ 0 and A is a symmetric matrix with zero diagonal that

satisfies the σ-semi-metric inequality, i.e., Aij ≤ σ(Aik + Ajk). Let f(S) = F (1S) for any
S ⊆ [n]. Let x ∈ P and S be the output of the modified swap rounding (Algorithm 3.2) on x.
Then F (x) ≤ O(1 + σ

r )f(S).

Proof. Let x =
∑p

i=1 λi1Ii ∈ P where Ii’s are bases of the matroid,
∑p

i=1 λi = 1, and λi ≥ 0,
for i = 1, . . . , p. Let S be the output of the swap rounding (Algorithm 3.2) if it starts from
(I1, . . . , Ip) and (λ1, . . . , λp). Let xk denote the vector corresponding to Ik = (Ik′ , Ik+1, . . . , Ip)
and λk = (λk′ , λk+1, . . . , λp), i.e. xk = λ′k1I′k +

∑p
i=k+1 λi1Ii . By Lemma 9, for k = 1, . . . , n−1,

we have

F (xk) ≤ F (xk+1) + λ′kλk+1

∑
(i,j)∈Mk

d(i, j) ≤ F (xk+1) + λ′kλk+1

∑
(i,j)∈Mt

d(i, j),

where t = arg maxk=1,...,p−1{
∑

(i,j)∈Mk
d(i, j)}. Therefore

F (x1) ≤ F (xp) + (

p−1∑
k=1

λ′kλk+1)
∑

(i,j)∈Mt

d(i, j) = F (xp) + (

p−1∑
k=1

k∑
m=1

λmλk+1)
∑

(i,j)∈Mt

d(i, j)

≤ F (xp) +
1

2

∑
(i,j)∈Mt

d(i, j) = f(I ′p) +
1

2

∑
(i,j)∈Mt

d(i, j), (3.9)

where the last inequality holds since 2
∑p−1

k=1

∑k
m=1 λmλk+1 ≤ (

∑p
k=1 λk)

2 = 1. Now, we bound
the term

∑
(i,j)∈Mt

d(i, j). By definition of Mt, note that Mt ⊆ I ′t × It+1. Using this and
Lemma 8 it follows that∑

(i,j)∈Mt

d(i, j) ≤ d(I ′t, It+1) ≤ 4 · F (
1

2
1I′t

+
1

2
1It+1). (3.10)
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By Lemma 9 and the σ-semi-metric assumption, we also know that

F (
1

2
1I′t

+
1

2
1It+1) ≤ F (1I∗) +

1

4

∑
(i,j)∈M∗

d(i, j)

≤ F (1I∗) +
1

4

∑
(i,j)∈M∗

σ

r − 1

(
d(i, I ′t − i) + d(j, I ′t − i)

)
. (3.11)

Note that none of the edges of M∗ is present in the right hand side summation. Therefore∑
(i,j)∈M∗

(d(i, I ′t − i) + d(j, I ′t − i)) ≤ d(I ′t) + d(I ′t, It+1)−
∑

(i,j)∈M∗
d(i, j)

≤ 4 · F (
1

2
1I′t

+
1

2
1It+1)−

∑
(i,j)∈M∗

d(i, j) ≤ 4F (1I∗) = 4f(I∗).

(3.12)

where the second inequality follows from Lemma 8 and the last inequality holds because of
Lemma 9. Combining (3.10), (3.11), and (3.12), we get∑

(i,j)∈Mt

d(i, j) ≤
(
4 +

4σ

r − 1

)
f(I∗). (3.13)

Hence, by (3.9) and (3.13), we have

F (x1) ≤ f(I ′p) +
(

2 +
2σ

r − 1

)
f(I∗),

and this yields the result.

In the last two sections, we provided two different rounding algorithms for discrete quadratic
functions when we deal with general matroid constraints. We can run both algorithms and take
the best of them. This immediately implies the following theorem.

Theorem 12 (Quadratic Integrality Gap over Matroid). Let f ∈ Oσ be a set function and F
its multi-linear extension. Let M be a matroid of rank r, minimum circuit size c, and matroid
polytope PM. Then there is a polytime algorithm which given x∗ ∈ PM produces an integral
vector 1I ∈ PM such that F (x∗) ≤ O(min{ r

c−2 , 1 + σ
r })f(I) ≤ O(

√
σ)f(I).

These rounding algorithms can be combined with the jump-start continuous greedy (Theo-
rem 2) to conclude the following.

Theorem 13. There is an O(σ3/2)-approximation algorithm for maximizing f ∈ Oσ over a
matroid.

One immediate question is whether we can do better than the provided bounds. In the next
two sections, we show that our bounds are almost tight for both phases of the algorithm: the
jump-start continuous greedy and the rounding.
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3.5 Integrality Gap Lower Bound for Discrete Quadratics

In this section, we describe an example that shows the integrality gap of a quadratic function
with a σ-semi-metric distance over a matroid polytope is Ω(min{ r

c−2 ,
σ
r }) in the worst case,

where r is the rank of the matroid and c is the size of the smallest circuit.

Proposition 8. Let k, t ∈ N with 1 ≤ t ≤ k. There exists a σ-semi-metric diversity function
with multilinear extension F , and a matroid M = ([2k], I) with rank r = k + t − 1 and
minimum circuit size c = 2t, where the integrality gap of F (x) over the matroid polytope PM
is Ω(min{ r

c−2 ,
σ
r }).

Proof. Let Si = {2i − 1, 2i} for 1 ≤ i ≤ k, and S = {S1, S2, . . . , Sk}. We define a matroid
M = ([2k], I) in terms of its circuits as follows. A set C is a circuit ofM if and only if C is the
union of any t sets Si. It is then clear that the minimum size c of a circuit is 2t, and the rank
r of the matroid is k + t− 1. For example, M could be the graphic matroid corresponding to
the graph in Figure 3.1. Circuits here correspond to cycles of size 4, and the dashed lines show
the coefficients of F that are equal to one.

Let

F (x) =
∑
{u,v}∈S

xuxv +
∑

{u,v}∈([2k]×[2k])\S

1

σ
xuxv

. It is straightforward to see that F is the multilinear extension of a σ-semi-metric induced by
a complete graph which has weight 1 on edges from S and weight 1/σ otherwise.

By definition ofM and F , it is clear that any integral solution xI ∈ PM maximizing F will
pick t− 1 pairs from S and then singletons from other pairs. Therefore

F (xI) := max
x∈PM∩{0,1}2k

F (x) = (t− 1) +
1

σ

((r
2

)
− (t− 1)

)
= (1− 1

σ
)(t− 1) +

1

σ

(
r

2

)
=

(σ − 1)(c− 2) + r(r − 1)

2σ
.

On the other hand, x0 = k+t−1
2k 1[2k] ∈ PM and

F (x0) = k(
k + t− 1

2k
)2 +

((2k

2

)
− k
) 1

σ
(
k + t− 1

2k
)2 = k

(k + t− 1

2k

)2(
1 +

2(k − 1)

σ

)
.

Using that r = k + t− 1 and k = r − c
2 + 1 we have

k(
k + t− 1

2k
)2 =

r2

4(r − c
2 + 1)

=
r2

2(2r − c+ 2)
≥ r

4
,

where the last inequality follows since c ≥ 2. Hence, F (x0) ≥ r
4(1 + 2(k−1)

σ ). It follows that the
integrality gap is at least

F (x0)

F (xI)
≥ 1

2
· σr + 2r(k − 1)

(σ − 1)(c− 2) + r(r − 1)
≥ 1

2
· σr

σ(c− 2) + r2
≥ 1

4
·min{ r

c− 2
,
σ

r
}.
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Figure 3.1: Lower bound of the integrality gap for quadratic functions.

3.6 Implications of the Rounding Results and Some Hardness
Results

De Klerk [25] remarks that “approximation algorithms have been studied extensively for com-
binatorial optimization problems, but have not received the same attention for NP-hard con-
tinuous optimization problems”. Theorem 12 implies a conditional hardness for maximizing
quadratics over a simplex, as follows. Since the O( r

c−2) rounding does not depend on σ, it
yields an O(1) rounding for cardinality constraints. Since the multi-linear extension of the
densest subgraph problem is of the form xTAx, the approximability of densest subgraph is
within a constant factor of its continuous relaxation.

Corollary 3. The continuous problem maxxTAx : x ∈ ∆ is asymptotically as hard as the
densest subgraph problem, where ∆ is a simplex and A is a non-negative, symmetric matrix.

The next result addresses the hardness of approximating the maximum of a σ-semi-metric
diversity function.

Theorem 14. Assuming the Planted Clique Conjecture: (1) for any constant σ ≥ 1, it is hard
to approximate the maximum of a σ-semi-metric function subject to a cardinality constraint
within a factor of 2σ − ε for any ε > 0 and (2) for a super-constant σ, there is no constant
factor (polytime) approximation algorithm for maximizing a σ-semi-metric function subject to
a cardinality constraint.

Proof. The Planted Clique problem asks for an algorithm to distinguish between the following
graphs with probability of at least 3/4: 1) A graph drawn from G(n, 1/2), 2) A graph drawn
from G(n, 1/2) and then a clique of size n1/2−δ is planted in it (δ > 0) [44]. The planted clique
conjecture states that there is no polynomial time algorithm to do this task [6, 43]. It has been
shown that assuming the planted clique conjecture, it is hard to approximate the maximum of
a metric diversity function within a factor better than 2 [8, 11].

Given a graph G, in the densest k-subgraph problem we need to find an induced subgraph of
size k with the maximum number of edges. Let R be a subset of vertices of G and E(R) be the
number of edges in the induced subgraph ofR. The density ofR is defined as ρ(R) = E(R)/

(|R|
2

)
.

Alon et al. [6] showed that if there is no polynomial time algorithm for the planted clique problem
for a planted clique of size n1/3, then there is no polynomial time algorithm for distinguishing
between a graph G1 of size n that contains a clique of size n1/3, and a graph G2 of the same
size in which the density of every subset of vertices of size n1/3 is at most δ > 0.
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We can reduce the densest k-subgraph problem to σ-semi-metric function maximization in
the following way. Consider an instance of densest k-subgraph (k = n1/3) on graph G with
vertex set [n]. Create the distance function d : [n] × [n] → R. If there is an edge between
i, j ∈ [n] in G, set d(i, j) = 2σ, otherwise set d(i, j) = 1. It is easy to see that this distance
function is a σ-semi-metric. Let f(R) =

∑
{i,j}⊆R d(i, j). If |R| = k, we have

f(R) = 2σE(R) + (

(
k

2

)
− E(R)).

We know
(
k
2

)
≥ E(R). Therefore

2σE(R) ≤ f(R) ≤ 2σE(R) +

(
k

2

)
,

and dividing both sides by 2σ
(
k
2

)
we get

ρ(R) ≤ f(R)

2σ
(
k
2

) ≤ ρ(R) +
1

2σ
. (3.14)

It is easy to see that
arg max
R⊆[n]
|R|=k

ρ(R) = arg max
R⊆[n]
|R|=k

f(R).

Now, assume that for some fixed constant c ≥ 1 there is a c-factor approximate algorithm for
finding the maximum of σ-semi-metric function (σ is super-constant) and its output on G is S.
Also, let

OPT ∈ arg max
R⊆[n]
|R|=k

ρ(R).

We have

ρ(OPT) ≤ f(OPT)

2σ
(
k
2

) ≤ cf(S)

2σ
(
k
2

) ≤ cρ(S) +
c

2σ
.

Since σ ∈ ω(1), for some n large enough we have that c
2σ ≤

1
2 . Hence ρ(OPT) ≤ cρ(S) + 1

2 . Set
δ = 1

4c and note that δ > 0 is a constant. If G is a graph in which the density of every subset
of vertices of size k is at most δ, then clearly ρ(S) ≤ δ. If G is a graph that contains a clique
of size k, then 1 = ρ(OPT) ≤ cρ(S) + 1

2 , which means ρ(S) ≥ 1
2c = 2δ. This means that our

c-factor approximate algorithm can distinguish between these two graphs which is in contrast
with the planted clique conjecture.

For the first part, given any constant σ, assume there is a (2σ − ε)-factor approximate
algorithm for some ε > 0 for finding the maximum of σ-semi-metric function. Denote its
output on G by S, and let OPT be defined as above. We then have

ρ(OPT) ≤ f(OPT)

2σ
(
k
2

) ≤ (2σ − ε)f(S)

2σ
(
k
2

) ≤ (2σ − ε)ρ(S) +
2σ − ε

2σ
.
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Set δ = ( 1
2σ−ε −

1
2σ )/2 = ε

4σ(2σ−ε) , and note that δ > 0 is a constant. If G is a graph in

which the density of every subset of vertices of size k is at most δ then clearly ρ(S) ≤ δ. If
G is a graph that contains a clique of size k then 1 = ρ(OPT) ≤ (2σ − ε)ρ(S) + 2σ−ε

2σ which
means ρ(S) ≥ 1

2σ−ε −
1
2σ = 2δ. This means that our (2σ− ε)-factor approximate algorithm can

distinguish between these two graphs which is in contrast with the planted clique conjecture
and Alon et al. result.

We note that the jump-start continuous greedy (Theorem 2) followed by the rounding
(Theorem 9) gives an O(σ)-approximation in the case of uniform matroids. This approximation
is asymptotically tight because the planted clique hardness result (Theorem 14) shows that we
cannot expect an approximation better than 2σ in uniform matroids. Moreover, the O(1)
rounding for uniform matroids implies that the approximation factor of the discrete problem
and the continuous problem are effectively (asymptotically) the same. Hence it is hard to
approximate the continuous problem within a factor of o(σ).

Corollary 4. Let A be a matrix corresponding to a σ-semi-metric distance function. Then
it is hard to approximate the continuous problem maxxTAx : ||x||1 ≤ k within a factor of
o(σ). Moreover this implies that the analysis of the jump-start continuous greedy algorithm in
Theorem 2 is asymptotically tight.

3.7 Future Work

In this chapter, we discussed a rounding algorithm for a subclass of functions that have non-
positive third-order derivatives, in the case of uniform matroid. Hence one question is to extend
this to general matroids. We also discussed rounding algorithms for a subclass of functions
that have zero third-order derivatives (discrete quadratics) in case of general matroids. An
important open question is to generalize this to set functions with one-sided σ-smooth multi-
linear extensions without any additional condition on the third-order derivatives.
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Chapter 4

Meta-Submodular Functions

In this section we study more general monotone set functions than the ones that have one-
sided smooth multi-linear extensions. To motivate our approach we consider the definition of
one-sided σ-smoothness restricted to only integral points of a function F instead of its whole
domain. Namely, for any non-empty S ⊆ [n]: uT∇2F (1S)u ≤ σ · ||u||1|S| u

T∇F (1S). If we also
limit our attention to directions u = ei + ej , the inequality becomes

∇2
ijF (1S) ≤ σ · (∇iF (1S) +∇jF (1S)

|S|
). (4.1)

Now suppose that F is the multi-linear extension of a set function f : 2[n] → R≥0, and so
F (1S) = f(S). One may show [81] that ∇iF (1S) = f(S + i) − f(S − i) and ∇2

ijF (1S) =
f(S+ i+j)−f(S+ i−j)−f(S− i+j)+f(S− i−j) = ∇jF (1S+i)−∇jF (1S−i). To abbreviate
notation we write Bi(S) = ∇iF (1S) and Aij(S) = ∇2

ijF (1S) and so (4.1) becomes:

Aij(S) ≤ σ · (Bi(S) +Bj(S)

|S|
). (4.2)

We call a set function f σ-meta-submodular if it satisfies this inequality for any S 6= ∅. One may
view this as the discrete analogue of bounding the second-order term of a Taylor series by the
corresponding first-order term. We primarily focus on monotone functions and so we denote
by Gσ the family of non-negative, monotone set functions which are σ-meta-submodular. Note
that since the Bi’s are non-negative, we then have that Gσ ⊆ Gσ′ if σ < σ′.

We first discuss the structure around the meta-submodular family (see Fig. 4.1). Most
importantly with respect to (Q2) is that Gσ includes all monotone submodular functions and
σ-semi-metric diversity functions. More precisely, the 0-meta-submodular functions coincide
with the class of meta-submodular functions defined by Kleinberg et al [48], which properly
includes all submodular functions.

Proposition 9. f is 0-meta-submodular if and only if it is meta-submodular (by Kleinberg et
al. definition [48]).

Proof. Kleinberg et al [48] show that a set function f is meta-submodular if and only if

f(S + i)− f(S) ≥ f(T + i)− f(T ), ∀∅ 6= S ⊆ T, ∀i /∈ T.

The above is clearly equivalent to

f(S + i)− f(S) ≥ f(S + j + i)− f(S + j), ∀S 6= ∅, ∀i 6= j /∈ S. (4.3)
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Chapter 4. Meta-Submodular Functions

Then

f is 0-meta submodular

⇐⇒ Aij(S) ≤ 0, ∀S 6= ∅, ∀i, j ∈ V
⇐⇒ f(S + i+ j)− f(S + i)− f(S + j) + f(S) ≤ 0, ∀S 6= ∅, ∀i, j ∈ V
⇐⇒ f(S + i)− f(S) ≥ f(S + j + i)− f(S + j), ∀S 6= ∅, ∀i, j ∈ V
⇐⇒ f(S + i)− f(S) ≥ f(S + j + i)− f(S + j), ∀S 6= ∅, ∀i 6= j /∈ S
⇐⇒ (4.3) holds.

Proposition 10. Any second-order-modular function (Definition 4) with a σ-semi-metric dis-
tance function (σ ≥ 1) and a non-negative modular function is a σ-meta submodular function.

Proof. Let f(R) =
∑

q∈R g(q) +
∑
{q,q′}⊆R d(q, q′) be a second-order modular function (by

Lemma 7, it has this form). The proof is by case analysis.

• If i, j /∈ R, we have

|R|Aij(R) = |R|(f(R+ i+ j)− f(R+ i− j)− f(R− i+ j) + f(R− i− j))

= |R|(
∑

q∈R+i+j

g(q) +
∑

{q,q′}⊆R+i+j

d(q, q′)−
∑
q∈R+i

g(q)−
∑

{q,q′}⊆R+i

d(q, q′)

−
∑
q∈R+j

g(q)−
∑

{q,q′}⊆R+j

d(q, q′) +
∑
q∈R

g(q) +
∑

{q,q′}⊆R

d(q, q′))

= |R|d(i, j).

We also have

σ(Bi(R) +Bj(R)) = σ(f(R+ i)− f(R− i) + f(R+ j)− f(R− i))

= σ(
∑
q∈R+i

g(q) +
∑

{q,q′}⊆R+i

d(q, q′)−
∑
q∈R

g(q)−
∑

{q,q′}⊆R

d(q, q′)

+
∑
q∈R+j

g(q) +
∑

{q,q′}⊆R+j

d(q, q′)−
∑
q∈R

g(q)−
∑

{q,q′}⊆R

d(q, q′))

= σg(i) + σg(j) + σ
∑
q∈R

d(i, q) + σ
∑
q∈R

d(j, q).

Therefore |R|Aij(R) ≤ σ(Bi(R) +Bj(R)) because g is non-negative and d is non-negative
σ-semi-metric.
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• If i, j ∈ R, we have

|R|Aij(R) = |R|(f(R+ i+ j)− f(R+ i− j)− f(R− i+ j) + f(R− i− j))

= |R|(
∑
q∈R

g(q) +
∑

{q,q′}⊆R

d(q, q′)−
∑
q∈R−j

g(q)−
∑

{q,q′}⊆R−j

d(q, q′)

−
∑
q∈R−i

g(q)−
∑

{q,q′}⊆R−i

d(q, q′) +
∑

q∈R−i−j
g(q) +

∑
{q,q′}⊆R−i−j

d(q, q′))

= |R|d(i, j).

We also have

σ(Bi(R) +Bj(R)) = σ(f(R+ i)− f(R− i) + f(R+ j)− f(R− i))

= σ(
∑
q∈R

g(q) +
∑

{q,q′}⊆R

d(q, q′)−
∑
q∈R−i

g(q)−
∑

{q,q′}⊆R−i

d(q, q′)

+
∑
q∈R

g(q) +
∑

{q,q′}⊆R

d(q, q′)−
∑
q∈R−j

g(q)−
∑

{q,q′}⊆R−j

d(q, q′))

= σg(i) + σg(j) + 2σd(i, j) + σ
∑

q∈R−i−j
d(i, q) + σ

∑
q∈R−i−j

d(j, q).

Therefore |R|Aij(R) ≤ σ(Bi(R) + Bj(R)) because g is non-negative, d is non-negative
σ-semi-metric, and σ ≥ 1.

• If i ∈ R and j /∈ R, we have

|R|Aij(R) = |R|(f(R+ i+ j)− f(R+ i− j)− f(R− i+ j) + f(R− i− j))

= |R|(
∑
q∈R+j

g(q) +
∑

{q,q′}⊆R+j

d(q, q′)−
∑
q∈R

g(q)−
∑

{q,q′}⊆R

d(q, q′)

−
∑

q∈R−i+j
g(q)−

∑
{q,q′}⊆R−i+j

d(q, q′) +
∑
q∈R−i

g(q) +
∑

{q,q′}⊆R−i

d(q, q′))

= |R|d(i, j).

We also have

σ(Bi(R) +Bj(R)) = σ(f(R+ i)− f(R− i) + f(R+ j)− f(R− i))

= σ(
∑
q∈R

g(q) +
∑

{q,q′}⊆R

d(q, q′)−
∑
q∈R−i

g(q)−
∑

{q,q′}⊆R−i

d(q, q′)

+
∑
q∈R+j

g(q) +
∑

{q,q′}⊆R+j

d(q, q′)−
∑
q∈R

g(q)−
∑

{q,q′}⊆R

d(q, q′))

= σg(i) + σg(j) + σd(i, j) + σ
∑
q∈R−i

d(i, q) + σ
∑
q∈R−i

d(j, q).

Therefore |R|Aij(R) ≤ σ(Bi(R) + Bj(R)) because g is non-negative, d is non-negative
σ-semi-metric, and σ ≥ 1.
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Chapter 4. Meta-Submodular Functions

Another property is that every proportional submodular function (cf. Borodin et al [13]) is
1-meta-submodular.

Proposition 11. Any monotone propotionally submodular function is 1-meta-submodular.

Proof. The proof is by case analysis.

• If i, j /∈ R then using weak submodularity property we have

(|R|+ 2)f(R) + (|R|)f(R+ i+ j) ≤ (|R|+ 1)f(R+ i) + (|R|+ 1)f(R+ j),

which means

|R| · (f(R) + f(R+ i+ j)− f(R+ i)− f(R+ j)) ≤ f(R+ i) + f(R+ j)− 2f(R).

Hence

f(R+ i+ j)− f(R+ i− j)− f(R+ j − i) + f(R− i− j)
= f(R+ i+ j)− f(R+ i)− f(R+ j) + f(R)

≤ f(R+ i)− f(R) + f(R+ j)− f(R)

|R|

=
f(R+ i)− f(R− i) + f(R+ j)− f(R− j)

|R|
.

• If i, j ∈ R then using weak submodularity property we have

(|R| − 2)f(R) + (|R|)f(R− i− j) ≤ (|R| − 1)f(R− i) + (|R| − 1)f(R− j),

which means

|R| · (f(R) + f(R− i− j)− f(R− i)− f(R− j)) ≤ 2f(R)− f(R− i)− f(R− j).

Hence

f(R+ i+ j)− f(R+ i− j)− f(R+ j − i) + f(R− i− j)
= f(R)− f(R− j)− f(R− i) + f(R− i− j)

≤ f(R)− f(R− i) + f(R)− f(R− j)
|R|

=
f(R+ i)− f(R− i) + f(R+ j)− f(R− j)

|R|
.

• If i ∈ R and j /∈ R then using weak submodularity property we have

(|R| − 1)f(R+ j) + (|R|+ 1)f(R− i) ≤ (|R|)f(R) + (|R|)f(R+ j − i),

54



Chapter 4. Meta-Submodular Functions
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Figure 4.1: The meta-submodular families

which means

|R| · (f(R+ j) + f(R− i)− f(R)− f(R+ j − i)) ≤ f(R+ j)− f(R− i)
= f(R+ j)− f(R− j) + f(R+ i)− f(R− i),

where the equality is correct because f(R) = f(R− j) = f(R+ i). Hence

f(R+ i+ j)− f(R+ i− j)− f(R+ j − i) + f(R− i− j)
= f(R+ j)− f(R)− f(R+ j − i) + f(R− i)

≤ f(R+ j)− f(R− i)
|R|

=
f(R+ i)− f(R− i) + f(R+ j)− f(R− j)

|R|
.

Given the performance guarantees of continuous greedy for smooth functions, it is natural
to study the smoothness of multi-linear extensions from the meta-submodular families. First,
one can show that if the multi-linear extension of a set function is one-sided σ-smooth, then
the set function itself is σ-meta-submodular.

Proposition 12. Let f be a set function and F be its multi-linear extension. If F is one-sided
γ-smooth, then f is γ-meta-submodular.

Proof. Let non-empty R ⊆ [n] and i, j ∈ [n]. Consider the inequality of one-sided γ-smoothness
for u = 1{i,j} and x = 1R:

2uiuj∇2Fij(x) ≤ γ ui + uj
||x||1

(ui∇iF (x) + uj∇jF (x))

Since ui = uj = 1, ||x||1 = |R|, ∇2Fij(x) = Aij(R), and∇iF (x) +∇jF (x) = Bi(S) + Bj(S)
we obtain the γ-meta-submodular inequality.
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4.1. One-Sided Smoothness of γ-Meta-Submodular Functions

The converse is not necessarily true however: the multi-linear extension of a σ-meta-
submodular function is not always one-sided σ-smooth. Hence, we prefer to use a different
parameter γ when referring to meta-submodularity. In other words we speak of γ-meta-
submodular set functions and write Gγ . One may think of γ as a discrete smoothness parameter.
In the next section, we investigate the smoothness of γ-meta-submodular functions.

4.1 One-Sided Smoothness of γ-Meta-Submodular Functions

The following result shows that a set function’s multi-linear extension is one-sided smooth
whenever a stronger probabilistic version of (4.2) is satisfied. We call this the expectation
inequality (4.4), where R ∼ x denotes a random set that contains element i independently with
probability xi.

Lemma 10 (Expectation Inequality). Let f be a non-negative, monotone set function and F
be its multi-linear function. Let x ∈ [0, 1]n and γ ≥ 0. If for any i, j ∈ [n] we have

ER∼x[|R|] · ER∼x[Aij(R)] ≤ σ · (ER∼x[Bi(R)] + ER∼x[Bj(R)]), (4.4)

or equivalently (by Lemma 1),

||x||1∇2
ijF (x) ≤ γ(∇iF (x) +∇jF (x)),

then F is one-sided 2γ-smooth at x.

Proof. We have

uT∇2F (x)u =
n∑
i=1

n∑
j=1

uiuj∇2
ijF (x) ≤ γ

||x||1

n∑
i=1

n∑
j=1

uiuj(∇iF (x) +∇jF (x))

=
γ

||x||1
(
n∑
i=1

n∑
j=1

uiuj∇iF (x) +
n∑
i=1

n∑
j=1

uiuj∇jF (x))

=
γ

||x||1
(

n∑
i=1

ui∇iF (x)(

n∑
j=1

uj) +

n∑
i=1

ui(

n∑
j=1

uj∇jF (x)))

=
γ

||x||1
(||u||1

n∑
i=1

ui∇iF (x) + ||u||1
n∑
j=1

uj∇jF (x))

= 2γ

(
||u||1
||x||1

)
(uT∇F (x)).

We have proved that this inequality holds (modulo a constant factor) in the supermodular
case, i.e., for the intersection of supermodular functions and γ-meta-submodular functions. To
prove it, we need the next lemma.
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4.1. One-Sided Smoothness of γ-Meta-Submodular Functions

Lemma 11. Let f : 2[n] → R+ be a non-negative, monotone, supermodular, γ-meta-submodular
set function. Let x ∈ [0, 1]n \ {~0} and R ⊆ [n] such that 1 ≤ |R| < ||x||1. Then for all i, j ∈ [n]
we have

(||x||1 − |R|)Aij(R)px(R) ≤ 2γ
∑

e∈[n]\R

(
Bi(R+ e) +Bj(R+ e)

|R|+ 1
)px(R+ e).

Also, for the empty set,

(||x||1)Aij(∅)px(∅) ≤ 2(γ + 1)
∑
e∈[n]

(Bi({e}) +Bj({e}))px({e}).

Proof. Let |R| = r. Note that r < n because |R| = r < ||x||1. Also, note that if xe = 1 for
some e ∈ [n] \ R then px(R) = 0, which means that the left hand side is zero. In that case,
the inequality holds because f is monotone and the right hand side is non-negative. Hence, we
assume that xe < 1 for all e ∈ [n] \R. We know that∑

e∈[n]

xe = ||x||1.

Therefore, because each xe ≤ 1,∑
e∈[n]\R

xe = ||x||1 −
∑
e∈R

xe ≥ ||x||1 −
∑
e∈R

1 = ||x||1 − |R|.

Hence, since 0 < 1− xe ≤ 1 for all e ∈ [n] \R, we get

(||x||1 − |R|)Aij(R)px(R) ≤
∑

e∈[n]\R

xeAij(R)px(R)

≤
∑

e∈[n]\R

xe
1− xe

Aij(R)px(R)

=
∑

e∈[n]\R

Aij(R)px(R+ e).

Moreover, 2|R| ≥ |R|+ 1 because |R| ≥ 1, and we have∑
e∈[n]\R

Aij(R)px(R+ e) ≤ 2
∑

e∈[n]\R

|R|Aij(R)

|R|+ 1
px(R+ e).

Using the γ-meta-submodularity and supermodularity we have

2
∑

e∈[n]\R

|R|Aij(R)

|R|+ 1
px(R+ e) ≤ 2γ

∑
e∈[n]\R

Bi(R) +Bj(R)

|R|+ 1
px(R+ e)

≤ 2γ
∑

e∈[n]\R

Bi(R+ e) +Bj(R+ e)

|R|+ 1
px(R+ e)
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Combining all of these inequalities yields the first part of the lemma. For the second part of
the lemma, we consider the set {i, j, e}. By Lemma 3 and the γ-meta-submodularity, we have

f({i, j, e}) = Bi({j, e}) +Bj({e}) + f({e})
= Aij({e}) +Bi({e}) +Bj({e}) + f({e})
≤ (γ + 1)(Bi({e}) +Bj({e})) + f({e}).

Also, by Lemma 3, we have

f({i, j, e}) = Bi({j, e}) +Bj({e}) + f({e})
= Aie({j}) +Aij(∅) + f({i}) +Bj({e}) + f({e}).

Therefore

Aie({j}) +Aij(∅) + f({i}) +Bj({e}) + f({e}) ≤ (γ + 1)(Bi({e}) +Bj({e})) + f({e}).

Hence, because f is non-negative, monotone and supermodular, it follows that

Aij(∅) ≤ Aie({j}) +Aij(∅) + f({i}) +Bj({e}) ≤ (γ + 1)(Bi({e}) +Bj({e})). (4.5)

Moreover, because f is non-negative and monotone, we have

Aij(∅) = f({i, j})− f({i})− f({j}) + f(∅) = Bj({i})− f({j})
≤ Bj({i}) +Bi({i}) ≤ (γ + 1)(Bj({i}) +Bi({i})),

and

Aij(∅) = f({i, j})− f({i})− f({j}) + f(∅) = Bi({j})− f({i})
≤ Bi({j}) +Bj({j}) ≤ (γ + 1)(Bi({j}) +Bj({j})).

If xe = 1 for an e ∈ [n] then px(∅) = 0 and the inequality holds because the left hand side is
zero and the right hand side is non-negative (since f is monotone). Therefore, we assume that
xe < 1 for all e ∈ [n]. Combining the above inequalities, we have

(||x||1)Aij(∅)px(∅) =
∑
e∈[n]

xeAij(∅)px(∅)

≤
∑
e∈[n]

xe
1− xe

Aij(∅)px(∅)

=
∑
e∈[n]

Aij(∅)px({e})

≤ (γ + 1)
∑
e∈[n]

(Bi({e}) +Bj({e}))px({e}),

where the last inequality follows from (4.5). This completes the proof.
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Now using this, we conclude the following.

Lemma 12. Let f be a non-negative, monotone, supermodular, γ-meta-submodular set function
and F be its multi-linear function. Then for any x ∈ [0, 1]n \ {~0} and i, j ∈ [n],

||x||1∇2
ijF (x) ≤ (max{3γ, 2γ + 1})(∇iF (x) +∇jF (x)).

Proof. By using Lemma 11 for all the sets of size less than ||x||1, we can write

(||x||1)Aij(∅)px(∅) +
∑
R⊆[n]

1≤|R|<||x||1

(||x||1 − |R|)Aij(R)px(R)

≤ (γ + 1)
∑
e∈[n]

(Bi({e}) +Bj({e}))px({e})

+ 2γ
∑
R⊆[n]

1≤|R|<||x||1

∑
e∈[n]\R

(
Bi(R+ e) +Bj(R+ e)

|R|+ 1
)px(R+ e)

= (γ + 1)
∑
e∈[n]

(Bi({e}) +Bj({e}))px({e}) + 2γ
∑
R⊆[n]

2≤|R|<||x||1+1

(Bi(R) +Bj(R))px(R)

≤ max{γ + 1, 2γ}
∑
R⊆[n]

(Bi(R) +Bj(R))px(R)

= max{γ + 1, 2γ}(∇iF (x) +∇jF (x)), (4.6)

where the equality follows from a simple counting argument, and in the last inequality we used
the monotonicity of f (i.e., the Bi’s are non-negative).
By γ-meta-submodularity, we also have that∑

R⊆[n]
1≤|R|<||x||1

|R|Aij(R)px(R) +
∑
R⊆[n]
|R|≥||x||1

(||x||1)Aij(R)px(R)

≤
∑
|R|≥1

|R|Aij(R)px(R) ≤
∑
|R|≥1

γ(Bi(R) +Bj(R))px(R)

≤
∑
R⊆[n]

γ(Bi(R) +Bj(R))px(R) = γ(∇iF (x) +∇jF (x)). (4.7)

By adding (4.6) and (4.7), we conclude that

||x||1
∑
R⊆[n]

Aij(R)px(R) = ||x||1∇2
ijF (x) ≤ max{2γ + 1, 3γ}(∇iF (x) +∇jF (x)).

Th following theorem is a direct consequence of Lemma 10 and 12.

59



4.2. Local Search for Maximizing Meta-Submodular Functions under Matroid Constraints

Theorem 15. Let f be a supermodular function in Gγ and F be its multi-linear extension.
Then F is one-sided (max{6γ, 4γ + 2})-smooth.

We conjecture that this also holds even without the supermodular condition.

Conjecture 1. Let f ∈ Gγ and F be its multi-linear extension where γ > 0. Then F is
one-sided O(γ)-smooth.

While we do not have the continuous greedy available to us for the general family Gγ ,
ironically one may use a weakened smoothness property to analyze a local search algorithm for
the discrete problem max f(S) : S ∈ M. The weakened property asks for f to be one-sided
smooth on a subdomain which dominates some integral point 1S .

Theorem 16. Let f ∈ Gγ and F be its multi-linear extension. Let α ≥ 1 and S ⊆ [n] be
non-empty. Then F is one-sided 2αγ-smooth on {x|x ≥ 1S , ||x||1 ≤ α|S|}.

Proof. Let y ∈ {x|x ≥ 1S , ||x||1 ≤ c|S|}. First, we show that

||y||1∇2
ijF (y) ≤ γc(∇iF (y) +∇jF (y)).

We know ∇2
ijF (y) =

∑
R⊆[n]Aij(R)py(R). Since y ≥ 1S , py(R) = 0 for any R that is not a

superset of S. Therefore, ∇2
ijF (y) =

∑
R⊆[n]\S Aij(S ∪R)py(S ∪R). We have

||y||1∇2
ijF (y) = ||y||1

∑
R⊆[n]\S

Aij(S ∪R)py(S ∪R) ≤ c|S|
∑

R⊆[n]\S

Aij(S ∪R)py(S ∪R)

≤
∑

R⊆[n]\S

γc|S|
|S ∪R|

(Bi(S ∪R) +Bj(S ∪R))py(S ∪R)

≤
∑

R⊆[n]\S

γc(Bi(S ∪R) +Bj(S ∪R))py(S ∪R)

≤ γc(∇iF (y) +∇jF (y)).

Now, by Lemma 10, we conclude that F is one-sided (2cγ)-smooth at y.

This sub-domain smoothness property is used in a technical analysis to analyze a local
search algorithm for maximizing γ-meta-submodular functions subject to matroid constraints.
We discuss this in the next section.

4.2 Local Search for Maximizing Meta-Submodular Functions
under Matroid Constraints

In this section, we give a very general answer to question (Q2), and for constant values of γ we
obtain a new tractable parameterized class of functions. We show that a local search algorithm
can be used for maximizing γ-meta-submodular functions subject to matroid constraints. We
first need the following lemmas.
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Lemma 13. Let f be a non-negative, monotone, γ-meta-submodular function, F be its multi-
linear function, R ⊂ [n], and x ∈ [0, 1]n such that ||x||1 ≤ |R|. Let u = 1R ∨ x− 1R. Then for
0 ≤ ε ≤ 1

uT∇F (1R + εu) ≤ 24γuT∇F (1R)

Proof. By Theorem 16, we know that F is one-sided 4γ-smooth on A = {y|y ≥ 1R, ||y||1 ≤
2|R|}. Therefore F is one-sided 4γ-smooth on B = {y|1R + εu ≥ y ≥ 1R} because B ⊆ A.
Therefore, the desired result yields by Lemma 4.

Lemma 14. Let f be a non-negative, monotone, γ-meta submodular function and F be its
multi-linear extension. Let R ⊆ [n] such that |R| ≥ 2. Then

1
T
R∇F (1R) =

∑
i∈R

Bi(R− i) ≤ (2(
b |R|2 c

2 + d |R|2 e
2

b |R|2 cd
|R|
2 e

+ 2)γ + 2)f(R) ≤ (9γ + 2)f(R)

Proof. Partition R into two sets of size b |R|2 c and of size d |R|2 e like S and T . Using Theorem 16,

we know that F is one-sided (2(b |R|2 c/d
|R|
2 e + 1)γ)-smooth on {y|1T ≤ y ≤ 1R} and it is one-

sided (2(d |R|2 e/b
|R|
2 c+ 1)γ)-smooth on {y|1S ≤ y ≤ 1R}. Let c = 2(d |R|2 e/b

|R|
2 c+ 1)γ. We show

that ∑
i∈T

Bi(R− i) ≤ cf(R).

Let h(t) = F (1S+t1T ) and g(t) = 1
T
T∇F (1S+t1T ) where 0 ≤ t ≤ 1. Note that g(t) = h′(t) and

1
T
T∇2F (1S + t1T )1T = g′(t). Since F is one-sided c-smooth at any given point 1S ≤ y ≤ 1R,

we have

g′(t) = 1
T
T∇2F (1S + t1T )1T ≤ c(

||1T ||1
||1S + t1T ||1

)(1TT∇F (1S + t1T )) ≤ c1

t
g(t).

Therefore, tg′(t) ≤ cg(t). Integrating both sides, we get∫ 1

0
tg′(t)dt ≤

∫ 1

0
cg(t)dt.

Applying the integration by parts formula to the left hand side, we get

tg(t)

∣∣∣∣1
0

−
∫ 1

0
g(t)dt ≤ c

∫ 1

0
g(t)dt.

It follows that

1 · g(1)− 0 · g(0) = 1
T
T∇F (1S + 1T ) = 1

T
T∇F (1R) =

∑
i∈T

Bi(R− i) ≤ (c+ 1)

∫ 1

0
g(t)dt.

By using g(t) = h′(t) we have∑
i∈T

Bi(R− i) ≤ (c+ 1)

∫ 1

0
h′(t)dt = (c+ 1)(h(1)− h(0)) = (c+ 1)(F (1S + 1T )− F (1S))

≤ (c+ 1)F (1R) = (c+ 1)f(R).
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This means that ∑
i∈T

Bi(R− i) ≤ (2(d |R|
2
e/b |R|

2
c+ 1)γ + 1)f(R).

With the same argument we can conclude that∑
i∈S

Bi(R− i) ≤ (2(b |R|
2
c/d |R|

2
e+ 1)γ + 1)f(R),

and combining these inequalities yields the lemma.

We now present the main theorem of this section.

Theorem 17. Let f ∈ Gγ and M = ([n], I) be a matroid of rank r. Let A ∈ I be an optimum
set, i.e., A ∈ arg maxR∈I f(R), and S ∈ I be an (1 + ε

n2 )-approximate local optima, i.e., for
any i and j such that S − i + j ∈ I, (1 + ε

n2 )f(S) ≥ f(S − i + j), where ε > 0 is a constant.
Then if γ = O(r), f(A) ≤ O(γ24γ)f(S) and if γ = ω(r), f(A) ≤ O(γ224γ)f(S).

Proof. Since f is monotone, we assume that |S| = |A| = r. Given the exchangeability property
of matroids, there is a bijective mapping ([70]) g : S \ A → A \ S such that S − i + g(i) ∈ I
where i ∈ S \ A. Since S is a (1 + ε

n2 )-approximate local optima, for all i ∈ S \ A we have
(1 + ε

n2 )f(S) ≥ f(S − i+ g(i)). That is, ε
n2 f(S) +Bi(S − i) ≥ Bg(i)(S − i). Using this we get

Bg(i)(S) = Bg(i)(S − i) +Aig(i)(S − i) ≤ Bg(i)(S − i) + γ(
Bg(i)(S − i) +Bi(S − i)

r − 1
)

≤ 2γ + r − 1

r − 1
Bi(S − i) +

ε(γ + r − 1)

(r − 1)n2
f(S),

where the equality follows from Lemma 3 and the first inequality from γ-meta-submodularity.
Therefore, ∑

i∈S\A

Bg(i)(S) ≤ 2γ + r − 1

r − 1

∑
i∈S\A

Bi(S − i) + o(1)f(S).

Now, by Taylor’s Theorem, Lemma 13, and the above inequality, we have

f(S ∪A) = F (1S ∨ 1A) = F (1S + 1A\S) = F (1S) + 1
T
A\S∇F (1S + ε′1A\S)

≤ F (1S) + 24γ1TA\S∇F (1S) = F (1S) + 24γ
∑
i∈S\A

Bg(i)(S)

≤ (1 + 24γ · o(1))f(S) +
2γ + r − 1

r − 1
24γ

∑
i∈S\A

Bi(S − i)

Therefore, using the monotonicity of f and Lemma 14 we get

f(A) ≤ f(S ∪A) ≤ (1 + 24γ · o(1))f(S) +
2γ + r − 1

r − 1
24γ(9γ + 2)f(S)

= [
2γ + r − 1

r − 1
24γ(9γ + 2) + 1 + 24γ · o(1)]f(S).

62
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Algorithm 4.1: Local search under matroid constraint

1 Input: A set function f , a matroid M = ([n], I) with circuits of minimum cardinality c, and
ε > 0.

2 S0 ← arg max{v,v′}∈I f({v, v′})
3 S ← a base of M that contains S0

4 while S is not an approximate local optima do
5 Find i ∈ S and j ∈ [n] \ S such that S − i+ j ∈ I and f(S − i+ j) ≥ (1 + ε

n2 )f(S)
6 S ← S − i+ j

7 Create a complete weighted bipartite graph G with node sets S and [n] \ S, and edge weights
w(i, j) := Aij(S) for each i ∈ S and j /∈ S. Find a maximum weighted matching M in G of
(edge) cardinality c−1

2 , and let S′ denote the node set of M .
8 Return arg max{f(S), f(S′)}

One important question is whether such a local search algorithm is polytime. We show that
if the algorithms starts from the best pair, it performs a polynomial number of swaps. First we
need the following the following lemma.

Lemma 15. Let f be a non-negative, monotone, γ-meta submodular function andM = ([n], I)
be a matroid of rank r. Let A ∈ I be an optimum set, i.e.,

A ∈ arg max
R∈I

f(R),

and
S0 ∈ arg max

{v,v′}∈I
f({v, v′}).

Then f(A) ≤ O(r(γ + 1)r−2)f(S0).

Proof. Let A = {a1, . . . , ar} and Ai = {a1, . . . , ai} for 1 ≤ i ≤ r. By definition of S0 we know
that f(A2) ≤ f(S0). Now by induction we show that for any 2 ≤ i < j ≤ n, Baj (Ai) ≤
O((γ + 1)i−1)f(S0). The base case is i = 2. By definition of f(S0), monotonicity and meta
submodularity of f , we have

Baj (A2) = Baj (A1) +Aa2aj (A1) ≤ Baj (A1) + γ(Baj (A1) +Ba2(A1)) ≤ (2γ + 1)f(S0)

≤ O(γ + 1)f(S0).

Now assume that for k < j ≤ n, we have Baj (Ak) ≤ O(γk−1)f(S0). We want to show that for
k + 1 < j ≤ n, we have Baj (Ak+1) ≤ O(γk)f(S0).

Baj (Ak+1) = Baj (Ak) +Aak+1aj (Ak) ≤ Baj (Ak) +
γ

k
(Bak+1

(Ak) +Baj (Ak))

≤ (1 +
2γ

k
)O((γ + 1)k−1)f(s0) ≤ O((γ + 1)k)f(S0).

We know that

f(A) = f(A2) +

r∑
i=3

Bai(Ai−1) ≤ f(S0) +

r∑
i=3

O((γ + 1)i−2)f(S0) ≤ O(r(γ + 1)r−2)f(S0)
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Using this we can bound the number of swaps that the approximate local search algorithm
needs.

Proposition 13. Local search algorithm (Algorithm 4.1) runs in O(n4(log(r) + r log(γ + 1)/ε)
time on a γ-meta submodular functions and a matorid of rank r.

Proof. Cost of finding S0 is O(n2). Also, each iteration of the while loop costs O(n2). Let Sk
be the solution after k iterations and A be an optimum solution. By Lemma 15, we know

f(Sk) ≤ (1 +
ε

n2
)kf(S0) ≤ f(A) ≤ O(r(γ + 1)r−2)f(S0).

Taking the logarithm, we have

k ln(1 +
ε

n2
) ≤ O(ln(r) + (r − 2) ln(γ + 1)).

Noting that x−1
x ≤ lnx for any x > 0, we have

k(
ε

n2
)/(

n2 + ε

n2
) ≤ O(ln(r) + (r − 2) ln(γ + 1)).

This yields the result.

As with the continuous setting (Theorem 2), one can improve the performance ratios by
requiring additional (discrete smoothness) conditions on higher order (first derivative) terms.
We discuss this in the next section.

4.3 Local Search for Second-Order-Submodular
γ-Meta-Submodular Functions

As we have seen the discrete analog of ∇iF is the marginal gain set function Bi(S). The
following result shows that if these set functions are submodular, then the exponential factor
from Theorem 17 improves to a quadratic factor. We remark that submodularity of the Bi’s
is just the notion of second-order-submodularity introduced in [52], and is also equivalent to
the non-positivity of the third-order partial derivatives of the multi-linear extension. We first
provide a key lemma for bounding the Taylor series expansion of multi-linear extension of
second-order-submodular functions.

Lemma 16. Let f : 2n → R be a non-negative, second-order-submodular set function and F be
its multi-linear extension. Then for any R ⊆ [n],

∑
u∈RBu(R) ≤ 2f(R). If f is also monotone

then x ∈ [0, 1]n, xT∇2F (x)x ≤ 2F (x).

Proof. For the first part, without loss of generality, let R = [k] (we can always relabel the
elements so that this is true) and Ri = [i]. By Lemma 3, we have

∑
i∈R

Bi(R) =

k∑
i=1

(
f({i}) +

k∑
j=1

Aij(Rj−1)
)
.
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Since Bi(Ri) = Bi(Ri−1), and f(R0) = f(∅) = 0 we have

2f(R) = 2
k∑
i=1

Bi(Ri) = 2
k∑
i=1

(
f({i}) +

i∑
j=1

Aij(Rj−1)
)
.

Moreover, note that
k∑
i=1

k∑
j=1

Aij(Rj−1) ≤ 2

k∑
i=1

i∑
j=1

Aij(Rj−1)

since

k∑
i=1

k∑
j=i+1

Aij(Rj−1) =

k∑
j=1

j−1∑
i=1

Aij(Rj−1) =

k∑
j=1

j−1∑
i=1

Aji(Rj−1)

≤
k∑
j=1

j−1∑
i=1

Aji(Ri−1) =

k∑
j=1

j∑
i=1

Aji(Ri−1)

=

k∑
i=1

i∑
j=1

Aij(Rj−1),

where the second equality follows from the fact that Aij(S) = Aji(S) for all i, j ∈ [n] and
S ⊆ [n], and the third equality from the fact that Aii(S) = 0 for all i ∈ [n] and S ⊆ [n]. The
inequality follows since Rj−1 ⊇ Ri−1 and f is second-order-submodular.

By non-negativity we also have that 2f({i}) ≥ f({i}). This yields the first part of the
lemma.

We now discuss the second part. By the Taylor’s Theorem, non-negativity, monotononicity
and second-order-submodularity, we have

F (x) = F (0) + xT∇F (0) +
1

2
xT∇2F (εx)x ≥ 1

2
xT∇2F (εx)x ≥ 1

2
xT∇2F (x)x.

In order to achieve a sub-quadratic approximation factor in Theorem 13 we also require
the function to be supermodular. Moreover, the local search algorithm must be significantly
adapted and find a maximum matching in the last step.

Theorem 18. Let f be a γ-meta-submodular function which is also second order submodular
(that is, f ’s marginal gains are submodular). Let M = ([n], I) be a matroid of rank r and
minimum circuit size c. Let A ∈ I be an optimum set, i.e., A ∈ arg maxR∈I f(R), and S ∈
I be an (1 + ε

n2 )-approximate local optima, i.e., for any i and j such that S − i + j ∈ I,

(1 + ε
n2 )f(S) ≥ f(S − i + j), where ε > 0 is a constant. Then f(A) ≤ O(γ + γ2

r )f(S). So

Algorithm 4.1 gives an O(γ + γ2

r )-approximation. If f is also supermodular then Algorithm 4.1

gives an O(min{γ + γ2

r ,
γr
c−1}) ≤ O(γ3/2)-approximation.
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Proof. Since f is monotone, we assume that |S| = |A| = r. Given the exchangeability property
of matroids, there is a bijective mapping ([70]) g : S \ A → A \ S such that S − i + g(i) ∈ I
where i ∈ S \ A. Since S is a (1 + ε

n2 )-approximate local optima, for all i ∈ S \ A we have
(1 + ε

n2 )f(S) ≥ f(S − i+ g(i)). That is,

ε

n2
f(S) +Bi(S − i) ≥ Bg(i)(S − i). (4.8)

Using this we get

Bg(i)(S) = Bg(i)(S − i) +Aig(i)(S − i) ≤ Bg(i)(S − i) + γ(
Bg(i)(S − i) +Bi(S − i)

r − 1
)

≤ 2γ + r − 1

r − 1
Bi(S − i) +

ε(γ + r − 1)

(r − 1)n2
f(S) =

( 2γ

r − 1
+ 1
)
Bi(S) +

ε(γ + r − 1)

(r − 1)n2
f(S),

where the first equality follows from Lemma 3, the first inequality from γ-meta-submodularity,
and the last equality from Bi(S) = Bi(S − i) for all i ∈ [n] and S ⊆ [n]. Thus,∑

i∈S\A

Bg(i)(S) ≤
( 2γ

r − 1
+ 1
) ∑
i∈S\A

Bi(S) + |S \A| · ε(γ + r − 1)

(r − 1)n2
f(S)

≤
( 2γ

r − 1
+ 1
)∑
i∈S

Bi(S) +
ε(γ + r − 1)

(r − 1)n
f(S)

≤
( 4γ

r − 1
+ 2 + o(1)

)
· f(S).

where the second inequality follows from monotonicity (i.e. Bi(S) ≥ 0), and the last one follows
from Lemma 16.

Now, by Taylor’s Theorem and the submodularity of the marginal gains of f (i.e. the non-
positivity of the third order marginal gains), γ-meta submodularity, and the above inequality,
we have

f(A) ≤ f(S ∪A) = F (1S ∨ 1A) = F (1S + 1A\S)

≤ F (1S) + 1
T
A\S∇F (1S) +

1

2
1
T
A\S∇

2F (1S)1A\S

≤ F (1S) +
(

1 +
γ|A \ S|
|S|

)
1
T
A\S∇F (1S) ≤ F (1S) + (1 + γ)1TA\S∇F (1S)

= F (1S) + (1 + γ)
∑
i∈S\A

Bg(i)(S) ≤
( 4γ2

r − 1
+ γ
( 4

r − 1
+ 2 + o(1)

)
+ 3 + o(1)

)
f(S)

= O
(γ2
r

+ γ
)
f(S).

Now, we assume that f is also supermodular. Let S∩S′ = {a1, . . . , ap} and S′\S = {b1, . . . , bp}
where {ai, bi}’s are the edges of the matching. Also, let Ti = {a1, . . . , ai} and Ri = {b1, . . . , bi}.
Then since M is a maximum weighted matching, we have∑

i∈S\A

Aig(i)(S) ≤ 2 · |S \A|
c− 1

p∑
i=1

Aaibi(S) ≤ 2r

c− 1

p∑
i=1

Aaibi(S). (4.9)
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We also have that

f(S′) =

p∑
i=1

(f(Ti ∪Ri)− f(Ti−1 ∪Ri−1)) =

p∑
i=1

(Bai(Ti−1 ∪Ri−1) +Bbi(Ti−1 ∪Ri−1 + ai))

=

p∑
i=1

(
Bai(Ti−1 ∪Ri−1) + f({bi}) +

i∑
j=1

Abiaj (Tj−1) +

i−1∑
j=1

Abibj (Ti−1 + ai ∪Rj−1)
)

=

p∑
i=1

(
Bai(Ti−1 ∪Ri−1) +Abiai(Ti−1) + f({bi})

+
i−1∑
j=1

Abiaj (Tj−1) +
i−1∑
j=1

Abibj (Ti−1 ∪Rj−1 + ai)
)

≥
p∑
i=1

Aaibi(Ti−1) ≥
p∑
i=1

Aaibi(S). (4.10)

where the third equality follows from Lemma 3, the first inequality from monotonocity and
supermodularity (i.e. all the Bi and Aij terms are non-negative), and the last inequality from
second-order-submodularity and the fact that Ti ⊆ S for any i = 1, . . . , p.

Hence, by combining (4.9) and (4.10), we get

∑
i∈S\A

Aig(i)(S − i) =
∑
i∈S\A

Aig(i)(S) ≤ 2r

c− 1

p∑
i=1

Aaibi(S) ≤ 2r

c− 1
f(S′). (4.11)

Using Taylor’s Theorem

f(A) ≤ f(S ∪A) = F (1S ∨ 1A) = F (1S + 1A\S)

≤ F (1S) + 1
T
A\S∇F (1S) +

1

2
1
T
A\S∇

2F (1S)1A\S

≤ F (1S) +
(

1 +
γ|A− S|
|S|

)
1
T
A\S∇F (1S) ≤ F (1S) + (1 + γ)1TA\S∇F (1S)

= F (1S) + (1 + γ)
∑
i∈S\A

Bg(i)(S)

= f(S) + (1 + γ)(
∑
i∈S\A

Bg(i)(S − i) +
∑
i∈S\A

Aig(i)(S − i))

≤ f(S) + (1 + γ)
( rε
n2
f(S) +

∑
i∈S\A

Bi(S − i) +
2r

c− 1
f(S′)

)
≤ f(S) + (1 + γ)

( rε
n2
f(S) + 2f(S) +

2r

c− 1
f(S′)

)
≤ O

( γr

c− 1

)
max{f(S), f(S′)}.

where the second inequality follows from second-order-submodularity (i.e. the non-positivity of
the third order derivatives), the third inequality from γ-meta submodularity, the fifth inequality
from (4.8) and (4.11), and the second to last inequality from Lemma 16.
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We then have that if r ≤ √γ then γr ≤ γ3/2, and if r ≥ √γ then γ2

r + γ ≤ γ3/2. Therefore,

f(A) ≤ O(γ3/2) max{f(S), f(S′)}.

Let Sγ denote the class of functions f ∈ Gγ which are also supermodular and 2nd-order-
submodular. Note that Sγ properly contains the family Oγ of discrete quadratic functions
which are one-sided γ-smooth. By Theorem 18 there is an O(γ3/2)-approximation factor for
functions in Sγ , and hence this class provides our most general answer to question (Q1).

4.4 Future Work

We conjecture that the maximization of general γ-meta-submodular functions admits a cubic
approximation in terms of γ. This is one of the main questions that can be addressed in future
research. Another interesting avenue is to investigate the smoothness of multi-linear extension
of meta-submodular-functions. We conjecture that for γ > 0, it is one-sided O(γ)-smooth (see
Conjecture 1).
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Chapter 5

Distributed Maximization of
Meta-Submodular Functions

Many problems from different areas of machine learning and data mining can be modeled
as an optimization problem that tries to maximize the sum of a sum-sum diversity function
(which is the sum of the distances between all of the pairs in a given subset) and a non-
negative monotone submodular function. Such a function is in the class of 1-meta-submodular
functions. Examples include query diversification problem in the area of databases [26, 59],
search result diversification [5, 29], and recommender systems [83]. The size of the datasets
in these applications is growing rapidly, and there is a need for scalable methods to tackle
these problems on huge datasets. Inspired by these applications, we propose an algorithm for
approximately solving this optimization problem with a theoretical guarantee in distributed
and steaming settings. Borodin et al. [14] presented a 0.5-approximation for this optimization
problem in the centralized setting in which data can be stored and processed on a single machine.
In this paper, we consider this problem for big data settings where the data cannot be stored
on a single machine, or the processing time is too high for a single machine. We show that
our algorithm achieves a 1/31-approximation. Note that solving this problem in a distributed
or streaming setting is strictly harder than solving it in the centralized setting because, in the
aforementioned settings, the algorithm does not use all of the data. As a result, our algorithm

is

√
d/k

2 times faster in the distributed setting and it needs
√
d/k times less memory in the

streaming setting compared to the centralized setting, where d is the size of the ground set
(for example, the number of features in the feature selection problem), and k is the number
of machines (in the distributed setting) or is the number of partitions of the data (in the
streaming setting). Therefore, our algorithm gives a worse approximate solution compared to
the centralized method of Borodin et al. [14] but it is much faster and needs less memory. This
trade-off might be interesting and useful in some applications.

One of the problems that can be modeled as such an optimization problem and is in need
of scalable methods in modern applications is multi-label feature selection. The diversity part
controls the redundancy of the selected features and the submodular part is to promote features
that are relevant to the labels. A multi-label dataset is made up of a number of samples,
features, and labels. Each sample is a set of values for the features and labels. Usually, labels
have binary values. For example, if a patient has diabetes or not. Multi-label datasets can
be found in different areas, including but not limited to semantic image annotation, protein
and gene function studies, and text categorization [45]. Applications, number, and size of such
datasets are growing very rapidly, and it is necessary to develop efficient and scalable methods
to deal with them.
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Chapter 5. Distributed Maximization of Meta-Submodular Functions

Feature selection is a fundamental problem in machine learning. Its goal is to decrease the
dimensionality of a dataset in order to improve the learning accuracy, decrease the learning and
prediction time, and prevent overfitting. There are three different categories of feature selection
methods depending on their interaction with the learning methods. Filter methods select the
features based on the intrinsic properties of the data and are totally independent of the learning
method. Wrapper methods select the features according to the accuracy of a specific learning
method, like SVMs. Finally, embedded methods select the features as a part of their learning
procedure [38]. Decision trees and use of `0 and `1 regularization for feature selection fall into
the latter. When the number of features is large, filter methods are a reasonable choice since
they are fast, resistant to over-fitting, and independent of the learning model. Therefore, we can
quickly select a number of features with filter methods and then try different learning methods
to see which one fits the data better (possibly with wrapper or embedded feature selection
methods). However, with millions of features, centralized filter methods are not applicable
anymore. To deal with such huge datasets, we need scalable methods. Although there were
efforts to develop scalable and distributed filter methods for single-label datasets [9, 85], to the
best of our knowledge, there are no previous distributed multi-label feature selection method.

In this paper, we propose an information theoretic filter feature selection method for multi-
label datasets that is usable in distributed, streaming, and centralized settings. In the cen-
tralized setting, all of the data is stored and can be processed on a single machine. In the
distributed setting, the data is stored on multiple machines, and there is no shared memory
between machines. In the streaming setting, although the computation is done on a single
machine, this machine does not have enough memory to store all of the data at once. The data
in our method is distributed vertically which means that the features are distributed between
machines instead of samples (horizontal distribution). Feature selection is considered harder
when the data is distributed vertically because we lose much information about the relations of
the features [10]. However, when the number of instances is small, and the number of features
is large (for example, biological or medical datasets) vertical distribution is the only reasonable
choice. Our work can be seen as an extension of Borodin et al. [14] to distributed and streaming
settings or an extension of Zadeh et al. [85] to multi-label data. However, our results cannot
be derived from these previous works in a straightforward manner. The main results of this
chapter are listed in the following.

• We present a greedy algorithm for maximizing the sum of a sum-sum diversity function
and a non-negative monotone submodular function in the distributed and streaming set-
tings. We prove that it achieves a constant factor approximation of the optimal solution.

• We formulate the multi-label feature selection problem as such a combinatorial optimiza-
tion problem. Using this formulation we present information theoretic filter feature selec-
tion methods for distributed, steaming, and centralized settings. The distributed method
is the first distributed multi-label feature selection method proposed in the literature.

• We perform an empirical study of the proposed distributed method and compare its
results to different centralized multi-label feature selection methods. We show that the
results of the distributed method are comparable to the current centralized methods in
the literature. We also compare the runtime and the value of the objective function
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that our centralized and distributed methods achieve. Note that the centralized methods
have access to the all of the data and can do computation on it. We do not expect that
our distributed or streaming method to beat the centralized methods because it is not
possible. However, we argue that our results are comparable to the results of centralized
methods and our method is much faster (in case of the distributed setting) and needs
much less memory (in case of the streaming setting). We compared our results with the
centralized methods (this comparison is unfair to the distributed setting) in the literature
because to the best of our knowledge there is no distributed multi-label feature selection
method prior to this work.

5.1 Related Work

In this section, we review the previous works on different aspects of the problem including
diversity maximization, submodular maximization, composable core-sets, and feature selection.

Diversity Maximization and Submodular Maximization

Usually, the diversity maximization problem is defined on a metric space of a set of points U
with the goal of finding a subset of them which maximizes a diversity function subject to a
constraint. For example, a cardinality constraint or a matroid constraint. If S is a subset of the
points, the sum-sum diversity of S is D(S) = 0.5

∑
x∈S

∑
y∈S d(x, y) where d(., .) is a metric

distance. In the centralized setting, a simple greedy or local search algorithm can achieve a
half approximation of the optimal solution subject to |S| = k [1, 40]. TA better approximation
factor is not achievable under the planted clique conjecture [8, 14].

Submodular functions are important concepts in machine learning and data mining with
many applications. See Krause and Guestrin [55] for their applications. A submodular function
is a set function with a diminishing marginal gain. A function f : 2U → R is submodular if
f(A ∪ {x})− f(A) ≥ f(B ∪ {x})− f(B) for any A ⊆ B ⊂ U , and x ∈ U \B. It is monotone if
f(A) ≤ f(B) and it is non-negative if f(A) ≥ 0 for any A ⊆ B ⊆ U . Maximizing a monotone
submodular function subject to a cardinality constraint is NP-hard but using a simple greedy
algorithm we can achieve (1− 1

e ) of the optimal solution. A better approximation factor is not
achievable using a polynomial time algorithm unless P=NP [53].

Let U be a set and f(.) be a submodular function defined on U and d(., .) be a metric
distance defined between pairs of elements of U . Borodin et al. [14] showed that in the centralized
setting, using a simple greedy algorithm, we can achieve half of the optimal value for maximizing
f(S) + λ

∑
{u,v}:u,v∈S d(u, v) subject to S ⊆ U and |S| = k. This result is extended to semi-

metric distances in Zadeh and Ghadiri [84]. Similar problems are considered in Dasgupta et al.
[24] where the diversity part can be other diversity functions. Namely, they considered the
sum-sum diversity, the minimum spanning tree, and the minimum of distances between all
pairs. They showed that the greedy algorithm achieves a constant factor approximation in all
of these cases.
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(a) Distributed setting

(b) Streaming setting

Figure 5.1: Algorithm 5.3 operating in big data settings.

Composable Core-sets

In computational geometry, a core-set is a small subset of points that approximately preserve a
measure of the original set [2]. Composable core-sets extend this property to the combination
of sets. Therefore, they can be used in a divide and conquer manner to find an approximate
solution. Let U be a set, f : 2U → R be a set function on U , (T 1, . . . , Tm) be a random
partitioning of elements of U , and k be a positive integer. Let OPT(T ) = arg maxS⊆T,|S|=k f(S)
where T ⊆ U . Let ALG be an algorithm which takes T ⊆ U as an input and outputs S ⊆ T .
For α > 0, we call ALG an α-approximate composable core-set with size k for f if the size of its
output is k and f(OPT(ALG(T 1) ∪ · · · ∪ ALG(Tm))) ≥ αf(OPT(T 1 ∪ · · · ∪ Tm)) [41]. We call ALG
an α-approximate randomized composable core-set with size k for f if the size of its output is k
and E[f(OPT(ALG(T 1) ∪ · · · ∪ ALG(Tm)))] ≥ αf(OPT(T 1 ∪ · · · ∪ Tm)) [61]. Composable core-sets
and randomized composable core-sets can be used in distributed settings (like the MapReduce
framework) and streaming settings (see Figure 5.1).
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Composable core-sets first were used to approximately solve several diversity maximization
problems in distributed and streaming settings [41]. It resulted in an approximation algorithm
for the sum-sum diversity maximization with an approximation factor of less than 0.01. This
approximation factor is improved to 1

12 in Aghamolaei et al. [4]. Randomized composable
core-sets were first introduced to tackle submodular maximization problem in distributed and
streaming settings which resulted in a 0.27-approximation algorithm for monotone submodular
functions [61]. Then they were used to improve the approximation factor of the sum-sum
diversity maximization from 1

12 to 0.25 [85]. The randomized composable core-sets used in the
latter case find the approximate solution with high probability instead of expectation.

There are a number of other works on distributed submodular maximization [7, 62]. More-
over, submodular and weak submodular functions are used for distributed single-label feature
selection [47]. We should note that the discussed objective function in our work is neither
submodular nor weak submodular. This is because of the diversity term of the function. An
advantage of using this diversity function is that it is evaluated by a pairwise distance function.
As a result, it is easy to evaluate our objective function on datasets with few samples. On the
contrary, evaluating the pure submodular functions, that were used for feature selection in the
literature, are quite hard and need a large amount of data and computing power.

Feature Selection and Multi-label Feature Selection

Filter feature selection methods select features independent of the learning algorithm. Hence,
they are usually faster and immune to overfitting [38]. Mutual information based methods are
a well-known family of filter methods. The best-known method of this kind for single-label
feature selection is minimum redundancy and maximum relevance (mRMR) which tries to find
a subset of features S that maximizes the following objective function using a greedy algorithm

1

|S|
∑
xi∈S

I(xi, c)−
1

|S|2
∑

xi,xj∈S
I(xi, xj),

where I(., .) is the mutual information function, and c is the label vector [66]. The proposed
method in this paper can be seen as a variation of mRMR which is capable of being used for
multi-label feature selection in distributed, streaming, and centralized settings.

Although there have been great advancements in centralized feature selection, there are
few works on distributed feature selection, and most of them distribute the data horizontally.
Zadeh et al. [85] was the first work on the single-label vertically distributed feature selection
that considered the redundancy of the features. Their method selects features using randomized
composable core-sets in order to maximize a diversity function defined on the features. Although
there are some similarities between the formulations presented in Zadeh et al. [85] and this
work, we should note that the single-label formulation cannot be applied directly to multi-label
datasets. Moreover, maximization of the functions and the analysis of the algorithms to prove
the theoretical guarantee are completely different.

Most of the multi-label feature selection methods transform the data to a single-label form.
Binary relevance (BR) and label powerset (LP) are two common ways to do so. BR methods
consider each label separately and use a single-label feature selection method to select features
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for each label, and then they aggregate the selected features. A disadvantage of BR methods
is that they cannot consider the relations of the labels. LP methods consider the multi-label
dataset as one single-label multi-class dataset where each class of its single label are a possible
combination of labels in the dataset (treating the labels as a binary string). Then they apply a
single-label feature selection method. Although LP methods consider the relations of the labels,
they have significant drawbacks. For example, some classes may end up with very few samples
or none at all. Moreover, the method is biased toward the combination of the labels which exist
in the training set [45]. Our proposed method does not transform the data to single-label data
and is designed in a way to not suffer from the mentioned disadvantages.

5.2 Formulating the Multi-Label Feature Selection Problem

Let U be a set of d features and L be a set of t labels. We also have a set A of n instances
each of which is a vector of observations for elements of U ∪ L. The goal of multi-label feature
selection is to find a small non-redundant subset of U which can predict labels in L accurately.
In order to quantify redundancy it is natural to use a metric distance d over the feature set
to measure dissimilarity. In our application (feature selection) we are particularly interested in
the following metric distance. For any ui, uj ∈ U , we define

d(ui, uj) = 1− I(ui, uj)

H(ui, uj)

= 1−
∑

x∈ui,y∈uj p(x, y) log p(x,y)
p(x)p(y)

−
∑

x∈ui,y∈uj p(x, y) log p(x, y)
,

where H(., .) is the joint entropy and I(., .) is the mutual information. This distance function is
called normalized (values lie between 0 and 1) variation of information and it is a metric [65].
In Zadeh et al. [85], this distance function plus a modular function is used for single-label feature
selection.

In order to quantify the predictive quality of the selected features, we define a non-negative
monotone submodular function g : 2U → R which measures the relevance of the selected features
to the labels. For any positive integer p, we define

g(S) =
∑
`∈L

maxp

x∈S
{MI(x, `)},

where maxp
x∈S{MI(x, `)} is the sum of the p largest numbers in {MI(x, `)|x ∈ S}. Here

MI(x, `) = I(x,`)√
H(x)H(`)

is the normalized mutual information where H(.) is the entropy function

and the value MI(., .) lies in [0, 1]. Note that if we only have one label (i.e., |L| = 1), and p = d
(the number of all features of the dataset) then g will be exactly the modular function used
in Zadeh et al. [85]. Therefore, our formulation is a generalization of theirs. Using the maxp

function, this formulation tries to select at least p relevant features for each label. In order to
understand the importance of maxp function, we discuss two extreme cases: p = 1 and p = d.
If p = 1 then a feature that is somewhat relevant to all the features can dominate the g(S) and
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prevent other features, that are highly relevant to one or few features, to get selected. If p = d
then a label that has a lot of relevant features can dominate g(S) and prevent other labels to
get relevant features, while a few features would be enough for predicting this label with a high
accuracy. In the following lemma, we show that g has the nice properties we need in our model.

Lemma 17. g is a non-negative, monotone, submodular function.

Proof. Clearly g is non-negative and monotone. Since the sum of submodular functions is
a submodular function, We only need to show that maxp

x∈S{MI(x, `)} is submodular. We
assume that max0

x∈S{MI(x, `)} = 0. Let S ⊆ T ⊂ U and a ∈ U \ T . We show that

maxp

x∈S∪{a}
{MI(x, `)} −maxp

x∈S
{MI(x, `)}

≥ maxp

x∈T∪{a}
{MI(x, `)} −maxp

x∈T
{MI(x, `)}.

We have two cases. If MI(a, `) is not among the p largest numbers of {I(x, `)|x ∈ S ∪ {a}}
then both sides of the above inequality are zero. If MI(a, `) is among the p largest numbers of
{I(x, `)|x ∈ S ∪ {a}} then the left hand side of the inequality is equal to MI(a, `) −MI(b, `)
where b is the p’th largest number in {I(x, `)|x ∈ S}. The right hand side is equal to
max{0,MI(a, `) − MI(c, `)} where c is the p’th largest number in {I(x, `)|x ∈ T}. The
p’th largest number in {I(x, `)|x ∈ T} is greater than or equal to the p’th largest number in
{I(x, `)|x ∈ S} because S ⊆ T . Therefore, in this case MI(a, `)−MI(b, `) ≥ max{0,MI(a, `)−
MI(c, `)} and the inequality holds.

If we define f(S) = g(S) +
∑
{u,v}∈S d(u, v), then our feature selection model reduces to

solving the following combinatorial optimization problem.

max
S⊆U
|S|=k

f(S) = max
S⊆U
|S|=k

{g(S) +
∑
{u,v}∈S

d(u, v)}, (5.1)

where d(., .) is a metric distance and g(.) is a non-negative monotone submodular function.
Moreover f is 1-meta-submodular. In the actual feature selection method we are free to scale the
relative contributions of the diversity or submodular parts, since both metric and submodular
functions are closed under multiplication by a positive constant. Hence, we use a weighted
version of the objective function in our application.

The problem (5.1) is NP-hard but Borodin et al. [14] show that Algorithm 5.2 is a half ap-
proximation in the centralized setting. Note that this is a greedy algorithm under the objective
where g(S) is scaled by 1

2 . On the other hand, Algorithm 5.1 is a standard greedy algorithm
for (5.1) and in the next section we show it is a constant factor randomized composable core-
set for any functions f which are the sum of a sum-sum diversity function and a non-negative,
monotone, submodular function. Combining these we conclude that Algorithm 5.3 is a constant
factor approximation algorithm for maximizing f . Moreover, Algorithm 5.3 can be used both
in distributed and streaming settings, as illustrated in Figure 5.1.

In our experiments, to select k features, we use the following function.

h(S) = (1− λ)
k(k − 1)

2p|L|
g(S) + λ

∑
xi,xj∈S

d(xi, xj). (5.2)
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Algorithm 5.1: Greedy

1 Input: Set of features U , set of labels L, number of features we want to select k.

2 Output: Set S ⊂ U with |S| = k.

3 S ← {arg maxu∈U g({u})};
4 forall 2 ≤ i ≤ k do
5 u∗ ← arg max

u∈U\S
g(S ∪ {u})− g(S) +

∑
x∈S

d(x, u);

// This arg max has a consistent tiebreaking rule (see Definition 1).

6 Add u∗ to S;

7 return S;

Algorithm 5.2: AltGreedy

1 Input: Set of features U , set of labels L, number of features we want to select k.

2 Output: Set S ⊂ U with |S| = k.

3 S ← {arg maxu∈U g({u})};
4 forall 2 ≤ i ≤ k do
5 u∗ ← arg max

u∈U\S

1
2(g(S ∪ {u})− g(S)) +

∑
x∈S

d(x, u);

6 Add u∗ to S;

7 return S;

As discussed, the first term of h(S) controls redundancy of the selected features and the second

term is to promote features that are relevant to the labels. The term k(k−1)
2p|L| is a normalization

coefficient to make the range of both terms the same. Also, λ is a hyper-parameter which
controls the effect of two criteria on the final function.

5.3 Maximizing the Sum of a Sobmodular Function and a
Diversity Function

Let f(S) = D(S)+g(S) be a set function defined on 2U where g(S) is a non-negative, monotone,
submodular function and D(S) is a sum-sum diversity function, i.e. D(S) =

∑
{u,v}∈S d(u, v)

where d(., .) is a metric distance. In this section, we show that Algorithm 5.1 is a constant factor
randomized composable core-set with size k for f . We also show that running Algorithm 5.3
which is equivalent to running Algorithm 5.1 in each slave machine and then running Algo-
rithm 5.2 in the master machine on the union of outputs of slave machines is a constant factor
randomized approximation algorithm for maximizing f subject to a cardinality constraint.

Our proof follows from two key lemmas which bound the diversity and submodular portions
of an optimal solution. We use O to denote a global optimum. To state the lemmas, we need
the following notations. Let OPT(T ) = arg maxR⊆T f(R) subject to |R| = k. Let U be the
set of all elements (for example, the set of all features for the feature selection problem) and
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Algorithm 5.3: Distributed greedy

1 Input: Set of features U , set of labels L, number of features we want to select k,
number of machines m.

2 Output: Set S ⊂ U with |S| = k.

3 Randomly partition U into (Ti)
m
i=1;

4 forall 1 ≤ i ≤ m do
5 Si ← output of Greedy(Ti, L, k);
6 S ← output of AltGreedy(∪mi=1Si, L, k);
7 Return S;

(T 1, . . . , Tm) be a random partitioning of the elements of U .
We use the following key concept of a β-nice algorithm from Mirrokni and Zadimoghaddam

[61] throughout our analysis.

Definition 6. Let f be a set function on 2U . Let ALG be an algorithm that given any T ⊆ U
outputs ALG(T ) ⊆ T . Let t ∈ T \ ALG(T ). For β ∈ R+, we call ALG a β-nice algorithm if it has
the following properties.

• ALG(T ) = ALG(T \ {t}).

• f(ALG(T ) ∪ {t})− f(ALG(T )) ≤ β f(ALG(T ))k .

The intuition behind the first condition is simply that by removing an element of T which is
not used in the algorithm’s output, we do not change the output. This is effectively a condition
on how we perform tiebreaking. The second condition helps to bound f(ALG(T ) ∪O) where O
is a global optima. Our analysis heavily relies on the following theorem.

We use the following Theorem and techniques from a number of papers [4, 41, 61, 85] to
prove the key lemmas. Even in cases where some parts of proofs are similar to previous work
we include a complete proof for the sake of completeness. We should note that our analysis is
not a straightforward combination of the ideas in the mentioned papers.

Theorem 19. Let k ≥ 10. Algorithm 5.1 is a 5-nice algorithm for f(.) = D(.) + g(.). Also, if
ALG is Algorithm 5.1, T ⊆ U , and t ∈ T \ ALG(T ), then 4.5

k−1f(ALG(T )) ≥
∑

x∈ALG(T ) d(t, x).

Proof. Let ALG be the Algorithm 5.1, T ⊆ U , t ∈ T \ ALG(T ), and x1, . . . , xk be the elements
that ALG selected in the order of selection. Also, let Si = {x1, . . . , xi} and S0 = ∅.

For the first property of β-nice algorithms it is enough to have a consistent tiebreaking rule
for ALG. It is sufficient to fix an ordering on all elements of U up front. If some iteration finds
multiple elements with the same maximum marginal gain, then it should select earliest one in
the a priori ordering.

Now we prove the second property of the β-nice algorithms for ALG. Because of the greedy
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selection of ALG, we have the following inequalities.

∆(x1, S0) ≥ ∆(t, S0)

∆(x2, S1) + d(x2, x1) ≥ d(t, x1) + ∆(t, S1)

∆(x3, S2) +
2∑
i=1

d(x3, xi) ≥
2∑
i=1

d(t, xi) + ∆(t, S2)

· · ·

∆(xk, Sk−1) +

k−1∑
i=1

d(xk, xi) ≥
k−1∑
i=1

d(t, xi) + ∆(t, Sk−1)

Adding these inequalities together gives the following inequality.

g(Sk) +D(Sk) ≥
k−1∑
i=1

(k − i)d(t, xi) +

k−1∑
i=0

∆(t, Si) ≥
k−1∑
i=1

(k − i)d(t, xi) + k∆(t, Sk), (5.3)

where the second inequality holds because of the submodularity of g. Note that

f(ALG(T ) ∪ {x})− f(ALG(T )) = ∆(t, ALG(T )) +
∑

x∈ALG(T )

d(x, t). (5.4)

One may thus note that if the right-hand side coefficients in (5.3) were all k/2 (instead of k− i)
we would have 2-niceness of the algorithm. Our strategy is to achieve this by shifting some of
the “weight” from coefficients where k − i > k/2 to coefficients < k/2. This uses the metric
inequality since d(xk−i, xi) + d(xi, t) ≥ d(xk−i, t). Hence if we added d(xk−i, xi) to both sides
of (5.3), then we may increase the coefficient of d(t, xk−i) by 1 at the expense of reducing the
coefficient of d(t, xi) by 1.

We use this idea to fix all of the “small” components in bulk by adding a batch of distinct
distances to both sides of (5.3). Since these distances are distinct, we increase the left-hand
side by at most D(Sk). In particular, the new left-hand side will be at most 2(g(Sk) +D(Sk)).

The batch of distances we add to both sides of the inequality is
∑k

i=d k
2
e+1

∑i−b k
2
c−1

j=1 d(xi, xj).

Clearly these distances are distinct so we now need to make sure that the strategy produces
the desired coefficients of terms d(t, xi). More formally, we claim that the following inequality
holds.

Claim 1.

k−1∑
i=1

(k − i)d(t, xi) +

k∑
i=d k

2
e+1

i−b k
2
c−1∑

j=1

d(xi, xj) ≥
k∑
i=1

(dk
2
e − 1)d(t, xi)

We prove this claim later. Using this we have the following.
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2(g(Sk) +D(Sk)) ≥ g(Sk) +D(Sk) +

k∑
i=d k

2
e+1

i−b k
2
c−1∑

j=1

d(xi, xj)

≥
k−1∑
i=1

(k − i)d(t, xi) + k∆(t, Sk) +

k∑
i=d k

2
e+1

i−b k
2
c−1∑

j=1

d(xi, xj)

≥
k∑
i=1

(dk
2
e − 1)d(t, xi) + (dk

2
e − 1)∆(t, Sk)

where the second inequalities holds because of the metric property, i.e. triangle inequality, and
monotonicity of g. By using the above inequality, non-negativity of g, and (5.4) we have

2

dk2e − 1
f(ALG(T )) =

2

dk2e − 1
(g(Sk) +D(Sk)) ≥

k∑
i=1

d(t, xi) + ∆(t, Sk)

= f(ALG(T ) ∪ {t})− f(ALG(T )).

We can easily see that for k ≥ 10, 5
k ≥

2
d k
2
e−1 and 4.5

k−1 ≥
2

d k
2
e−1 . Therefore, ALG is a 5-nice

algorithm for f and because of monotonicity of g, 4.5
k−1f(ALG(T )) ≥

∑k
i=1 d(t, xi).

Now we prove Claim 1 to conclude Theorem 19.

Proof of Claim 1. Note that k = dk2e+ bk2c and bk2c+ 1 ≥ dk2e. First, we show that

k−b k
2
c−1∑

j=1

(dk
2
e − j)d(t, xj) =

k∑
i=d k

2
e+1

i−b k
2
c−1∑

j=1

d(t, xj). (5.5)

In the right hand side of (5.5), d(t, xj) appears in the inner summation when i−bk2c−1 ≥ j
or equivalently, when i ≥ j+ bk2c+ 1. We know that k ≥ i ≥ dk2e+ 1. We also know that j ≥ 1.

Hence, j + bk2c + 1 ≥ dk2e + 1. Therefore, d(t, xj) definitely appears in the inner summation

when k ≥ i ≥ j + bk2c+ 1. This means that d(t, xj) appears k − j − bk2c = dk2e − j many times
in the right hand side of (5.5). Moreover, note that the index j in the right hand side of (1)
ranges between 1 and k − bk2c − 1. Hence (5.5) holds. Let

A =

k∑
i=k−b k

2
c

(k − i)d(t, xi) +

k−b k
2
c−1∑

i=1

(dk
2
e − 1)d(t, xi).

By decomposing
∑k−1

i=1 (k− i)d(t, xi) to three summations, noting that (k− k)d(t, xk) = 0, and
using (5.5), we have
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k−1∑
i=1

(k − i)d(t, xi) =

k∑
i=k−b k

2
c

(k − i)d(t, xi) +

k−b k
2
c−1∑

i=1

(dk
2
e − 1)d(t, xi)

+

k−b k
2
c−1∑

j=1

(k − j − dk
2
e+ 1)d(t, xj) = A+

k−b k
2
c−1∑

j=1

(bk
2
c − j + 1)d(t, xj)

≥ A+

k−b k
2
c−1∑

j=1

(dk
2
e − j)d(t, xj) = A+

k∑
i=d k

2
e+1

i−b k
2
c−1∑

j=1

d(t, xj).

Therefore, by the triangle inequality and the above statements, we have

k−1∑
i=1

(k − i)d(t, xi) +

k∑
i=d k

2
e+1

i−b k
2
c−1∑

j=1

d(xi, xj) ≥ A+

k∑
i=d k

2
e+1

i−b k
2
c−1∑

j=1

d(t, xj)

+

k∑
i=d k

2
e+1

i−b k
2
c−1∑

j=1

d(xi, xj) = A+

k∑
i=d k

2
e+1

i−b k
2
c−1∑

j=1

(d(t, xj) + d(xi, xj))

≥ A+
k∑

i=d k
2
e+1

i−b k
2
c−1∑

j=1

d(t, xi) = A+
k∑

i=d k
2
e+1

(i− bk
2
c − 1)d(t, xi)

≥ A+

k∑
i=d k

2
e+1

(i− bk
2
c − 1)d(t, xi) + (dk

2
e − bk

2
c − 1)d(t, xd k

2
e)

= A+

k∑
i=d k

2
e

(i− bk
2
c − 1)d(t, xi) =

k∑
i=k−b k

2
c

(k − i)d(t, xi) +

k−b k
2
c−1∑

i=1

(dk
2
e − 1)d(t, xi)

+
k∑

i=k−b k
2
c

(i− bk
2
c − 1)d(t, xi)

=

k∑
i=k−b k

2
c

(k − i+ i− bk
2
c − 1)d(t, xi) +

k−b k
2
c−1∑

i=1

(dk
2
e − 1)d(t, xi)

=

k∑
i=k−b k

2
c

(dk
2
e − 1)d(t, xi) +

k−b k
2
c−1∑

i=1

(dk
2
e − 1)d(t, xi) =

k∑
i=1

(dk
2
e − 1)d(t, xi).

This yields the result. �
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Our main result is that Algorithm 5.3 is a constant factor approximation algorithm.
We now proceed to bound the diversity part of the optimal solution. We re-use the key

ideas from Aghamolaei et al. [4] to achieve this. Let O be an optimal solution for maximizing
f(S) subject to S ⊆ U and |S| = k. Let Oi = T i ∩ O, Qi = Oi \ Si. So Qi are the elements
of O on machine I that were “missed” by Si. Intuitively, we bound the damage to optimality
by missing these elements by finding a low-weight matching between Qi and Si. The following

normalization parameters are used in the next two lemmas: ri = f(Si)

(k2)
and r = maxi=1,...,m ri.

Let Gi(Oi ∪Si, E) be a complete weighted graph. For u, v ∈ Oi ∪Si, we use d(u, v) as the edge
weight in our matching problem.

Lemma 18. There exists a bipartite matching between Qi and Si in Gi with a weight of at
most 4.5

2 |Q
i|r that covers all the Qi.

Proof. The number of all maximal bipartite matchings between Qi and Si is k!
(k−|Qi|)! . Any of

these matchings covers Qi because |Qi| ≤ |Si|. Each edge {q, x} with q ∈ Qi and x ∈ Si is in
(k−1)!

(k−|Qi|)! of these matchings. Hence the total weight of all matchings can be expressed as

(k − 1)!

(k − |Qi|)!
∑
q∈Qi

∑
x∈Si

d(q, x) ≤ (k − 1)!

(k − |Qi|)!
∑
q∈Qi

4.5

k − 1
f(Si)

≤ (k − 1)!

(k − |Qi|)!
∑
q∈Qi

4.5

k − 1

(
k

2

)
r

=
(k − 1)!

(k − |Qi|)!
|Qi|4.5k

2
r

=
k!

(k − |Qi|)!
4.5

2
|Qi|r

The first inequality is from Lemma 19 and the second by the definition of r. It follows that
there exists a matching with a weight of at most 4.5

2 |Q
i|r.

We are now in position to upper bound the diversity portion of an optimal solution in terms
of f(OPT(∪mi Si)).

Lemma 19. Let ALG be Algorithm 5.1 and Si = ALG(T i). Then D(O) ≤ 8.5f(OPT(∪mi=1S
i)).

Proof. Let M i be the maximal bipartite matching between Qi and Si with a weight of less than
or equal to 4.5

2 |Q
i|r. It exists because of Lemma 18. Let M = ∪mi=1M

i. Note that Si’s are
disjoint and Qi’s are disjoint. This implies that M i’s are disjoint. Therefore, M is a matching
between ∪mi=1Q

i and ∪mi=1S
i that covers all of ∪mi=1Q

i with a weight of less than or equal to
4.5
2

∑m
i=1 |Qi|r ≤

4.5
2 |O|r = 4.5

2 kr.
Let e : O → ∪mi=1S

i be a mapping which maps any o ∈ O ∩ (∪mi=1S
i) to itself and any

o ∈ (∪mi=1Q
i) to its matched vertex in M . The weight of this mapping is less than or equal to

the weight of M since d(o, o) = 0. Note that each vertex in the range(e) is mapped from at

81



5.3. Maximizing the Sum of a Sobmodular Function and a Diversity Function

most two vertices in O. We use this fact in the second inequality below and use the triangle
inequality in the first inequality. We have

D(O) =
∑
{u,v}∈O

d(u, v) ≤
∑
{u,v}∈O

(d(u, e(u)) + d(e(u), e(v)) + d(e(v), v))

= (|O| − 1)
∑
u∈O

d(o, e(o)) +
∑
{u,v}∈O

d(e(u), e(v)) ≤ (k − 1)
4.5

2
kr + 4D(range(e))

≤ 4.5

(
k

2

)
r + 4f(OPT(∪mi=1S

i)) ≤ 8.5f(OPT(∪mi=1S
i))

Now, we proceed to bound g(O) and the proofs of the next two lemmas follow those found
in Mirrokni and Zadimoghaddam [61]. Let o1, . . . , ok be an ordering of elements of O. For
x = oi ∈ O define Ox = {o1, . . . , oi−1} and Oo1 = ∅.

Lemma 20. g(O) ≤ 6f(OPT(∪mi=1S
i)) +

∑m
i=1

∑
x∈O∩T i\Si(∆(x,Ox)−∆(x,Ox ∪ Si)).

Proof. Note that g(O) = g(O∩ (∪mi=1S
i))+

∑
x∈O\(∪mi=1S

i) ∆(x,Ox∪ (O∩ (∪mi=1S
i))). Therefore,

using submodularity and monotonicity of g and 5-niceness of Algorithm 5.1, we have

g(O) ≤ f(OPT(∪mi=1S
i)) +

∑
x∈O\(∪mi=1S

i)

∆(x,Ox)

= f(OPT(∪mi=1S
i)) +

m∑
i=1

∑
x∈O∩T i\Si

(∆(x,Ox ∪ Si) + ∆(x,Ox)−∆(x,Ox ∪ Si))

≤ f(OPT(∪mi=1S
i)) +

m∑
i=1

∑
x∈O∩T i\Si

(∆(x, Si) + ∆(x,Ox)−∆(x,Ox ∪ Si))

≤ f(OPT(∪mi=1S
i)) +

m∑
i=1

∑
x∈O∩T i\Si

(
5

k
f(Si) + ∆(x,Ox)−∆(x,Ox ∪ Si))

≤ f(OPT(∪mi=1S
i)) +

m∑
i=1

∑
x∈O∩T i\Si

(
5

k
f(OPT(∪mi=1S

i)) + ∆(x,Ox)−∆(x,Ox ∪ Si))

≤ f(OPT(∪mi=1S
i)) + 5f(OPT(∪mi=1S

i)) +
m∑
i=1

∑
x∈O∩T i\Si

(∆(x,Ox)−∆(x,Ox ∪ Si))

≤ 6f(OPT(∪mi=1S
i)) +

m∑
i=1

∑
x∈O∩T i\Si

(∆(x,Ox)−∆(x,Ox ∪ Si))

In the next Lemma, we use the randomness of the partitioning of the data over machines
and the first property of β-niceness.
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Lemma 21. E[
∑m

i=1

∑
x∈O∩T i\Si(∆(x,Ox)−∆(x,Ox ∪ Si))] ≤ E[f(OPT(∪mi=1S

i))].

Proof. We show that E[
∑m

i=1

∑
x∈O∩T i\Si(∆(x,Ox) − ∆(x,Ox ∪ Si))] ≤

E[
∑m

i=1 g(S
i)]

m and the

statement of the lemma follows from the fact that
∑m

i=1 g(S
i)

m ≤ f(OPT(∪mi=1S
i)). We first

establish an inequality

A := E[
m∑
i=1

∑
x∈O∩T i\Si

(∆(x,Ox)−∆(x,Ox ∪ Si))] ≤
1

m
B

where

B := E[
m∑
i=1

∑
x∈O

(∆(x,Ox)−∆(x,Ox ∪ Si))].

Let ALG be Algorithm 5.1. For T ⊆ U and x ∈ U , let q(x, T ) = ∆(x,Ox)−∆(x,Ox∪ALG(T )).
Let P [.] be the probability mass function for the uniform distribution over m-partitions P =
(T 1, . . . , Tm) of U , and let 1[x /∈ ALG(T ∪ {x})] be a 0, 1 indicator function. Note that

P [T i = T ] = (
1

m
)|T |(1− 1

m
)|U |−|T |

P [T i = T ∪ {x}] = (
1

m
)|T |+1(1− 1

m
)|U |−|T |−1

Therefore

P [T i = T ∪ {x}] =
P [T i = T ] + P [T i = T ∪ {x}]

m
. (5.6)

We have that

A =
m∑
i=1

∑
x∈O

∑
T⊆U\{x}

P [T i = T ∪ {x}]1[x /∈ ALG(T ∪ {x})]q(x, T ∪ {x})

B =
m∑
i=1

∑
x∈O

∑
T⊆U\{x}

(P [T i = T ∪ {x}]q(x, T ∪ {x}) + P [T i = T ]q(x, T ))

≥
m∑
i=1

∑
x∈O

∑
T⊆U\{x}

1[x /∈ ALG(T ∪ {x})]q(x, T ∪ {x})(P [T i = T ∪ {x}]

+ P [T i = T ]).

The last inequality holds because q(., .) is a non-negative function and multiplying it by
1[x /∈ ALG(T ∪{x})] can only decrease the sum value. Also, q(x, T ) is replaced by q(x, T ∪{x}).
It does not change the sum value because when 1[x /∈ ALG(T ∪{x})] = 1, q(x, T ) = q(x, T ∪{x}).
We now deduce A ≤ B/m from (5.6).

Now note that
∑

x∈O ∆(x,Ox ∪ Si) = g(O ∪ Si) − g(Si), and
∑

x∈O ∆(x,Ox) = g(O).
Therefore, because of the monotonicity of g, we have for any i∑

x∈O
∆(x,Ox)−∆(x,Ox ∪ Si)

= g(O)− g(O ∪ Si) + g(Si) ≤ g(Si).
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Hence B ≤ E[
∑m

i=1 g(S
i)]

m and the lemma follows.

We now have the following follows directly from Lemmas 20, and 21.

Lemma 22. Let ALG be Algorithm 5.1 and Si = ALG(T i). Then g(O) ≤ 6f(OPT(∪mi=1S
i)) +

E[f(OPT(∪mi=1S
i))].

Now using Lemmas 19 and 20, we can prove the following theorem.

Theorem 20. Let k ≥ 10. Algorithm 5.3 gives a 1
31 -approximate solution in expectation for

maximizing f(S) subject to |S| = k.

Proof. Lemma 19 and 22 immediately yield f(O) ≤ 15.5E[f(OPT(∪mi=1S
i))]. Based on Borodin

et al. [14], we know that Algorithm 5.2 is a half approximation algorithm for maximizing f .
Therefore, if ALG’ is Algorithm 5.2 then f(OPT(∪mi=1S

i)) ≤ 2f(ALG’(∪mi=1S
i)). Hence f(O) ≤

31E[f(ALG’(∪mi=1S
i))] which is exactly the statement of the theorem.

In the next section, we evaluate the empirical performance of our algorithm for the dis-
tributed multi-label feature selection problem.

5.4 Empirical Results for Distributed Multi-Label Feature
Selection

In this section, we investigate the performance of our method in practice. In the first experiment,
we compare our distributed method with centralized multi-label feature selection methods in
the literature on a classification task. We show that our method’s performance is comparable
to, or in some cases is even better than previous centralized methods. Next, we compare
our distributed and centralized methods on two large datasets. We show that the distributed
algorithm achieves almost the same objective function value and it is much faster. This implies
that the distributed algorithm achieves a better approximation in practice compared to the
theoretical guarantee.

Comparison to Centralized Methods

As mentioned in Section 5.1, most of the multi-label feature selection methods convert the multi-
label dataset to one or multiple single-label datasets and then use single-label feature selection
methods and then aggregate the results. Binary relevance (BR) and label powerset (LP) are the
two best known of these conversions. Here, we combine these two conversion methods with two
single-label feature selection methods which results in four different centralized feature selection
methods. We considered ReliefF (RF) [50, 69] and information gain (IG) [86] for single-label
methods. These methods compute a score for each feature and for aggregating their results
in Binary Relevance conversion, it is enough to calculate the sum of the scores of each feature
and use these scores for selecting features. These methods are used before in the literature for
multi-label feature selection [23, 27, 72–74].

For comparison, we selected 10 to 100 features with each method and did a multi-label
classification using BRKNN-b proposed in Xioufis et al. [82]. We did a 10-fold cross validation
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with five neighbors for BRKNN-b. We evaluated the classification outputs over five multi-
label evaluation measures. They are subset accuracy, example-based accuracy, example-based
F-measure, micro-averaged F-measure, and macro-averaged F-measure [45, 74].

Let n be the number of samples in the dataset, Li be the set of labels for sample i that are
1 in the dataset, and L′i be the set of labels for sample i that we predicted to be 1. Then the
subset accuracy of the learning method is equal to

1

n

n∑
i=1

I(Li, L′i)

where I(, ., ) is a 0, 1 indicator function and is equal to 1 when set Li is equal to the set L′i, and
it is 0 otherwise. Example-based accuracy is equal to

1

n

n∑
i=1

|Li ∩ L′i|
|Li ∪ L′i|

.

Example-based F-measure is equal to

1

n

n∑
i=1

2|Li ∩ L′i|
|Li|+ |L′i|

.

These evaluation measures are example-based. Micro-averaged F-measure and Macro-averaged
F-measure are two label-based measures for multi-label classification. Let t be the number of
labels in the dataset, Ei be the set of examples that their i’th label is equal to 1, and E′i be the
set of example that we predicted their i’th labels to be 1. Then Micro-averaged F-measure is
equal to

1

t

t∑
i=1

2|Ei ∩ E′i|
|Ei|+ |E′i|

.

Macro-averaged F-measure is equal to

2
∑t

i=1 |Ei ∩ E′i|∑t
i=1 |Ei|+

∑t
i=1 |E′i|

.

We used the Mulan library for the classification and computation of the evaluation mea-
sures [79]. We used a synthesized dataset and five real-world datasets. Their specifications
are shown in table 5.1. The synthesized dataset made up of eight labels. Each label has two
original features that repeated 50 times. One of the features has the same value as its label
in half of the samples, and the other one has the same value as its label in a quarter of the
samples. The results of this dataset show that our method outperforms other methods on a
dataset with redundant features. The results of this experiments are shown in Figures 5.2 and
5.3. We named our method distributed greedy diversity plus submodular (DGDS) in the plots.
The other methods are named based on the conversion method they use (i.e., BR or LP) and
the feature selection method they use (i.e., RF or IG). In the experiments, we used λ = 0.5
and max10 for our method. Results of the distributed method fluctuate more compared to
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Table 5.1: Specifications of the datasets.

Dataset Name # Features # Instances # Labels Reference

Synthesized 800 256 8 -

Corel5k 499 5000 374 [30]

Eurlex-ev 5000 19,348 3993 [32]

CAL500 68 502 174 [80]

Delicious 500 16,105 983 [78]

Scene 294 2407 6 [15]

Table 5.2: Comparison of the distributed and the centralized algorithms. “h” and “m” means
hour and minute.

Dataset
Name

Reference # Features # Instances # Labels
# Selected
Features

# Machines

Distributed
Algorithm
Objective

Value

Centralized
Algorithm
Objective

Value

Distributed
Algorithm
Runtime

Centralized
Algorithm
Runtime

Speed-up

RCV1V2 [56] 47,236 6000 101

10 69 22.7 22.6 2.8m 1h 33m 33.2
50 31 618.7 616.4 10.8m 2h 30.0m 15.1
100 22 2468.2 2490.7 20.3m 3h 39m 10.8
200 16 9338.7 10,016.0 47.0m 6h 16.8m 8.0

TMC2007 [75] 49,060 28,596 22

10 71 22.8 22.6 4.6m 2h 32.5m 33.4
50 32 620.0 615.6 24.2m 6h 24.7m 15.9
100 23 2510.0 2487.7 59.5m 11h 6.2m 11.2
200 16 10,104.3 10,001.4 2h 41.3m 20h 49.8m 7.7

other methods. The reason is that, for every number of features, we did the feature selection,
including the random partitioning, from scratch. This caused more variation in its results but
also showed that the method is relatively stable and does not produce poor quality results for
different random partitionings.

As discussed, we compared our method to centralized feature selection methods because
there is no distributed multi-label feature selection method prior to our work. We should note
that this comparison is unfair to the distributed method because it uses much less of the data
compared to centralized methods. For example, it does not use the relation (or the distance)
between the features in different machines. The advantage of the distributed method is that it
is much faster and scalable.

Comparison of Distributed and Centralized Algorithms

Here, we compare the performance of our proposed algorithm (Algorithm 5.3) with the cen-
tralized algorithm introduced in Borodin et al. [14] (Algorithm 5.2) on the optimization task.
We compare the runtime and the value of the objective function the algorithms achieve. We
select 10, 50, 100, and 200 features on two large datasets. If there are d′ features in a machine,
and we want to select k of them then the runtime of the machine is O(d′k). Therefore, if
we have d

√
d/ke slave machines then each of them has O(

√
dk) features and its runtime is
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equal to O(k
√
dk), where d is the total number of features. Also, the master machine will

have O(
√
dk) features, and its runtime is O(k

√
dk) which means the runtime complexity of the

master machine and the slave machines are equal. If we increase or decrease the number of
slave machines, then the running time of the master machine or the slave machines will increase
which results in a lower speed-up. Hence, we set the number of slave machines equal to d

√
d/ke.

The results show that in practice our proposed distributed algorithm achieves an approximate
solution as good as the centralized algorithm in a much shorter time. The results are summa-
rized in Table 5.2. Moreover, we compared the distributed and the centralized algorithms on
the classification task. Results of this experiment are shown in Figure 5.4.

Effect of λ hyper-parameter

To show the importance of both terms of the objective function, redundancy (diversity function)
and relevance (submodular function), we compared the performance of the method for different
λ value. We select 20, 30, 40, and 50 features on the scene dataset [15]. As shown in Figure 5.5,
the best performance happens for some λ between 0 and 1. This shows that both terms are
necessary and it is possible to get better results by choosing λ carefully.

5.5 Future Work

In this chapter, we presented a greedy algorithm for maximizing the sum of a sum-sum diversity
function and a non-negative, monotone, submodular function subject to a cardinality constraint
in distributed and streaming settings. We showed that this algorithm guarantees a provable
theoretical approximation. Moreover, we formulated the multi-label feature selection problem
as such an optimization problem and developed a multi-label feature selection method for
distributed and streaming settings that can handle the redundancy of the features. Improving
the theoretical approximation guarantee is appealing for future work. From the empirical
standpoint, it would be nice to try other metric distances and other submodular functions for
the multi-label feature selection problem.

87



5.5. Future Work

(a) Corel5k (b) Eurlex-ev (c) Synthesized

Figure 5.2: Comparison of proposed distributed method with centralized methods in the liter-
ature (1).
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(a) CAL500 (b) Delicious (c) Scene

Figure 5.3: Comparison of proposed distributed method with centralized methods in the liter-
ature (2).
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(a) Corel5k (b) Synthesized (c) Scene

Figure 5.4: Comparison of proposed distributed method (DGDS) with proposed centralized
method (CGDS) on the classification task.
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Figure 5.5: Effect of λ on the performance of the method.
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960–975, 2011.
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