
Time-travel Programming

Programming Language Support for Interacting with Past Executions

by

Robin Salkeld

BMath, University of Waterloo, 2005

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL

STUDIES

(Computer Science)

The University Of British Columbia

(Vancouver)

May 2018

© Robin Salkeld, 2018

The	following	individuals	certify	that	they	have	read,	and	recommend	to	the	Faculty	of	Graduate	
and	Postdoctoral	Studies	for	acceptance,	the	dissertation	entitled:	

	

Time-travel	Programming:	Programming	Language	Support	for	Interacting	with	Past	Executions	

	

submitted	by	 Robin	Salkeld	 	 in	partial	fulfillment	of	the	requirements	for	

the	degree	of	 Doctor	of	Philosophy	

in	 Computer	Science	

	

Examining	Committee:	

Gregor	Kiczales	
Supervisor		

Andrew	Warfield	
Supervisory	Committee	Member		

Ronald	Garcia	
Supervisory	Committee	Member	

Norm	Hutchinson		
University	Examiner	

Sathish	Gopalakrishnan		
University	Examiner	

	
	
Additional	Supervisory	Committee	Members:	

	
Supervisory	Committee	Member	

	
Supervisory	Committee	Member	

	

Abstract

Because software so often behaves unexpectedly or fails only in production envi-

ronments, several recent tools from both industry and academia record data about

execution for the benefit of post-hoc analysis. Debugging on these data instead of

a live program is much more difficult, however, because the semantic abstractions

provided by the programming language are no longer available. Many post-hoc

analysis tools process this data through additional reflection-based code or domain-

specific query languages, but do not recover the expressive power of the original

programming language.

This thesis proposes the concept of time-travel programming, which we define

as simulating the execution of additional code in the same programming language

as if it were present in the past environment of recorded data. Furthermore, we

show that the aspect-oriented programming (AOP) paradigm provides a natural

mechanism for specifying this additional execution, and allows us to reuse estab-

lished semantics and implementations. We provide evidence of this technique’s

flexibility, feasibility and effectiveness through two implementations: one an inter-

preter for an extremely simple AOP language in the style of a core calculus, and

one for the AspectJ programming language. We evaluate flexibility via applying

the implementations to multiple execution recording formats, feasibility by show-

ing the AspectJ implementation is performant enough for post-hoc analysis, and

effectiveness by demonstrating that evaluating new and existing aspects retroac-

tively can be used to address common post-hoc analysis tasks.

iii

Lay Summary

Just as personal video recorders have enabled recording and replaying live televi-

sion, several tools support the equivalent of taking a picture of computer software

as it runs, or continuously recording it so it can be accurately replayed later. This is

potentially invaluable for understanding issues after they happen, but these tools do

not yet reproduce the original experience of a developer observing and interacting

with live software.

This thesis proposes “time-travel programming” as the concept of evaluating

additional code as if it was sent back in time to interact with the original program.

We provide the theoretical foundation for this concept as well as a concrete pro-

totype of such a time-travel machine for Java code using three different recording

technologies. We demonstrate that this enables powerful after-the-fact analysis by

taking existing programming techniques from the present and applying them in the

past.

iv

Preface

A version of Chapter 3 has been published as [61]. I was the lead investigator

for this research project, responsible for conceptualization, the implementation of

the ACC source transformer and runtime based on the Tralfamadore system, and

the majority of the manuscript composition. B. Cully, G. Lefebvre and W. Xu

contributed various extensions of the Tralfamadore system for the purpose of the

runtime and a subset of the text in Section 3.5.2. A. Warfield and G. Kiczales

provided high-level guidance and manuscript edits.

A version of Chapter 4 has been published as [59]. I was the lead investigator

for this research project, and performed the majority of the design of the RAPL

language and the abstract framework for retroactive weaving, the entirety of the

RAPL interpreter implementation, and the majority of the manuscript composition.

R. Garcia contributed substantially to the design of several language features, and

provided manuscript edits.

A version of Section 3.1 and Chapter 5 has been published as [60]. I was the

lead investigator for this research project, responsible for the architectural design,

implementation, experimental evaluation, and manuscript composition. G. Kicza-

les provided guidance on methodology and manuscript edits.

The remainder of the dissertation is my own original and unpublished work.

v

Table of Contents

Abstract . iii

Lay Summary . iv

Preface . v

Table of Contents . vi

List of Tables . x

List of Figures . xi

List of Listings . xii

Glossary . xiii

Acknowledgements . xv

1 Introduction . 1
1.1 Analyzing Past Executions . 1

1.2 Time-travel Programming . 3

1.3 Thesis Statement . 4

1.4 Claims and Contributions . 5

1.5 Organization . 6

2 Background . 8
2.1 Complexity and Abstraction . 8

vi

2.2 Reflection and Metaprogramming 10

2.3 Debugging . 11

2.4 Aspect-oriented Programming 13

2.5 AspectJ . 14

2.6 Execution Recording . 17

2.6.1 Snapshots . 17

2.6.2 Traces . 17

2.6.3 Deterministic Replay . 18

3 Motivation . 19
3.1 Compatibility with Program Source 19

3.2 Coordination with Past Execution 23

3.3 Access to Program State . 25

3.4 Avoidance of Side-Effects . 27

3.5 Exploratory Implementation . 29

3.5.1 Compiler . 29

3.5.2 Runtime . 32

3.5.3 Lessons Learned . 35

3.6 Summary . 36

4 Essential Retroactive Weaving . 37
4.1 Introduction . 37

4.2 Base Language . 37

4.3 Adding Aspects . 40

4.4 Aspect Weaving . 42

4.5 Defining Retroactive Aspects . 44

4.6 Retroactive Weaving . 45

4.6.1 Recording and Reading Traces 46

4.6.2 Retroactive State . 48

4.6.3 Retroactive Control . 49

4.7 Ensuring Soundness . 51

4.7.1 Deterministic Replay . 53

4.8 Related Work . 53

vii

4.9 Summary . 54

5 Retroactive Execution on the JVM 55
5.1 Holographic Virtual Machines 56

5.1.1 Mirrors . 59

5.1.2 Mutations . 59

5.1.3 Translating Code . 60

5.2 Scope . 67

5.2.1 Missing Bytecode . 67

5.2.2 Native Methods . 68

5.2.3 Class Initialization . 70

5.2.4 Concurrency . 71

5.3 Evaluation . 72

5.3.1 Case Study: Diagnosing a Memory Leak 72

5.3.2 Performance . 75

5.3.3 Completeness . 77

5.4 Related Work . 78

5.4.1 Mirror-based Behavioural Intercession 78

5.4.2 Reproducing Past State and Behaviour 79

5.4.3 Heap Dump Analysis . 80

5.4.4 Static Code Analysis . 80

5.5 Summary . 80

6 Retroactive Weaving for AspectJ . 82
6.1 Architecture . 82

6.2 Events and Intercession . 83

6.3 Reflective AspectJ Weaver . 84

6.3.1 Events as Join Point Shadows 86

6.3.2 Efficient Event Requests 86

6.4 Execution Recordings . 89

6.4.1 Events Database . 89

6.4.2 Deterministic Replay . 90

6.5 Soundness . 91

viii

6.6 Case Studies . 92

6.6.1 Contract Verification . 93

6.6.2 Tracing . 94

6.6.3 Race Detection . 96

6.6.4 Memory Leak Detection 97

6.6.5 Profiling . 98

6.7 Evaluation . 98

6.7.1 Adaptation Effort . 99

6.7.2 Results and Runtime . 101

6.8 Related Work . 103

6.9 Summary . 105

7 Conclusion . 106
7.1 Summary . 106

7.2 Limitations . 107

7.3 Threats to Validity . 108

7.4 Future Work . 109

Bibliography . 111

A Appendices . 119
A.1 Illegal Native Methods in the JRE 119

A.2 Illegal Side-effects in AspectJ Case Studies 123

A.3 RAPL Interpreter Source Code 125

ix

List of Tables

Table 2.1 A possible memory layout of the sample binary search tree . . 9

Table 5.1 Results of executing Object.toString on every object in a VM,

comparing performance on a holographic VM versus a live VM

via the JDI . 76

Table 6.1 Summary of case studies and the AspectJ features they use . . 92

Table 6.2 Execution time comparison of retroactive weaving with load-

time weaving . 102

Table A.1 Categorization of forbidden methods in the Java Runtime Envi-

ronment . 122

Table A.2 Illegal side-effects encountered by case studies 124

x

List of Figures

Figure 1.1 Traditional aspect weaving versus retroactive aspect weaving . 7

Figure 2.1 A sample binary search tree, representing the set {1,4,5,7,9} 9

Figure 2.2 An example of the Eclipse user interface while debugging a

Java program . 12

Figure 3.1 An example of working with an associative mapping using ap-

plication code. 21

Figure 3.2 The same example as in Figure 3.1, but using the meta-level

interface of a heap dump model 21

Figure 3.3 A simple ACC example inspired by a Linux kernel module . . 27

Figure 3.4 An example of supressing unwanted side-effects using around

advice . 29

Figure 4.1 Grammar for terms in the base version of RAPL 38

Figure 4.2 Factorial function in RAPL 38

Figure 5.1 The overall holographic objects architecture 58

Figure 5.2 Analysis code used to diagnose the Eclipse CDT memory leak

bug . 73

Figure 6.1 A contract verification aspect 94

Figure 6.2 Suppressing illegal side-effects with aspects 100

Figure 6.3 Relocating illegal side-effects with aspects 101

xi

List of Listings

4.1 RAPL code for an interactive factorial loop 39

4.2 RAPL code for an aspect to trace the factorial function 41

4.3 Possible input and output for applying Listing 4.2 to Listing 4.1 . 42

5.1 Original Java code for the sample Employee class 61

5.2 Original JVM bytecode for the sample Employee class 61

5.3 Translated JVM hologram bytecode for the sample Employee class 63

6.1 An excerpt of output from the AspectJ tracing aspect 95

A.1 Complete RAPL interpreter source code 126

xii

Glossary

ACC AspeCtC

AOP Aspect-oriented Programming

API Application Programming Interface

AST Abstract Syntax Tree

CDT Eclipse C and C++ Development Tools

CIL C Intermediate Language

CPU Central Processing Unit

DNF Disjunctive Normal Form

DR Deterministic Replay

JDI Java Debugging Interface

JRE Java Runtime Environment

JVM Java Virtual Machine

MAT Eclipse Memory Analyzer Tool

MNM Mirror-based Native Method

PC Program Counter

QEMU Quick Emulator

xiii

RAPL Retroactive Aspect Programming Language

TOD Trace-oriented Debugger

TTP Time-travel Programming

VM Virtual Machine

VMM VirtualMachineMirror

XML Extended Markup Language

xiv

Acknowledgements

I would like to thank many people for joining me in what has been a long, exhaust-

ing, and ultimately rewarding journey.

Andrew Warfield, for encouraging me down this path and providing many en-

tertaining discussions around my crazy ideas.

Ronald Garcia, for providing the fresh perspective I was hoping for.

Gregor Kizcales, for supporting me, for putting up with me, and for teaching

me so much more than I ever expected to learn.

Adrian Kuhn, Thomas Fritz, and C. Albert Thompson, for your badly needed

doses of encouragement.

My parents, for ultimately making this possible and inspiring me to find out

just how much I could accomplish.

My son, for inspiring me to finish what I’d started while simultaneously making

it that much harder to.

My wife, for leading by example in every way, for taking it in stride when

things were tough, and for believing in me when I couldn’t. Above all, this is for

you.

A portion of this work was funded by NSERC PGS M and D awards and an

NSERC Discovery Grant.

xv

Chapter 1

Introduction

This chapter provides the motivation for the contents of this thesis. It examines how

the power of abstraction can be lost when analyzing past executions of software via

recorded information. It then introduces the concept of Time-travel Programming

as a generalized solution to this shortcoming.

1.1 Analyzing Past Executions
One of the most common and basic approaches programmers use to understand

execution and diagnose issues is inserting statements that output the state of the

program as it executes. Knowledge is built incrementally, as each output may pro-

vide clues as to where next to look in the code for more insight and hence where to

add the next output statement. Programmers spend many hours in this loop gaining

understanding about how code behaves by writing and evaluating more code. As

this repetition can be tedious and inefficient, many programming language toolsets

include interactive debuggers that support connecting to a running program and

inspecting its state. The dynamic evaluation of code snippets in a precise con-

text within a running program is a common feature of such tools, as they mimic

the power of modifying and rerunning a program. Thus a programming language is

not only the means for humans to tell computers what to do but also a sophisticated

means for asking questions about what computers are doing.

An unfortunate side-effect of the ever-increasing complexity of software, how-

1

ever, is that programs often behave unpredictably when used by real consumers in

production environments. Inevitably programmers must figure out why software

did not behave as expected in the field, where unexpected behaviour can mani-

fest in many forms: rare or obscure application errors, fatal crashes, exhausting

memory or other resources, or simply taking far too long to perform a task.

Ideally developers would like to apply the same interactive, iterative approach

above when diagnosing issues that appear in the field, but this is often ineffective

since reproducing such issues can be challenging. The same input to a program

can produce the correct answer in a development environment and yet fail in a

production environment because of subtle differences in contexts. Moreover, some

issues will not occur consistently because of the non-determinism due to factors

such as concurrency.

In practice, nearly all software will be configured to capture some degree of in-

formation about how a program executed so that programmers might have a chance

of inferring the cause of unexpected behaviour post-hoc. This commonly takes

the form of logging statements that capture some of the human-readable infor-

mation described above. Programmers can diagnose some bugs and unexpected

behaviours simply by reading the high-level, vastly simplified timeline of a pro-

gram’s execution contained within its logs. They allow programmers to become

computing archaeologists, sifting through artifacts from the past in order to glean

insight.

For deeper and more sophisticated debugging and runtime analysis the man-

ual approach does not scale, so it becomes necessary to automate the analysis.

Thus the recorded information needs to be machine-readable rather than human-

readable. Many mainstream programming environments can produce a snapshot

of a program’s state at a single instant in time for later analysis, either on re-

quest or as an automatic reaction to encountering fatal errors. Moreover, tech-

nology for recording the continuous execution of a program is an active area of

research [18, 49, 51, 62], and is becoming efficient enough to find its way into

mainstream computing environments [63].

However, the information in any such execution recording is encoded as low-

level data and events in the recorded programming language runtime, or even in the

operating system or hardware beneath it. The sophisticated layers of abstraction in

2

the program have been lost, leaving a substantial semantic gap. Related tools and

research take the approach of building libraries of operations to analyze or visu-

alize common datatypes from the recorded data in order to enable insight. The

datatypes and operations will be represented by a user-level application model: ei-

ther expressed within some other programming language, sometimes a specialized

query language, or in the original language but at the metaprogramming level. Be-

cause these techniques do not support evaluating code in the original programming

language, they are forced to manually reproduce the behaviour of a live runtime,

which is difficult and time-consuming to accomplish for even a small subset of

commonly-used code and impossible to generalize to all possible programs.

1.2 Time-travel Programming
The key inquiry motivating this thesis is to what extent it is possible to reuse both

the semantics of and the code written in a programming language to interact with

its own execution recordings. For this to be useful for software developers, the se-

mantics of the relevant code must be maintained: any retroactive computation must

be consistent with how the execution would have behaved if it had been present

during the original computation. We define Time-travel Programming (TTP) as the

paradigm of programming in the context of a recorded prior execution, as if new

computation is being sent through a time machine to occur in the past execution

context.

We refer to this simulated execution as Retroactive Execution. Its defining

characteristic is consistency with the preexisting semantics of the programming

language. In the simplest case, the semantics of evaluating an expression such as

print(tree) requires a great deal of context. Providing a sound interpretation

of the programming language’s semantics is equivalent to recreating the behaviour

of a debugging tool connected to a live program. Therefore, in general, implement-

ing retroactive execution involves simulating the entire language runtime.

Execution recordings such as those described in Section 1.1 are always incom-

plete to some degree for any programming language that supports interacting with

anything outside the program’s internal state. In any realistic execution environ-

ment there will be factors that are implicitly omitted from recordings, such as the

3

exact timing of events, external resources such as file systems and networks, non-

determinism in the presence of concurrency, and so on. In addition, recordings will

often be explicitly scoped in order to keep performance and recording size manage-

able. If retroactive execution attempts to access any of this missing data, there is

no guarantee that the simulation will behave consistently as TTP requires. In these

cases the simulation must fail, and hence retroactive execution implementations by

definition will always be partial.

Many forms of analysis require coordinating multiple such additional computa-

tions over time as it is represented in an execution recording. For example, if a bug

in a program’s implementation caused a binary search tree to mysteriously lose

an element the tree could be inspected repeatedly over time to pin down exactly

when it happened. This amounts to simulating the behaviour of adding additional

code at multiple locations in the source. Specifying this additional, potentially

complex and stateful computation as it relates to the original program is a natu-

ral programming language design problem, and is best solved by extending the

original programming language while maintaining source-level compatibility.

We observe that this additional computation will by necessity crosscut the

original computation, and hence that this problem aligns precisely with Aspect-

oriented Programming (AOP). Casting time-travel programming into the AOP

paradigm allows us to leverage not only the established semantics of AOP lan-

guages but also their implementations. We define Retroactive Weaving as the pro-

cess of evaluating one aspect of a program with respect to the prior execution of

another aspect, in contrast to conventional weaving as illustrated in Figure 1.1.

Retroactive weaving then becomes an alternate implementation strategy for provid-

ing the established semantics of the AOP language, changing not what the aspect

means but when it is actually executed.

1.3 Thesis Statement
This thesis demonstrates the advantages of time-travel programming: reusing a

program’s source code and its programming language, or an extended version of

it, to analyze and interpret its own prior computation. We show that this general-

ized technique is a flexible, feasible and effective paradigm for providing post-hoc

4

runtime analysis.

1.4 Claims and Contributions
We support our thesis statement with three key claims:

• TTP is effective, in that it supports the natural and succinct expression of

many post-hoc analyses;

• TTP is flexible, as it is applicable to any programming language and any

technology for recording that programming language; and

• TTP is feasible for a mature mainstream programming language, in that:

– it can be implemented by reusing the language’s original implementa-

tion;

– it can achieve performance adequate for the purposes of post-hoc anal-

ysis; and

– it can succeed frequently enough to be useful despite incomplete infor-

mation about the original execution.

We provide evidence to support these claims through the following contribu-

tions:

• An abstract formal framework for retroactive weaving as it relates to AOP,

thus defining the core semantics and requirements of TTP;

• A discussion of the design space for a valid TTP implementation via an

interpreter for a simple core language with TTP features, demonstrating the

flexibility and generality of TTP;

• An architecture for and a library implementation of TTP for the Java Virtual

Machine (JVM) using the AspectJ AOP language and reusing its implemen-

tation, further demonstrating the flexibility of TTP via pluggable implemen-

tations for three distinct execution recording technologies; and

5

• An evaluation of the effectiveness of the JVM implementation at addressing

common post-hoc runtime analysis problems in terms of its runtime perfor-

mance, ability to reuse existing code, and success rate of producing useful

results despite incomplete information, thus providing evidence of:

– The effectiveness of TTP via useful examples in AspectJ; and

– The practical feasibility of TTP for a mature mainstream programming

language.

1.5 Organization
The remainder of this dissertation is organized as follows. Chapter 2 provides in-

formation on existing concepts and prior work that this thesis builds on. Section 1.2

discusses the motivation for the concepts this dissertation proposes and a prototype

implementation of those concepts. Chapter 4 provides a foundation for the se-

mantics of retroactive aspects by applying the concepts to a simple core language.

Chapter 5 then focusses on an implementation and evaluation of retroactive exe-

cution, a related concept necessary to support retroactive weaving but with a large

amount of complexity and independent utility of its own. Chapter 6 then presents

and evaluates a retroactive weaver for AspectJ based on extending this implemen-

tation. Finally, Chapter 7 summarizes the dissertation and examines the limitations

of this research and potential avenues for future work.

6

Retroactive Weaving
Decoupled analysis applied to execution or trace

Conventional AOP Weaving
Analysis included in compiled program binary

Retroactive
Analysis

Original
Execution

Program Code
Analysis Code
Join Point

Figure 1.1: Traditional aspect weaving versus retroactive aspect weaving

7

Chapter 2

Background

The concepts we introduce in this thesis are synthetic and borrow from multiple

mature fields of research. This chapter provides important background informa-

tion on those fields and relates prior work to the work described in the following

chapters.

2.1 Complexity and Abstraction
As computing becomes more and more omnipresent in our lives, software contin-

ues to grow more and more complex. This complexity is made manageable by

layers of abstraction. Programming languages abstract the low-level details of the

hardware they run on, and datatypes abstract the implementation of the high-level

concepts they represent.

Consider the binary search tree, one of the simplest common data structures in

computer science. Semantically, this abstract datatype represents an unordered set

of elements. It is implemented as a binary tree where the element in each node is

greater than all elements in its left subtree and lesser than all elements in its right

subtree. Figure 2.1 presents a sample binary tree containing five integers. Typically

the binary search tree implementation would be provided as a reusable library and

include a collection of functions for querying and modifying binary search trees.

Applications are composed of many such abstractions, often layered on top of each

other.

8

7

94

1 5

Figure 2.1: A sample binary search tree, representing the set {1,4,5,7,9}

... 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ...

... 7 17 11 5 0 0 9 0 0 1 0 0 4 14 8 ...

Table 2.1: A possible memory layout of the sample binary search tree

At a lower level, the nodes of the tree structure itself are usually implemented

as non-contiguous chunks of computer memory. Each cell contains three pieces of

data: the addresses of its two subtrees, left and right; and the actual value stored

in that cell. Table 2.1 illustrates a simplified view of a possible memory layout for

the sample binary search tree in Figure 2.1. The upper row contains the address

of each memory location and the lower row contains the actual value stored at that

location. Manually reading the semantic contents of this data structure based on

this memory is challenging, especially when in practice the size of such a binary

search tree is frequently on the order of hundreds or thousands of elements.

It is straightforward, though not completely trivial, for the binary search tree to

provide a function that produces the human-readable representation of its contents.

The code in such a function would traverse through the nodes of the tree in or-

der, most likely using recursion, incrementally constructing a string of characters.

Given the tree in Figure 2.1, it would produce the string ”{1,4,5,7,9}”.

This kind of functionality is extremely important to programmers: it enables

them to reason about code using the abstraction it represents instead of the com-

plexity it hides. When attempting to understand a large software project or de-

termine the root cause of a subtle bug, one of the most common and effective

9

approaches is to add more code that outputs such human-readable encodings of a

program’s state at various points as it runs, or to connect to a running program with

a debugging tool that supports interactive evaluation of code snippets.

Thus programming is not a fire-and-forget exercise. A significant portion of

the process of writing software is interactive and incremental. Programmers spend

many hours in the code-evaluate-repeat loop, gaining understanding about how

code behaves by writing and evaluating more code. A programming language is

not only the means for humans to tell computers what to do, but also a means for

asking questions about what computers are doing.

2.2 Reflection and Metaprogramming
The term metaprogramming refers to manipulating programs or their runtimes.

Compilers and translators are hence a kind of metaprogram, since they refer to

code as data. Reflection refers to elements of a programming language that ref-

erence its own code or data, and hence is a specialization of metaprogramming

targeted at the same program [64]. Reflection adds another level of expressive

power and flexibility to a programming language, allowing programs to generalize

over otherwise unrelated elements such as fields of an object.

Java’s reflective interface consists of several closely-related classes in the core

library such as Class and Field. These classes provide several methods which

reflect on the state of the runtime, including classes, objects and threads. To

read the value of the field f on the object o, for example, the straightforward

or “base-level” expression would be o.f. The same value can be retrieved us-

ing reflection, assuming o is an instance of the class c, using the expression

c.getDeclaredField("f").get(o). A reflective interface adds a level of

indirection and provides greater flexibility, but also requires a more verbose syntax

than the base level code.

Kiczales et. al. [33], in describing metaobject protocols, provide terms for three

distinct levels of self-reference of increasing power, which we use in reference to

metaprogramming in general: introspection refers to read-only access to the state

and structure of a program, modification (originally self-modification in the re-

flective case) refers to modifying this state reflectively, and intercession refers to

10

modifying the behaviour of elements of the program. Java’s reflective interface of-

fers a substantial set of reflective operations for introspection but relatively few for

self-modification or intercession: it is possible to change field values, for example,

but not to change the definition of already-defined methods.

2.3 Debugging
The term debugging in a broad sense is the process of software developers ana-

lyzing the cause of undesired behaviour in their code. For the purposes of this

thesis, we use the term debugging to refer more specifically to interacting with a

program as it runs, in order to extract additional information about it or even to

make changes on the fly in order to test potential bug fixes.

Debugging tools are built on another example of metaprogramming, as they

connect to a running program in order to examine and in some cases alter the state

of that program. The Java Debugging Interface (JDI) is one example of an Ap-

plication Programming Interface (API) for interacting with the state of a running

program from within a debugger tool. The JDI includes interfaces that resemble the

native Java reflective classes superficially: ReferenceType, for example, is the

equivalent of Class, and both define a Field type. The JDI offers a metapro-

gramming interface that is strictly more powerful than native Java reflection. It

is possible, for example, to force the currently active method invocation to return

early with a given value.

To support human interaction in debugging tools, the JDI also includes a rich

event-driven API. In particular, it is possible to describe events of interest, such as

when a particular method is invoked, and receive notification when those events

occur. While clients of the JDI are handling such events the thread responsible for

raising the requested event is suspended, or even the entire target program paused

if the clients request it. This capability enables a limited form of intercession, as

the JDI client can intercept the behaviour of certain program elements and modify

program state before resuming.

Figure 2.2 shows an example of the Eclipse user interface, which is built using

the JDI, while debugging a Java program. The lower pane displays the output of

the program so far, and the middle pane shows the line of code currently executing.

11

Figure 2.2: An example of the Eclipse user interface while debugging a Java
program

The small circle on the left indicates the user has set a breakpoint at the current

line, which caused the program to pause when it reached this line. The upper-

left pane displays active threads and their state, in particular their current stack of

method invocations. The upper-right pane lists the symbols that are in scope in the

current context and their values. Note that because the variable s is selected in this

pane, the result of invoking s.toString() is displayed just beneath the list of

symbols.

In general, the trade-off for offering the connectivity and metaprogramming

features for debugging described above, in particular monitoring the program for

requested events, is to significantly slow down the programming language runtime.

Therefore, such runtimes typically provide a so-called debugging mode which must

12

be explicitly turned on and is usually left off for production.

2.4 Aspect-oriented Programming
The paradigm known as aspect-oriented programming (AOP) was inspired by the

observation that programs contain many concerns that are orthogonal to the tra-

ditional decomposition of functions or class methods. Software design typically

includes several such concerns, such as logging, verification, security, persistence,

and event handling. Concerns such as these are said to crosscut each other if their

areas of effect in a program intersect but are not strictly contained in each other. In

non-AOP languages this orthogonality forces the code that implements each con-

cern to be scattered throughout the code, leading to duplication, increased mainte-

nance cost, and decreased developer understanding of the system’s design. AOP

languages include one or more features designed to allow crosscutting concerns to

be implemented as independent modules. See Section 2.5 for a concrete example.

Early presentations of the aspect-oriented programming paradigm focussed on

decomposing a program into a base program and one or more aspects, where the

base program was always modularized along the traditional dimension of functions

or class methods. Masuhara and Kiczales [43] later provided one of the more gen-

eralized definitions of cross-cutting modules and of aspect-oriented programming,

and we adopt their terminology here. Their model defines weaving as the pro-

cess of coordinating the cross-cutting specifications of two independent programs

to produce the behaviour of the combined program. At a high-level, weaving is a

function with signature1 A×B→ X , where A, B and X are all languages, not nec-

essarily distinct from each other. The term join point refers to individual elements

of the combined program where the two input programs intersect. A and B both

include mechanisms to identify relevant join points in the X program and how they

each affect the semantics of those join points. There are several broad classes of

weaving implementations and many strategies for efficient dispatch, but this model

describes the semantic requirements on such implementations.

1Masuhara and Kiczales’ version also includes a third optional META meta-language used to
allow external configuration of how the two programs are combined. This is not relevant for the
content of this thesis and we omit it here.

13

2.5 AspectJ
AspectJ is an aspect-oriented extension of Java, and is one of the most well-

known AOP languages. It adds aspect definitions, which are somewhat similar

to classes but are designed to support modular implementations of concerns that

typically crosscut class and method decompositions. Aspects contain advice dec-

larations, which are similar to methods but are executed in response to relevant

program events rather than explicitly invoked. Pointcuts are declarative expres-

sions which pick out these sets of relevant program events. Aspects can also con-

tain intertype definitions, which semantically add additional static type structure

to one or more unrelated classes, such as declaring additional fields, methods, or

implemented interfaces.

A frequently-cited application of aspect-oriented programming is tracing pro-

gram execution, which in practical terms means outputting relevant information

when key events occur. Below is a simplified version of this aspect as packaged

with the Eclipse-based distribution of AspectJ and described in the AspectJ Pro-

gramming Guide [2]:

public class Trace {
protected s t a t i c Pr intSt ream stream = System . e r r ;

protected s t a t i c i n t ca l lDep th = 0;

public s t a t i c void t r aceEn t ry (S t r i n g s t r , Object o) {
ca l lDep th ++;

p r i n t I n d e n t () ;

stream . p r i n t l n (” - -> ” + s t r + ” : ” + o . t o S t r i n g ()) ;

}

public s t a t i c void t r a c e E x i t (S t r i n g s t r , Object o) {
p r i n t I n d e n t () ;

stream . p r i n t l n (”<- - ” + s t r + ” : ” + o . t o S t r i n g ()) ;

ca l lDep th - - ;

}

private s t a t i c void p r i n t I n d e n t () {
for (i n t i = 0 ; i < ca l lDepth ; i ++) {

stream . p r i n t (” ”) ;

}

14

}
}

aspect TraceMyClasses {
pointcut myClass (Object ob j) :

th is (ob j) && within (TwoDShape) | | within (C i r c l e) | | within (Square) ;

pointcut myConstructor (Object ob j) : myClass (ob j) && execution (new (. .)) ;

pointcut myMethod (Object ob j) : myClass (ob j) &&

execution (* * (. .)) && ! cflow (execution (S t r i n g t o S t r i n g ())) ;

before (Object ob j) : myConstructor (ob j) {
Trace . t raceEn t ry (” ” + t h i s J o i n P o i n t S t a t i c P a r t . ge tS ignature () , ob j) ;

}
a f te r (Object ob j) : myConstructor (ob j) {

Trace . t r a c e E x i t (” ” + t h i s J o i n P o i n t S t a t i c P a r t . ge tS ignature () , ob j) ;

}
before (Object ob j) : myMethod (ob j) {

Trace . t raceEn t ry (” ” + t h i s J o i n P o i n t S t a t i c P a r t . ge tS ignature () , ob j) ;

}
a f te r (Object ob j) : myMethod (ob j) {

Trace . t r a c e E x i t (” ” + t h i s J o i n P o i n t S t a t i c P a r t . ge tS ignature () , ob j) ;

}
}

The myClass pointcut matches all join points within the code that defines

the three listed classes. The myConstructor pointcut intersects this pointcut

with one that matches the execution of any constructor, and hence matches all

constructor executions in these classes. This aspect therefore causes the execution

of the tracing statements before and after every constructor or method execution in

the listed classes. In a non-AOP implementation, these calls to the tracing module

would have to be duplicated in every constructor and method in these classes. Note

that the cflow clause in the myMethod pointcut is a common idiom used by

advice to exclude the join points in the control flow of their own code and hence

avoid infinite regress.

The AspectJ distribution includes the de facto standard implementation of As-

pectJ, which we will refer to as ajc. This toolset implements the semantics of as-

pects by modifying the code that is run, as described in [30]. The AspectJ compiler

and runtime define a common binary format for aspects. Each aspect is compiled

15

into a Java class, and each advice definition becomes a method (which we refer to

as an advice method) with a generated internal name and annotations containing

information relevant for weaving, such as the associated pointcut definition. Other

auxiliary data such as cflow state data structures are inserted into these classes as

needed.

The elements of code that are causally linked to join points at runtime, and

hence need to be augmented in this way to implement the cross-cutting nature of

AOP programs, are referred to as join point shadows. Each join point shadow is

matched statically with each pointcut, and wherever there is a potential dynamic

match, the shadow is altered to implement the advice semantics as well. The exact

implementation details vary, and may involve inserting calls to generated methods

containing advice bodies, or inlining advice bodies directly with shadows. Simi-

larly, intertype declarations are generally implemented by inlining the declarations

into their target type.

ajc supports two approaches to weaving, both of which use this binary as-

pect format at runtime. Compile-time weaving locates the weaving process in the

compilation stage. All code, including that contained by either methods or advice

definitions, is augmented as it is compiled to JVM bytecode to include calls to the

munged advice methods as needed. Load-time weaving, by contrast, applies trans-

formations to JVM bytecode as it is loaded into the JVM and before it is executed.

Because of their very cross-cutting nature, the scope of code that aspects affect

is not manifest in aspect source or binaries themselves. This is instead determined

by external configuration: compile-time weaving is scoped by the build environ-

ment, and load-time weaving by configuring the Java runtime to affect how classes

are loaded, generally by creating custom class loaders.

Other AOP languages support what is called runtime weaving, which is apply-

ing the semantics of aspects dynamically. The definition of the AspectJ language

does not support runtime weaving: among other reasons, the semantics of disabling

an aspect containing intertype definitions that are referenced by running code are

unclear. However, dynamic weaving is a well-established approach in the litera-

ture [9] [54] as well the preferred method for dynamic AOP languages [26].

From the early days of research on aspect-oriented programming, many have

observed when a program is factored into multiple aspects, it is natural to classify

16

those aspects as either interfering or non-interferring. The latter style of aspects are

in some sense safe to omit as needed, such as to increase performance in production

environments.

One of the often-cited benefits of AOP is flexibility. An aspect that traces a

large volume of debugging information may be easily turned off when deploying

though a small amount of compiler or runtime configuration. Any such aspect

that is not strictly required for program correctness is certainly optional and non-

interferring in some sense. Dantas and Walker [22] offer a formal definition of

harmless advice which prevents such advice from altering a computation’s final

value, while still allowing the advice to read state of interest and perform input

from and output to the outside world.

2.6 Execution Recording
This section describes a number of variations on the theme of recording some sub-

set of the state of a program as it executions.

2.6.1 Snapshots

We use the term snapshot to refer to any persisted record of the complete state of a

running program to a high degree of detail. Many operating systems automatically

produce a core dump when a program crashes, which is one form of snapshot that

records the low-level state of a program’s raw memory. It may also include the

contents of Central Processing Unit (CPU) registers.

A JVM will produce a so-called heap dump when it exhausts available mem-

ory. A heap dump records the state of a Java program in terms of Java semantics,

as objects and primitive values and the references between them rather than raw

memory state. It does not, however, include the Program Counter (PC) counter of

each thread of execution.

2.6.2 Traces

The idea of recording snapshots can be semantically extended to record the state

of a program over time as it executes, rather than at a single instant in time. Rather

than recording multiple independent snapshots, however, this can be done much

17

more efficiently by only recording the incremental changes between timestamps.

Indexing these deltas enables efficient handling of requests for specific runtime

values at specific times.

Omniscient debugging [38] describes narrowing the gap between live debug-

ging and execution trace analysis by creating trace browsers that look like live

debuggers. Developers can examine variable values and control flow state using

the same idioms as live debugging, but also travel backwards and forwards through

time to events of interest. Research has largely focused on improving the execution

tracing and trace querying efficiency [55, 56] of omniscient debugging.

2.6.3 Deterministic Replay

Deterministic Replay (DR) [24, 25, 31, 68] is an active area of research that enables

recreating the actual execution of a program exactly as it previously happened.

This is accomplished by recording sources of non-determinism in the program as

it executes. This includes external sources such as user input, but also internal

sources such as the results of concurrent access to shared data. A later replay stage

reads this recording and forces the same outcome of non-deterministic operations

as before.

18

Chapter 3

Motivation

This chapter identifies some of the shortcomings of the various systems available

for post-hoc dynamic analysis, and argues for the position that time-travel pro-

gramming is a natural and effective solution. It also describes an initial implemen-

tation of retroactive weaving for AspeCtC (ACC), an aspect-oriented extension of

C, using static analysis and code transformation techniques. This implementation

provided some evidence for the effectiveness of our position although it was not

developed further. We then discuss the positive and negative observations made in

our experience with this prototype.

3.1 Compatibility with Program Source
We first describe the approach many post-hoc analysis tools use to work around the

inability to execute code, which is to force developers to program analysis using

a reflective model, and examine the problems we intend to solve with retroactive

execution.

For the purposes of concrete discussion we will first focus on Java heap dumps

as a particular example of recording execution; as outlined in Section 2.6 such

snapshots of execution state are a key part of many approaches to recording execu-

tion. There are many types of retroactive analyses that can be applied to a snapshot:

counting the number of objects of each unique type and how much memory they

occupy, for example, to determine the root cause of exhausting available mem-

19

ory. The Eclipse Memory Analyzer Tool (MAT) [3], which we use to represent the

current state-of-the-art, includes a rich UI for browsing the object graph, several

dozen actions for navigating it, and several pre-defined analysis commands such as

identifying the set of objects that are most likely leaking memory.

Consider a Java developer browsing the object graph in a heap dump who

has identified an object that implements the built-in java.util.Map interface.

This implies that the object implements an associative mapping from keys to val-

ues. Suppose the developer needs to know what value a certain key is mapped

to. When debugging a live process this is as simple as evaluating the expression

map.get(key), but the task is surprisingly involved with a dead process. Even

if the concrete type of the map was java.util.HashMap, a well-known imple-

mentation backed by a straightforward hash table, finding the right key-value pair

involves manually searching through the internal representation of a potentially

massive hash table to find the matching entry.

Not being able to execute code also means there is also no way to invoke the

method Object.toString. This method is defined at the top of the Java class

hierarchy with a default implementation and therefore callable on any object, and

is used to create human-readable text describing the object. The Eclipse debugging

perspective, for example, includes a window dedicated to displaying the result of

calling toString on objects in other windows (as shown in Figure 2.2), and it is

exactly this basic functionality that is missing in a heap dump browser.

The tools used to interact with heap dumps attempt to address this issue by pro-

viding utilities to automate these tasks: in particular, the MAT includes a command

named “Extract Hash Entries”. To implement this utility, however, the tool de-

veloper must include handler code for every single subclass of java.util.Map

that might be encountered in the object graph.1 Since the tool cannot possibly han-

dle all possible types in arbitrary application code, the utility must be pluggable

so that developers wishing to analyze their heap dumps can contribute handlers for

the types of objects in them. Ultimately, this means that those developers are faced

with the job of re-implementing the semantics of a non-trivial portion of applica-

tion code using the meta-level represented by the heap dump model.

1The standard library alone includes several dozen, such as ConcurrentHashMap,
LinkedHashMap, TreeMap, and so on.

20

1 p u b l i c S t r i n g getProper ty (Serv i ceProper t i es map, S t r i n g key) {
2 r e t u r n (S t r i n g)map. get (key) ;
3 }

Figure 3.1: An example of working with an associative mapping using appli-
cation code.

1 p u b l i c S t r i n g getPropertyMeta (IOb jec t map, S t r i n g key) {
2 S t r i n g [] keys = n u l l ;
3 S t r i n g [] values = n u l l ;
4
5 IOb jec t ob jec t = map. resolveValue (” headers ”) ;
6 IOb jec tAr ray ar ray = (IOb jec tAr ray) headers ;
7 i f (a r ray != n u l l) {
8 long [] keyAddrs =
9 ar ray . getReferenceArray () ;

10 i f (keyAddrs != n u l l) {
11 / / Ca l l he lper method to dereference
12 / / addresses to S t r i n g ob jec ts
13 keys = ge tServ i ceProper t i es (keyAddrs) ;
14 }
15 }
16
17 / * S i m i l a r l y f o r ” values ” f i e l d * /
18
19 i f (keys == n u l l | | values == n u l l)
20 r e t u r n n u l l ;
21 f o r (i n t i = 0 ; i < keys . leng th ; i ++) {
22 i f (keys [i] . equals (key)) {
23 r e t u r n values [i] ;
24 }
25 }
26 r e t u r n n u l l ;
27 }

Figure 3.2: The same example as in Figure 3.1, but using the meta-level in-
terface of a heap dump model

21

Figure 3.1 contains an example of base code that retrieves the value a key is

mapped to in one particular type of map, and Figure 3.2 contains an example of

MAT source code that achieves same thing using the reflective heap dump API.

This snippet is part of a large submodule responsible for reconstructing the state of

the Equinox OSGi Java module system [29] from a heap dump; this code is only

concerned with the configuration properties, a mapping from strings to strings,

for a particular service. The configuration is stored as a pair of parallel arrays,

and this code first resolves the object references contained in each, then iterates

through the list of keys until it finds a match. This example illustrates a number of

disadvantages inherent to this approach.

Complex: The complexity inherent in reproducing the behaviour of a poly-

morphic method such as Map.get is high. As shown in Section 2.2, meta-level

code is inevitably much more verbose than the equivalent base-level code, and

reproducing higher-level language features such as polymorphic method dispatch

and field shadowing correctly at this level is challenging.

Type-unsafe: If the analysis code makes a type error, it will not cause an error

until further downstream reads fail to find the fields they are expecting, if an error

occurs at all. This makes tracking down coding errors much more difficult. In

Figure 3.2 the meta-level code assumes that the property values are strings when

in fact they can be other types, and in the base-level code a cast is necessary to

make the code compile. Guarding against such errors through explicit meta-level

type checks requires programmer discipline, contributes greatly to code bulk, and

as shown in the example are often omitted.

Brittle: In Figure 3.2, the code expects the properties to be stored in two paral-

lel arrays. In more recent versions of Equinox, however, these fields no longer ex-

ist, and the properties are instead stored in a single special-purpose object. Because

of the various null checks in this code, likely present to prevent this exact problem

from crashing the overall analysis, no error is raised, and the service object appears

to have no properties. The fact that meta-level analysis accesses datatype internals

directly means that the analysis can very easily break or, even worse, silently pro-

duce incorrect results when run against a dump produced by a newer version of the

target code. Since this approach involves a second, redundant implementation of

the functionality in the application, it introduces an ongoing maintenance burden.

22

Insecure: The access control mechanisms built into a language, such as declar-

ing types or fields private or protected in Java, are generally more easily cir-

cumvented within its own reflection facilities. Access control depends on knowing

the accessing context, which for Java means the class the referencing code resides

in. The dynamic nature of reflection means that this is not statically available, and

not even dynamically available unless explicitly provided at great inconvenience.

When traversing a heap dump model these protections are lost entirely: in the ex-

ample above the code reads from two private fields with no extra difficulty. This

contributes towards the brittleness of analysis code as above, since it is easy to re-

fer to internal details that are likely to change in the future, but it also means that

sensitive data is easy to read, whether by accident or on purpose.

Unfamiliar: Developers familiar with base-level (ordinary) programming in a

language must learn an additional paradigm to understand and effectively work

with the meta-level object model. In addition, because application values fre-

quently refer to datatypes from libraries, reimplementing application-level code

requires understanding and reimplementing library code as well, since the encap-

sulation that normally hides those details from clients has been lost. Tool develop-

ers can alleviate some of this burden by handling the most common functionality,

but handling even a small percentage of the code a user is likely to encounter is

impractical.

Most debugging and analysis tools that are capable of reading snapshots or core

dumps share these limitations. The GNU Project Debugger (GDB), for example,

supports automated debugging through Python scripts, but these scripts operate on

a similar meta-level representation of program state.

The primary benefit of retroactive execution as a tool for retroactive analysis is

to provide the same analytic power as the original programming language, enabling

the developer to simply evaluate map.get(key) in the context of the snapshot

and obtain the needed answer.

3.2 Coordination with Past Execution
The previous section provided motivation for the utility of retroactive execution.

Automated post-hoc analysis code, however, also needs to specify individual points

23

in time of interest in the program’s execution to trigger additional code, and have

access to local values that aren’t available from the global state. Retroactive exe-

cution restores the expressive power of code for interacting with a single point in

time, but does not by itself provide an equally expressive mechanism for interact-

ing with the flow of state over time. Without such a mechanism, locating relevant

points in time and collating or comparing values over time is just as complicated

and error-prone as the metaprogramming-based alternative to retroactive execution

outlined above.

Ideally, offline analysis should be just as intuitive and familiar as adding printf()

statements within a program’s source code: the analysis’ interaction with the orig-

inal program should be type-safe; consistent with its value, name binding and con-

trol flow semantics; and able to reuse its datatypes and algorithms. In addition, it

should be possible to author analysis code with consistent semantics that do not de-

pend on which execution capture and replay technology is used, or even on whether

the analysis is evaluated during the program execution or after it.

Offering the same flexibility as inserting additional code at arbitrary locations

in the source code is challenging, and ensuring the instrumentation is run exactly

when needed often involves complicated and flow-sensitive specifications. This

problem is addressed in various ad-hoc ways by existing dynamic analysis tools,

both online or offline. Pin [41] and the ATOM language it is based on [65] are

quite aspect-like at the instruction level, but each instruction must be individually

inspected as a metadata object to determine where to insert additional instructions.

The Program Trace Query Language (PTQL) [28] is a reduced dialect of SQL

customized to query program executions, which is described as being equally ap-

plicable to post hoc evaluation. PTQL treats individual execution events such as

function calls as relational tuples, with time as an explicit dimension that must

be manually manipulated, which makes analysis of control flow awkward to spec-

ify. VMWare’s VAssert [4] system supports replay-only statements in source code,

which requires analysis foresight and is less convenient for testing bug theories

after the fact.

Coordinating the interaction of the cross-cutting analysis with the original pro-

gram execution lies precisely in the domain of aspect-oriented programming. In

particular, pointcuts provide a rich specification language for solving exactly this

24

problem, and are equally applicable to matching joinpoints that occurred in the

past. They include binding mechanisms such as args(x, y) and return(z)

which allow values to be extracted from the original program and used in analy-

sis code. Using a declarative sub-language to describe analysis trigger points also

presents opportunities for optimization in the context of execution tracing and re-

play, since irrelevant events and even entire periods of execution can be ignored or

skipped over when reading a trace or instrumenting a dynamic replay process.

In some cases an AOP language’s pointcut types may not express all of the

desired concepts for post hoc analysis, but as proposed previously [12, 20] it is

reasonable to extend pointcut languages for greater expressiveness or precision; we

have extended ACC ourselves, in fact, in order to address its shortcomings when

applied to kernel-level code, as described in Section 3.5.2. Implementing AOP

concepts beyond pointcuts and advice in the context of retroactive evaluation could

also enable more sophisticated analysis. Intertype declarations, in particular, offer

an attractive solution for attaching additional analysis state to program structures

after the fact, and are flagged as future work in our prototype.

3.3 Access to Program State
Retroactive aspects will read values from the original program execution wher-

ever such values are referenced through pointcut arguments or global variables.

Retroactive weaving therefore needs to extract those values from the original exe-

cution.

Simply applying traditional dynamic advice weaving to a deterministic replay

process would appear to be an ideal implementation, but unfortunately this will

inevitably interfere with the fragile replay process. In our case of kernel-level pro-

cess replay, for example, it is necessary to record all system calls made to the kernel

so they they can be reproduced in replay. Any system calls made by the analysis

code will be incorrectly trapped by the replay process and produce the wrong re-

sults, and in addition throw off future results, so even an apparently harmless call

to printf() can be disastrous. Similar issues exist for any replay mechanism: in

general, efficient replay relies on being able to assume all deterministic behaviour

remains exactly the same between record and replay. Post hoc analysis must there-

25

fore be somehow isolated from the DR process it analyzes.

Recently, Devecsery et. al. showed in their work on eidetic systems [24] that

it was feasible to record all user processes in a system with minimal overhead and

storage on the order of a few terabytes over several years. They also leveraged

prior techniques [7] for ensuring their Pin-based analysis does not perturb their

DR processes: ensuring the memory allocated by analysis does not overlap with

the original memory referenced by the recorded process, and distinguishing sys-

tem calls made as part of replay versus those made during analysis code. This

does mean, however, that analysis must be written to explicitly copy values into

this isolated memory space in order to analyze them, and if analysis code invokes

existing code in the process it runs the risk of leaking references to this space and

invalidating the isolation.

Because retroactive aspects are compatible with the program source and can

maintain their own state, references to both the original program’s state and the

analysis state must be disambiguated. In our C implementation, for example, this

means that pointer values may actually refer to either the original program’s mem-

ory or the new analysis runtime’s memory. We refer to this as the dual address

space problem.

In other decoupled analysis frameworks such as Speck [49], data must be man-

ually marshalled between processes in order to synchronize them, which does not

scale well to arbitrary source-level analysis. Choi and Alpern use remote reflec-

tion [48] to debug a Jalapeo JVM [17] from another JVM. Remote reflection solves

the dual address space problem in Java dynamically by customizing the debugging

JVM to track whether each object is remote or local; references to remote object

members are handled by communicating with the JVM being debugged, and the

flag is propagated through such references.

Our approach in our retroactive weaver for ACC is to solve the problem stati-

cally instead. At compile time, variables declared by the program source or bound

by pointcuts are marked by our aspect compiler as program state. Other variables

and fields are inferred based on dataflow as either program or analysis state within

the source code, and references to program state are rewritten to instead call a

runtime API to recreate that state.

This concept can be illustrated with a simple example: Figure 3.3 contains a

26

1 before (s t r u c t mutex * lock) :
2 c a l l ($ mutex lock (. . .)) && args (lock) {
3 i f (! check order (cur ren t , lock)) {
4 p r i n t f (” Lock order reve rsa l : %p (%s) ” , lock , lock ->name) ;
5 }
6 }
7 before (s t r u c t mutex * lock) :
8 c a l l ($ mutex unlock (. . .)) && args (lock) {
9 remove from order (cur ren t , lock) ;

10 }

Figure 3.3: A simple ACC example inspired by a Linux kernel module

sample ACC aspect inspired by the witness kernel module, which validates that

lock acquisition and release code is structured correctly to avoid deadlocks by veri-

fying that lock ordering is consistent. The check order and remove from order

functions manipulate a lock order relationship tree; their implementation is omitted

for brevity. This is one of several units of conditionally-enabled kernel code that

provides valuable debugging information but is normally too slow or intrusive to

enable for production builds.

In this aspect, the lock pointer is bound though the args pointcut, and is

hence marked as referring to base state, as is lock->name. So is the result of

current, a Linux kernel macro used to get a pointer to the currently running task

from a CPU local variable. The string literal in the call to printf, on the other

hand, is a new value created by the aspect code and hence its address is marked as

referring to aspect state. Our implementation of this inference process is described

in Section 3.5.1.

3.4 Avoidance of Side-Effects
For source-level post hoc analysis to have consistent semantics whether it is evalu-

ated online or offline, the analysis code must not have side-effects that would have

changed the program behaviour; the analysis framework should reject any such

analysis.

In other systems where analysis is performed outside the original program,

such as Speck or remote debugging, any side-effects occur externally as well and

27

are not in danger of perturbing the replay. However, allowing them can cause later

analysis code to observe these changes and behave inconsistently, and these devia-

tions can be buried deep within application code called from the analysis and hence

have very subtle consequences. Other approaches based on virtualization such as

Introvirt [32] and VAssert [4] allow mutations to occur within the replay process,

but then revert to a prior checkpoint to undo their effects before continuing. This

also prevents the analysis from maintaining any state between triggers, however,

such as the depth counter in the tracing example of Section 2.5 or the lock ordering

data structure in Figure 3.3, and hence restricts its power.

The same static analysis that addresses the dual address space issue can also

be used to detect and reject attempts to write to the program’s memory space,

which is the most common way analysis code could affect the program’s execution;

see Section 4.7 for a more general and precise discussion of this issue. A large

percentage of useful application code, however, will include side-effects such as

caching even if their primary use is to read state, which would seem to imply they

cannot be used in retroactive aspects.

One solution is to use adviceexecution(), a generic pointcut introduced

in AspectJ which matches all joinpoints inside advice code. This is often used to

exclude aspects from applying to other aspects when the interaction is undesirable.

Combining it with the cflow pointcut operator creates a pointcut that covers all

advice execution. In the case of retroactive aspects, it therefore covers all code in

the decoupled analysis, and so can be used to only suppress or redirect side-effects

in application code when called retroactively. This achieves the goal of advice code

that behaves identically whether woven directly or retroactively. See Figure 3.4 for

an example. Here around advice is used to avoid undesired side effects by replacing

certain calls with no-ops.

Note that this simple definition will not have the desired effect if the original

program also contains advice execution. However, this can easily be replaced with

a more nuanced pointcut that picks out only the retroactive execution, possibly

just by adding additional conjunctive clauses that name the aspects being woven

retroactively.

28

1 / / Program code
2 vo id fetchFoo (char * foo) {
3 increaseFooRefCount () ;
4 computeFoo (foo) ;
5 }
6
7 / / Ana lys is advice
8 a f t e r () : c a l l (bar ()) {
9 char foo [1 0 0] ;

10 fetchFoo (foo) ;
11 p r i n t f (” Foo i s : %s ” , foo) ;
12 }
13 around () : c f low (adv iceexecut ion ())
14 && c a l l (increaseFooRefCount ()) {}

Figure 3.4: An example of supressing unwanted side-effects using around ad-
vice

3.5 Exploratory Implementation
This section defines our retroactive weaving prototype for ACC. The system con-

sists of a compiler that compiles ACC aspect files into a C library and two different

runtimes for evaluating the compiled aspects against a particular program execu-

tion recording. In combination with the existing ACC weaver, this allows the same

ACC code to be evaluated either inline or post hoc.

3.5.1 Compiler

Our compilation process consists of a chain of several distinct source transforma-

tion phases taking ACC code as input and producing C code as output, followed

by a call to an underlying C compiler (gcc in our case) to produce object files.

The source transformation phases are implemented by extending the C Intermedi-

ate Language (CIL) OCaml library [47], which is designed to support the analysis

and transformation of C source.

We have modified the CIL distribution to support parsing ACC code and repre-

senting pointcuts and advice in its abstract syntax tree. The compiler also annotates

variables and types to track which memory space they refer to by leveraging CIL’s

support for gcc attributes, which are declarations with the syntax “$attribute”

29

that can be attached to nearly all elements of C syntax. In our case these annota-

tions are either resolved $base or $aspect annotations, or annotation variables

such as $$a that represent unknowns. Since the C type system includes value

types with multiple layers of indirection (e.g. pointers to pointers), the annota-

tions are attached to all levels of types; as an example, the type char $base *

$base * $aspect is interpreted to mean “pointer in the aspect space to a loca-

tion storing a pointer in the base program space containing an immutable character

derived from program values.” This would be exactly the correct type to ascribe to

a variable holding the beginning of a sequence of strings extracted from the origi-

nal execution: the array itself would be a consecutive region of space in the aspect

execution, but the pointer values inside would refer to the memory of the original

execution.

The source transformation phases are outlined below.

Annotation Inference

This phase walks the ACC source tree in a bottom-up pattern, inserting annota-

tions and variables as needed. The $base and $aspect annotations are first

introduced as base cases into the Abstract Syntax Tree (AST) according to the se-

mantics of weaving: values that are bound from the original execution through

pointcut parameters (e.g. args(a, b, c) and this->args) are assigned

to the $base space at all levels of indirection, whereas values that are allocated

by the weaving runtime (i.e. targetName(x) and this->targetName are

similarly assigned to the $aspect space.

This phase also builds up a list of type constraints of the form T1 = T2 based

on nodes in the AST that require two address spaces to be the same: assignments,

function arguments and return values, arithmetic, etc. Annotation variables are

then resolved by solving the constraints using straightforward unification [58].

In general, values from different address spaces cannot be used together. This

means that even arithmetic combining such values is forbidden, although explicit

casts can always be inserted if necessary. An important exception is pointer arith-

metic, where offset values can be from any address space, and the base pointer

determines the address space of the result. This is necessary to support reading

30

values from arrays in aspect code, for example. Adding an annotation to repre-

sent values from either address space would allow more valid aspects to be typed

without additional source modification, at the cost of added implementation com-

plexity.

Annotation Propagation

As an additional aid to determining the address spaces of values in the source, this

phase takes advantage of the observation that addresses in the original program ad-

dress space cannot point to values derived from the aspect space by construction;

to arrive in such a state requires an assignment to a target lvalue, which is prohib-

ited as an illegal side-effect. Therefore, the occurrence of any type variable as an

address space annotation in a type at a deeper level of indirection than a $base an-

notation can be replaced by $base as well. For example, char $$a * $base

* $aspect will become char $base * $base * $aspect.

This is an important rule for C code, and kernel code in particular, in which it

is common to calculate addresses through raw numeric calculations followed by a

cast to a pointer. Ideally this rule could be incorporated into the general inferencing

phase, but this rule cannot be encoded as a simple equality of types and hence

cannot be included in a sound way. As future work, we plan to use a less simplistic

inferencing algorithm in order to address this lack of power.

Program State Access

If the previous phases have not rejected the input program, the AST now con-

tains only language constructs whose interactions with the program state are fully

tractable. The next phase then replaces all instructions that read the program’s

memory with calls to reconstruct the values from the retroactive weaving runtime.

This includes the reads of any lvalue derived from the program execution, or tak-

ing the address of any such lvalue. Addresses of symbols and data structure offsets

are calculated from information extracted from a debug build of the program. The

functions used to produce addresses of global variables and resolve register and

memory accesses are declared in a header file added to the source at this stage, to

be implemented by the particular backend weaving runtime.

31

Some special cases are implemented directly in the compiler backend since C

is not expressive enough to redefine code using around advice as described earlier.

For example, printf takes a variable number of arguments, and the operations it

performs on those arguments depend on the format string; a pointer value matched

with a %s pattern will be dereferenced, but one matched with a %p will not. Our

solution is to match the formats to the arguments and to copy values like strings

into aspect space if printf will dereference them, and then pass the modified

arguments to the original implementation. This supports calls that pass a mix of

program and analysis pointers, which is useful given that some joinpoint data con-

sists of analysis pointers (e.g. function names as char * values).

Transformation from ACC to C

The final component is responsible for splitting the aspect bodies from their asso-

ciated pointcuts. For a single given retroactive aspect, this component produces a

C source file with three separate artifacts:

1. A set of advice bodies transformed into regular functions by discarding their

pointcuts and advice kind, along with stub methods for invoking the advice

body functions with a unified interface;

2. A function table for these stub methods; and

3. A string constant containing the set of aspects from the input in ACC syntax,

with their bodies discarded, in the same order as in the function table.

This enables parsing the aspect stubs and dynamically invoking their body

functions without recompilation of the target weaving runtime.

3.5.2 Runtime

This section describes the interface between the aspect runtime and the target exe-

cution environment and a brief description of the two target environments we cur-

rently support: one instantiates state on demand from an instruction level trace

produced by the Tralfamadore [37] dynamic analysis framework, and one pro-

vides hooks into the Quick Emulator (QEMU) virtual machine monitor [11], which

32

we have modified to perform deterministic recording and extract virtual machine

state during replay. For these backends, the retroactive aspect compiler produces

a shared library containing the aspects in the original ACC source as regular C

functions, with metadata consisting of the advice kind and pointcuts attached.

This shared object runtime exports a common retroactive weaving interface, which

serves two purposes: first, to provide the target environment with event notifica-

tion callbacks on events such as function calls and returns and context switches

to produce join points, and second, to let it register functions for inspecting target

register and memory state.

Understanding Kernel Execution

Running aspects against kernel execution is made somewhat more complicated by

context-sensitive pointcuts such as cflow(pc), which matches any join point

that occurs inside, or beneath, the pointcut pc. User-level aspects can refer to

the threading abstraction provided by the operating system to uniquely identify

individual flows of execution (i.e. pthread self()) and track joinpoint stacks

correctly.

Kernel code is more challenging because although the notion of thread exists,

it is not a good abstraction for tracking individual flows of execution due to in-

terrupts and exceptions. Interrupt handlers execute in the context of the currently

running thread but are conceptually different flows of execution. Identifiers such

as current, which maps to the currently executing task, cannot be used to dis-

tinguish between threaded (system call, kernel threads) and interrupt handler exe-

cution. Interrupts can also be nested, making this problem worse.

Because our trace-based framework is designed to analyze kernel execution,

it provides an abstraction to demultiplex individual flows of kernel execution. It

uses platform-specific rules to isolate system calls, interrupts, exceptions and ker-

nel threads and label them with a unique opaque identifier. These rules are both

hardware and operating system specific and require tracking stack switching, inter-

rupts, exceptions and instruction such as iret and sysexit.

We have extended the implicit structure encoding the current join point to sup-

port the expression this->cflowID. This evaluates to the flow identifier pro-

33

vided by the backend runtime that can be used to index per-control-flow infor-

mation for later retrieval, while still encapsulating the details of how independent

control flows are tracked. We believe this to be a logical, generic extension to

AOP and suggest that it could be used in any pointcut and advice language to avoid

dependencies on specific threading libraries.

Trace-based Runtime

The Tralfamadore backend is completely offline in that running aspects involves no

re-execution of guest code at all. All updates to register and memory that occurred

during execution recording are present in the trace. Because Tralfamadore uses a

modified version of QEMU to capture traces, it can be used to record the execution

of an unmodified operating system kernel.

To add support for retroactive advice execution, we implemented a new top

level operator stacked on top of the existing kernel flow and function call operators.

This new operator implements a driver loop that pulls on these events and calls into

the weaving runtime whenever an event of interest is recognized. Tralfamadore

also supports tracking the state of registers and provides a memory index which

supports efficiently finding the last update to a given memory address range. We

use both of these features to support callbacks from the weaving runtime to inspect

guest state.

Deterministic Replay Runtime

We have also implemented a retroactive weaving runtime directly into a virtual

machine monitor (QEMU), which we have enhanced to perform deterministic ex-

ecution recording and replay [25]. It records all non-deterministic events (such as

external interrupts or reads of the CPU timestamp counter) occurring during exe-

cution so that they may be injected at the same point in execution during replay.

We have also added hooks into QEMU to register callbacks that can be in-

voked before and after the execution of any basic block. We use these hooks to

track individual flows of kernel execution similarly to Tralfamadore and to track

function calls and return. Whenever such an event occurs, these hooks call into

the retroactive weaving library, potentially calling aspect code. Accessing guest

34

state is much more efficient than in the trace-based approach: it is simply a matter

of mapping pointers into QEMU’s data structure representing the memory of the

target virtual machine. Compiled aspects and the retroactive weaving runtime are

loaded and unloaded into QEMU during replay using the standard dynamic loaded

library mechanism.

Deterministic recording and replay can be made very efficient through the use

of CPU performance counters [25], costing as little as 5% overhead in VMWare [63].

Our prototype is much more expensive (approximately 20x) due to its pure soft-

ware implementation, which makes it easier to hook instrumentation into replayed

execution. As AfterSight [19] demonstrated, it is possible to use low-overhead

hardware deterministic recording as the source for software replay, and we hope to

do this ourselves in future work.

3.5.3 Lessons Learned

Although we we successfully authored and executed several retroactive ACC as-

pects using this prototype, we found that the need to provide explicit type annota-

tions when the type inference could not determine them was a substantial burden.

The second implementation described in Chapter 5 instead uses the equivalent of

runtime type dispatch to address the dual address space problem, including dy-

namic type checks to detect incorrect usage. The overhead of this approach was

not found to be significant compared to the overhead of retroactive execution in

general.

In addition, we discovered that providing a language runtime that executes code

using recorded state was a substantial undertaking, made especially challenging by

the lack of a managed environment and adequate abstraction. Raw pointer manipu-

lation often prevented retroactive execution from completing successfully because

it was not possible to determine which address space was being dereferenced.

Finally, the presence of inline assembly in much of the Linux kernel greatly

increased the engineering effort that would be necessary to support enough of the

target code base to evaluate larger and more useful examples of retroactive aspects.

Although time-travel programming as a paradigm is theoretically applicable to any

programming language, applying it to assembly would likely face more severe

35

issues with easily ensuring isolation and avoiding side-effects.

3.6 Summary
We have presented the concept of retroactive advice as a unified, source-level ap-

proach to post hoc dynamic analysis. We have also described our prototype imple-

mentation of a retroactive weaver for ACC. We assert that evaluating aspects on

prior executions of a program opens up a wide range of analysis applications that

might otherwise be infeasible.

36

Chapter 4

Essential Retroactive Weaving

4.1 Introduction
Our experience with retroactive weaving motivates us to express the concept in

abstract, simpler, and more precise terms. Our contribution in this chapter is

a more essential and general expression of the idea, which should be applica-

ble to any aspect-oriented language with varying effectiveness. Our presentation

centres around a simple functional language called Retroactive Aspect Program-

ming Language (RAPL), which serves as a minimally-defined example to illustrate

how retroactive weaving interacts with core programming language features. We

present the language and its definitional interpreter in three layers: we first present

the base functional language, then extend it to support aspects, and then introduce

support for retroactive weaving. Finally, we explore a general notion of soundness

for retroactive weaving and explain how our example language and interpreter re-

alize it.

4.2 Base Language
We first describe the functional core of RAPL, which we intend to reflect the

essence of many modern programming language features as simply and unsurpris-

ingly as possible. RAPL has integers, Booleans, and atomic symbols as primitive

datatypes. It provides symbols for marking join points and expressing pointcuts

37

v ∈ IDENT, n ∈ Z, s ∈ STRING, t ∈ TERM

t ::= true | false | (equal? t t) | (if t t t)
| n | (+ t t) | (× t t)
| v | (lambda (v∗) t) | (t t∗)
| (rec t) | (let ([v t]) t) | ′v
| (box t) | (unbox t) | (set-box! t t)
| (seq t t) | (void) | (read s) | (write s t)

Figure 4.1: Grammar for terms in the base version of RAPL

1 (rec (lambda (fact)
2 (lambda (x)
3 (if (equal? x 0)
4 1
5 (* x (fact (+ x -1))))))))

Figure 4.2: Factorial function in RAPL

(see Section 4.3). It also includes a void value, which is returned from effectful op-

erations. It supports first-class functions and mutable boxes, using a call-by-value

evaluation strategy. Finally, it includes two operations named read and write

for external input and output of integers, respectively, as these interact non-trivially

with retroactive weaving. Figure 4.1 contains the RAPL expression grammar; our

reference interpreter, which is in the PLAI Scheme dialect of Krishnamurthi [36],

contains an equivalent ExprC datatype. The complete interpreter implementation

is included as Section A.3.

We use the canonical factorial function as a running example; its implementa-

tion in RAPL is shown in Figure 4.2. The rec operator is used to create a recursive

unary function.

Because retroactive weaving interacts significantly with external side-effects,

we also need an example that interacts with its external environment, and hence we

define a program that repeatedly prompts for a number in Figure 4.1. Again apply-

ing the rec operator creates a recursive function that takes a single argument, but

in this case the argument is ignored and the result is a recursive thunk. If the input

is zero, the program terminates. Otherwise it displays the result of applying the

38

Listing 4.1: RAPL code for an interactive factorial loop
(rec (lambda (fact_prompt)
(lambda (v)

(let ([in (read "x")])
(if (equal? in 0)

in
(seq (write "fact(x)" (fact in))

(fact_prompt (void)))))))))

factorial function from Figure 4.2 (bound to the identifier fact here) and prompts

for the next number.

Here is an example of interacting with this program.

x> 3

f a c t (x) : 6

x> 4

f a c t (x) : 24

x> 0

Program r e s u l t : 0

Our reference interpreter also uses the following internal definitions, which are

referenced in later excerpts:

(define-type Value

[numV (n number?)]

[boolV (b boolean?)]

[closV (arg symbol?) (body ExprC?) (env Env?)]

[boxV (l Location?)]

[symbolV (s symbol?)])

(define-type Binding

[bind (name symbol?) (value Value?)])

(define Env? (listof Binding?))

(define mt-env empty)

(define Location? number?)

(define-type Storage

[cell (location Location?) (val Value?)])

(define Store? (listof Storage?))

(define mt-store empty)

(define-type Result

[v*s (v Value?) (s Store?)])

39

; Top-level evaluation function

; ExprC -> Value

(define (interp-exp expr)

(v*s-v (interp expr mt-env mt-store)))

; Recursive interpretation function

; ExprC Env Store -> Result

(define (interp expr env sto)

(type-case ExprC expr

...))

4.3 Adding Aspects
We now extend RAPL to include a single aspect-oriented feature: a simple form of

pointcuts and advice for function application. AspectJ [34] provides the quintessen-

tial example of pointcuts and advice, in which pointcuts quantify sets of join points

to affect and advice methods define how the join points are modified. Advice may

be declared to run before, after, or around (i.e. in place of) a quantified join point;

the latter flavour is the most expressive, and supports a distinguished proceed

expression that represents resuming the original join point, or, in the case of over-

lapping advice, the next advice method in the chain.

In RAPL, the only type of join point supported is the application of functions.

Since RAPL has first-class function values, around-style advice can be expressed

as higher-order functions that accept and return functions. Within the body of such

an advice function, invoking the passed-in function is analogous to the proceed

expression in AspectJ, as shown in previous work [26].

Adding aspects to the base version of RAPL requires two new expression cases:

t ∈ TERM, t ::= ...

| (tag t t)

| (aroundapps t t)

We first add a mechanism for tagging values with arbitrary metadata to the

language: the expression (tag t e) dynamically attaches the value of the t

expression to the value of the e expression. Tagged values behave identically to

untagged values, except that computation involving tagged values can be identified

and modified by advice. The tagging construct provides a means of identifying

40

join points, since otherwise function definitions have no external identity. The

sub-expressions that are explicitly tagged in an expression represent the modular

interface that it exports as subject to advice. In practice the associated tags would

likely be derived from higher-level language features.

RAPL programs dynamically register advice using expressions of the form

(aroundapps a e): while evaluating the expression e, the advice a is used to

potentially wrap every tagged abstraction value before it is applied to an argument.

Advice takes the form of a function that accepts two arguments: the tag attached

to the function being applied and the untagged form of that function. The result of

the advice function is then applied to the argument in place of the original.

Here is an example of an aspect that applies to the factorial function as defined

above. This aspect traces the argument and result of each recursive call to the

factorial function:

Listing 4.2: RAPL code for an aspect to trace the factorial function

(lambda (thunk)

(aroundapps

(lambda (t original)

(if (equal? t 'fact)

(lambda (y)

(seq (write "y" y)

(let ([result (original y)])

(seq (write "result" result)

result))))

original))

(thunk))

Since RAPL does not have modules, we encapsulate this aspect as a function

that takes a computation which is frozen in a thunk and advises the result of acti-

vating it. Common higher-level language features such as top-level definitions and

global namespaces would make composing these modules less awkward.

We tag the factorial function so the advice will apply:

(rec (lambda (fact)

(tag 'fact

(lambda (x)

(if (equal? x 0)

1

(* x (fact (+ x -1))))))))

41

We may then combine the modules by applying the aspect function to the fac-

torial prompt thunk:

Listing 4.3: Possible input and output for applying Listing 4.2 to Listing 4.1

x> 3

y : 0

r e s u l t : 1

y : 1

r e s u l t : 1

y : 2

r e s u l t : 2

y : 3

r e s u l t : 6

f a c t (x) : 6

x> 0

Program r e s u l t : 0

Both advice and tagging may be nested. The next section provides a concrete

implementation of aspect weaving that precisely defines the semantics for both

forms of nesting.

4.4 Aspect Weaving
We now modify the interpreter to implement the semantics of aspects via dynamic

weaving; coordinating the cross-cutting concerns as expressions are evaluated. The

scope of an aroundapps declaration is the dynamic extent of its expression ar-

gument and hence must be tracked dynamically, rather than bound to closures as

the environment is. The stack of active advice is therefore maintained in a separate

argument to the interpretation function, and is generally passed down through re-

cursive invocations of interp. Other forms of advice, such as advising operations

on boxes, would be defined as additional type cases in the Advice datatype. The

implementation of tag and aroundapps, represented by the ExprC cases tagC

(tag v) and aroundappsC (advice extent) respectively, is trivial:

(define-type Advice

[aroundappsA (advice Value?)])

(define AdvStack? (listof Advice?))

; ExprC Env AdvStack Store -> Result

42

(define (interp expr env adv sto)

(type-case ExprC expr

...

[tagC (tag v)

(interp-tag tag v env adv sto)]

[aroundappsC (advice extent)

(interp-aroundapps advice extent

env adv sto)]

...))

; ExprC ExprC Env AdvStack Store -> Result

(define (interp-tag tag v env adv sto)

(type-case Result (interp tag env adv sto)

[v*s (v-tag s-tag)

(type-case Result (interp v env adv s-tag)

[v*s (v-v s-v)

(v*s (taggedV v-tag v-v) s-v)])]))

; ExprC ExprC Env AdvStack Store -> Result

(define (interp-aroundapps advice extent env adv sto)

(type-case Result (interp advice env adv sto)

[v*s (v-a s-a)

(let ([new-adv (cons (aroundappsA v-a) adv)])

(interp extent env new-adv s-a)]))

The only other case directly affected is applications. The base implementation

first reduces the function and the arguments to values, then invokes the apply

routine to evaluate the function body with the augmented environment:

; Value (listof Value) AdvStack Store -> Result

(define (apply f args adv sto)

(type-case Value f

[closV (params body env)

(let ([bs (map bind params args)])

(interp body (append bs env) adv sto))]

[else (error "only functions can be applied")]))

To handle advice, we replace this with a new version that first applies all ad-

vice in scope to the function before applying the result to the given arguments

using the original apply routine. The core new operation is applying a single

advice definition to a function, implemented by weave-advice. Because the

actual identification of join points occurs in the source language, the interpreter

implementation is relatively simple:

43

; Value (listof Value) AdvStack Store -> Result

(define (apply-with-weaving f args adv sto)

(type-case Result (weave adv f sto)

(v*s (v-w s-w)

(apply v-w arg adv s-w)))))

; Applies all advice in scope for all tags on f

; AdvStack Value Store -> Result

(define (weave adv f sto)

(type-case Value f

[taggedV (tag tagged)

(type-case Result (weave adv tagged sto)

[v*s (v-w s-w)

(weave-for-tag adv tag v-w s-w)])]

[else (v*s f sto)]))

; Applies all advice in scope for a single tag on f

; AdvStack Value Value Store -> Result

(define (weave-for-tag adv tag f sto)

(if (empty? adv)

(v*s f sto)

(type-case Result (weave-advice adv tag

(first adv) f sto)

[v*s (v-w s-w)

(weave-for-tag (rest adv) tag v-w s-w)])))

; Apply a single advice function to f

; AdvStack Value Advice Value Store -> Result

(define (weave-advice adv tag advice f sto)

(type-case Advice advice

[aroundappsA (g)

(apply g (list tag f) adv sto)]))

Nested advice declarations and tags are handled with a double iteration: first

over nested tags from innermost to outermost, and for each tag over nested advice

declarations from inner to outer. Any tags attached to values do not affect their

semantics outside of advice; for every other operation in the language the tags on

each operand are stripped before performing the original logic.

4.5 Defining Retroactive Aspects
To define the semantics of retroactive aspects precisely we relate retroactive weav-

ing, which is the process of executing them, to execution in the presence of con-

44

ventional weaving for AOP languages in general. We use mathematical notation to

express the key requirement.

Let E be the partial function that represents evaluating a program to produce

observable results, which is undefined for evaluations that do not terminate. For

impure languages with external input/output, E depends not only on a term but its

context, which we denote with c ∈ CTXT. The range of E is OBS; for RAPL this

is the result value and any output. Therefore E : PGM×CTXT→ OBS.

As outlined in Section 2.4, Masuhara and Kiczales [43] model AOP in general

via a weaving process with signature W : A×B→ X. Retroactive weaving applies

to those instances of AOP frameworks where at least one of the input languages

is executable independently and its semantics subsumed by X. This is true of

AspectJ, for example, but not of DemeterJ [39]. WLOG, we assume the executable

language is B, and relabel the weaving signature as W : ASPECT× PGM→ PGM.

Therefore executing an aspect a together with a program p in context c is modelled

as E(W (a, p),c).

We augment E to also produce a trace, an abstract notion of intermediate com-

putation information: Etraced : PGM×CTXT→ OBS×TRACE.

Retroactive weaving is another evaluation function RW : ASPECT×TRACE→
OBS. Its behaviour is defined by an invariant: for any program p, aspect a and ex-

ecution context c, if Etraced(p,c) = (o, t), and RW (a, t) is defined, then RW (a, t) =

E(W (a, p),c).

The intuition behind this model is that a trace encodes partial information about

the past execution context. Retroactive weaving produces the observable behaviour

the augmented program would have produced in that context. If the augmented

program depends on missing information, the process must signal an inconsistency

error, represented here by undefinedness in RW.

4.6 Retroactive Weaving
We now describe how our definitional interpreter provides both tracing and retroac-

tive weaving.

45

4.6.1 Recording and Reading Traces

The augmented interpreter must be able to record the relevant information during

one execution and read this information during a future execution. Thus we first

require interpretation to record a subset of the states it reaches while interpreting

externally, so that retroactive weaving can identify join points post-hoc and apply

advice as required. Within this context we use trace to refer to an ordered list of

recorded interpretation states.

To consume traces one state at a time during retroactive execution, we add

another parameter to the interpretation function for the remaining trace to read.

The head of this trace represents the current state of the original execution; under

normal evaluation this list will be empty. The retroactive weaving process reacts to

each recorded state, potentially performing additional execution, before moving to

the next recorded state by popping the head of the trace list.

; ExprC Env AdvStack Store Trace -> Result

(define (interp expr env adv sto tin)

...)

(define Trace? (listof State?))

(define mt-trace empty)

; Trace -> State

(define (trace-state tin)

(first tin))

; Trace -> Trace

(define (next-trace-state tin)

(rest tin))

To produce traces, we extend the Result data type so that every computation

can also provide the trace for that computation. In addition, during retroactive

weaving the input trace must be threaded through the interpreter much as the store

is, and hence we also extend Result to include the remaining input trace:

(define-type Result

[v*s*t*t (v Value?) (s Store?)

(tin Trace?) (tout Trace?)])

The datatypes that define our version of tracing are as follows:

(define-type Control

[app-call (f Value?) (args (listof Value?))]

46

[app-result (r Value?)])

(define-type State

[state (c Control?) (adv AdvEnv?) (sto Store?)

(tin Trace?)])

The Control datatype enumerates the different kinds of interpretation control

flow we record, in particular just before applying a function value to an argument

value, and just after such a call produces a result value. The State datatype

combines the interpreter control point with the interpreter arguments. It does not

include the environment because advice in RAPL is modelled with function calls,

and hence cannot access the lexical scope of join points, but this would not neces-

sarily be true in AOP languages that make use of dynamic binding in aspects.

Since our traces only carry information about function applications, only the

main application routine extends the current trace:

; Value (listof Value) AdvEnv Store Trace? -> Result

(define (apply-with-weaving f args adv sto tin)

(type-case Result (weave adv f sto)

(v*s*t*t (v-w s-w tin-w tout-w)

(type-case Result (apply v-w args adv s-w tin-w)

(v*s*t*t (v-r s-r tin-r tout-r)

(let ([c (state (app-call f args)

adv sto tin)]

[r (state (app-result v-r)

adv s-r tin-r)])

(v*s*t*t v-r s-r tin-r

(append (list c) tout-w tout-r

(list r)))))))))

Other operations in RAPL could be recorded in the same style; in general these

traces are produced by appending the sub-traces for individual sub-computations

together in evaluation order.

We omit the details of serializing these traces to and from persistent storage, in

our case one file per trace, as they do not affect the semantics of retroactive weav-

ing. In practice, however, there is ample opportunity for optimizing the writing

and reading of such traces, and scalable implementations can be quite sophisti-

cated [55]. In particular, recording a full copy of the store at every event can

be expensive, and more practical implementations will instead record individual

changes to the store incrementally.

In all but the simplest of programming languages and their environments, it will

47

not be possible or feasible to record all of the information a program could have

queried during its execution. This is especially true of more mainstream languages

that have access to file systems, networks, and more unpredictable sources of val-

ues such as the current time. The particular instance of tracing we present here is

chosen to be simple and sufficient to support a reasonable number of retroactive

aspects, and we intentionally omit many other interpreter states as well as the ex-

ternal input accessed via read during execution. For a more complete discussion

of how this affects our implementation’s completeness, see Section 4.7<>.

4.6.2 Retroactive State

The state of the retroactive interpretation can build on the original interpretation

state. In particular, retroactive execution can use references to values, including

store locations and their contents, from the original execution. Consider an al-

ternative version of the factorial function which uses a box internally to track its

counter:

(let ([fact_helper

(rec (lambda (fact)

(tag 'fact_helper

(lambda (bx)

(let ([x (unbox bx)])

(if (equal? x 0)

1

(seq (set-box! bx (+ x -1))

(* x (fact bx)))))))))])

(lambda (x) (fact_helper (box x))))

To create an equivalent version of Figure 4.2 for this implementation, the ad-

vice needs to dereference the box passed to the helper function in order to obtain

the actual value of x. Therefore, the retroactive weaving interpretation must deal

with a mix of locations: new locations created during the retroactive evaluation

and old locations from the trace. In addition, the values stored in old locations may

change as the trace is traversed, so references to old locations must somehow be

kept current. Finally, it is necessary to distinguish old and new locations to detect

inconsistent executions (see Section 4.7).

Our approach is to add another case to the Value datatype to implement a

layer of indirection on values obtained from the trace. This aligns closely with

48

how production implementations are likely to be implemented, as it allows the

underlying trace and its store to proceed independently of the retroactive state [60].

(define-type Value

...

[traceValueV (v Value?)])

When a value from prior state is bound by a retroactive aspect (such as the box

passed to advice for the fact helper function above), it must be lifted to the

retroactive context, so that new and old store locations can be distinguished. The

value may be a box itself, or it may be a compound value such as a closure which

may transitively refer to store locations. We define a lift-trace-value func-

tion in our interpreter for this purpose. The omitted Value cases are handled by

straightforward structural recursion: primitive values are untouched, and tagged

values and the value bound by the environments stored in closures are lifted piece-

wise.

; Value -> Value

(define (lift-trace-value v)

(type-case Value v

[boxV (trace-loc)

(traceValueV v)]

...))

We then augment fetching from the store to handle boxes from the trace:

; Store Trace Value -> Value

(define (fetch sto tin b)

(type-case Value b

[boxV (loc) ...] ; As before

[traceValueV (v)

(type-case State (trace-state tin)

[state (c adv s-t tin-t)

(fetch s-t tin-t v)])]

[else (error 'interp "attempt to unbox a non-box")]))

4.6.3 Retroactive Control

Implementing retroactive weaving involves producing the extra execution that an

aspect specifies at various positions in the trace. When an application callback is

applied retroactively to an application in the trace, we need to use a placeholder

49

to resume the original execution - that is, reading the rest of the trace - instead of

evaluating the application. To achieve this we add another case for values:

(define-type Value

...

[resumeV])

Any tags on the original function must be carried over to the stub value so that

application advice will behave identically:

; Value -> (listof Value)

(define (all-tags v)

(type-case Value v

[taggedV (tag tagged)

(cons tag (all-tags tagged))]

[else empty]))

; (listof Value) Value -> Value

(define (deep-tag tags v)

(foldr taggedV v tags))

; Value -> Value

(define (rw-resume-value v)

(deep-tag (all-tags v) (resumeV)))

Applying this value as if it were a function instead resumes the process of

weaving the trace:

; Value (listof Value) AdvEnv Store Trace -> Result

(define (apply-without-weaving f args adv sto tin)

(type-case Value f

[closV (params body env)

(let ([bs (map bind params args)])

(interp body (append bs env) adv sto tin))]

[resumeV ()

(rw-call f args adv sto tin)]

[else (error "only abstractions can be applied")]))

The core of the retroactive weaving implementation are these three mutually

recursive functions:

; Value (list of Value) AdvEnv Store Trace -> Result

(define (rw-call f args adv sto tin)

(rw-result adv sto (next-trace-state tin)))

; Value (listof Value) AdvStack Store Trace -> Result

(define (rw-replay-call f args adv sto tin)

50

(let ([resume (rw-resume-value f)]

[lifted-args (map lift-trace-value args))

(apply-with-weaving resume lifted-args adv sto tin)))

; AdvStack Store Trace -> Result

(define (rw-result adv sto tin)

(type-case State (state-c (trace-state tin))

[app-call (f args)

(type-case Result (rw-replay-call f args

adv sto tin)

(v*s*t*t (v-r s-r tin-r tout-r)

(rw-result adv s-r

(next-trace-state tin-r))))]

[app-result (r)

(v*s*t*t (lift-trace-value r)

sto tin mt-trace)]))

rw-replay-call consumes the next sub-sequence of the trace from a func-

tion application up to its corresponding result, and rw-result continues to con-

sume such sub-sequences until it reaches the result for the current application.

These routines essentially reconstruct the original tree of recursive calls to the

interpretation function. Note that these versions of the core retroactive weaving

routines do not produce a trace for retroactive weaving itself in order to simplify

presentation, but adding this tracing using the implementation strategy shown in

Section 4.6.1 is straightforward.

The top-level entry point to retroactive weaving is interp-rw, a separate but

related function that corresponds to RW in the abstract model in Section 4.5. As

demonstrated above, in RAPL advice can be declared in discrete modules if the

computation they advise is provided as a parameter, delayed within a thunk. The

resumeV value is also used to represent the trace as such a thunk.

4.7 Ensuring Soundness
The implementation so far will behave correctly for many retroactive aspects. How-

ever, not all retroactive aspects are sound according to the semantics defined in

Section 4.5; if the augmented program attempts to access information that was

not recorded, retroactive weaving is required to terminate in an error, whereas the

interpreter thus far may instead produce inconsistent observable behaviour.

51

The implementation above assumes that when a recorded state has been pro-

cessed and the paused original execution resumed, that original execution would

have reached the same next recorded state in the trace. If a retroactive aspect per-

turbs the program state in some way, the program may have continued to make

an unsupported operation as above, so we cannot assume this is safe. Therefore,

for this particular implementation of tracing and weaving, ensuring soundness is

equivalent to ensuring that retroactive advice would not have perturbed the original

execution.

Since aspects in RAPL are quite general and expressive, there are several ways

that retroactive weaving can fail:

New external side-effects: Advice itself might attempt to add additional inter-

action with the original context. In RAPL this means extra calls to read, which

conceptually consume values from the program input prematurely and shift the

values read by the original program, leaving the later inputs uncertain. This is pre-

ventable by replacing the source drawn by the read expression with a stub that

raises an error during retroactive weaving.

Modifying arguments: Advice may pass a different list of arguments to the

wrapped function than was originally provided. To prevent this, we add within

the rw-call function a comparison of the arguments the stub resumeV value is

applied to against the arguments provided in the original join point.

Modifying results: Similarly, advice may return a different result than a join

point of the original computation. Another check must be inserted before returning

from rw-replay-call to compare the value produced by the advice stack to

the original.

Modifying the original store: Advice could also perturb the original exe-

cution more indirectly by mutating boxes, so we modify the implementation of

set-box! to raise an error if the given box is a reference to the original store

(i.e. a traceValueV as described in Section 4.6.2).

Modifying control flow: More deviously, advice may fail to invoke advised

functions, or invoke them more than once. Because the construct that represents

proceeding in advice is a first-class value (i.e. a function), it could also be bound

and applied later, outside the scope of the advice. All these cases can be pre-

vented by attaching the length of the remaining trace to the stub resumeV value

52

at the time it is created, and comparing this to the current length of the remaining

trace in the store value whenever it is applied. This ensures each stub is applied

in order and no more than once. An additional check after the top-level call to

rw-replay-call to verify that the entire trace has been consumed ensures that

each stub is applied at least once.

4.7.1 Deterministic Replay

The restrictions above depend heavily on the exact information recorded during

the original execution. Rather than recording the full state of interpretation at rel-

evant points, which can be very expensive, the runtime could instead only record

non-deterministic events, so that the state can be reconstructed by replaying the

interpretation. For RAPL, recording would become storing only the sequence of

input integers, and replaying would involve assigning the read source to be that

sequence.

The straightforward approach to retroactive weaving using replay is to trace the

replay process and then use retroactive weaving on the trace as above. This could

be made more efficient by having the replay process produce a stream of states

which the weaver consumes. It is tempting to optimize this further by directly

weaving the retroactive aspects against the original program during the replay in-

terpretation instead. This is not sound in general, though, without again modifying

the interpreter to guard against new retroactive external side-effects as above.

4.8 Related Work
RAPL bears a strong resemblance to AspectScheme [26], another aspect-oriented

language with first-class function values. The key place they differ is that As-

pectScheme is an AOP extension to an existing full-featured programming lan-

guage, whereas RAPL is intended to be a core language, with the minimum fea-

tures required to support retroactive weaving. Some of AspectScheme’s features,

such as statically scoped advice and equality of functions via source location, can

be expressed via desugaring to RAPL.

De Fraine et. al. provide a core calculus for AOP with their A calculus [23].

The A calculus is object-oriented, but like RAPL also models proceed as binding a

53

closure-like value, and supports passing said closures as first-class values. Because

the RAPL interpreter is more focused on modelling two alternative strategies of as-

pect weaving, it avoids object-orientation and types to keep the semantics simpler.

4.9 Summary
We have presented the concept of retroactive weaving as an abstract concept di-

rectly related to the semantics of conventional aspect weaving for aspect-oriented

programming languages. We provided a definitional interpreter that implements

retroactive weaving for a simple core language, illustrating the interaction of retroac-

tive weaving with common core language features. Finally, we discussed the

soundness requirement for such an implementation and its consequences.

54

Chapter 5

Retroactive Execution on the
JVM

This chapter focusses first on the retroactive execution facet of time-travel pro-

gramming, as it provides significant utility independent of retroactive weaving,

and its efficient implementation for a full-featured modern language is non-trivial.

We present an architecture that enables additional execution in the context of a

program snapshot, as if a live, debuggable process had been restored from the

snapshot. This allows developers to invoke any code present in the original pro-

cess, or even to load new analysis code into the emulated process, with no need

for metaprogramming. This functionality is implemented as an ordinary library

and does not require a custom language runtime. The execution is made sound

by forbidding the recorded objects from accessing state external to the snapshot,

since the original environment has been lost and cannot be accurately emulated.

We hence refer to these objects as holographic objects: accurate recreations that

cannot interact directly with the outside world.

The abstract model used to represent the state in a program snapshot for holo-

graphic objects can also represent any instantaneous state within an execution

recording over time. Chapter 6 hence expands on this architecture to implement

retroactive weaving.

The main contributions of this chapter are:

55

• an architecture for holographic objects, which enable restricted execution

starting from the state captured in a heap dump;

• evidence that this architecture can be efficiently implemented in a statically-

typed language on an unmodified commodity language runtime; and

• evidence for the utility of holographic objects by using them to diagnose an

unsolved memory leak in a mature mainstream application.

The implementation discussed here supports the Java programming language

and runs on the JVM. The general approach based on emulating language seman-

tics, however, is applicable to other language runtimes as well; see Section 5.1.3

for a discussion of the requirements to support holographic execution efficiently.

5.1 Holographic Virtual Machines
Because it offers high fidelity, a snapshot of a process at the time of a failure is a

nearly omnipresent feature of modern programming language runtimes, and often

translates into a heap dump file that contains the state of every live object and its

connections to other objects. A number of tools can parse this file and present the

developer with an interactive, browsable tree of values. This interface is familiar

and useful for developers, as it parallels how a debugger models the state of a live

system. Unlike live debugging, however, the developer cannot execute any of their

own code in the context of the failure, which is a critical piece of functionality as

illustrated in Section 3.1.

Ultimately all of these difficulties would be resolved if a heap dump analysis

tool could execute code on the objects in the snapshot, as if the execution occurred

on the live process immediately after the snapshot was taken. We aim to provide

this functionality through holographic objects, which are virtual objects that re-

flect the state and behaviour of the objects recorded in the snapshot. This section

describes the high-level architecture we have used to make this possible.

To implement holographic objects, we require a reflective API for accessing

the state of the recorded objects, and an execution environment that implements

the semantics of normal execution with respect to the reflective API instead of

in-memory native objects. For example, an instruction that accesses a field of an

56

object should have the effect of accessing that field from the holographic object in

the heap dump via our reflective API.

Holographic objects should behave like the recorded objects they imitate, or

else any analysis performed on them may produce incorrect results. Any code in

the control flow of holographic execution that cannot be exactly reproduced based

on the information in the heap dump must result in an explicit exception. This

includes any attempt to access or mutate the external environment of the original

process, such as other processes, the file system, the network, and so on. This also

implies that holographic objects must be completely sandboxed: it must be impos-

sible for them to obtain references to any objects in the host Virtual Machine (VM),

or vice versa. Holographic objects are hence encapsulated inside a holographic

virtual machine. Values may only be passed between the guest and host VMs us-

ing explicit reflective methods, and only primitive values1 are permitted to avoid

leaking references.

Figure 5.1 contrasts an ordinary VM with a holographic VM running inside

another ordinary VM. On the left is an ordinary virtual machine and its interactions

with the file system and external environment. On the right, a holographic VM

simulates the behaviour of a VM restored from a heap dump. A holographic VM

is only permitted to read class files from disk and interact with the VM emulating

it through reflective methods. It is otherwise forbidden from interacting with its

environment.

1In the case of the JVM, String values are permitted despite being objects, as they are a core
type whose implementation must be immutable.

57

VM

Code

Heap

External
Environment

File
System

Translator

Adapter

Holographic
VM

Heap
Dump

Class
Files

Holographic
File System

VM

Code

Heap

External
Environment

File
System

Class
Files

Reflective
Methods

Figure 5.1: The overall holographic objects architecture

58

5.1.1 Mirrors

To support creating holographic objects on top of multiple snapshot formats, or

indeed to other sources of object state, we define our reflective API using an inde-

pendent set of reflective interfaces. The core functionality of the reflective access

we need is apparent if we compare the heap dump model to existing reflective APIs.

The Java platform includes two such APIs: a set of built-in reflective methods such

as Class.getFields, and the Java Debugging Interface (JDI) provided by the

Java Platform Debugger Architecture [50], on which remote Java debuggers are

built. Each API provides similar functionality backed by different state: the built-

in Java reflection methods reflect on the state of the current VM, the JDI reflects

on the state of a separate VM being debugged, and the heap dump model reflects

on the past instantaneous state of another VM.

Bracha and Ungar [13] label such pluggable, independent reflection interfaces

as mirrors, and we adopt their terminology here. We define a central interface

named VirtualMachineMirror, which encapsulates an entire object graph

including all loaded classes and hence all executable code in the system. Other

interfaces represent objects, classes, fields, methods, arrays, and so on.

A holographic VM is then represented as a VirtualMachineHolograph

wrapper that refers to an underlying VirtualMachineMirror instance and

implements that interface itself. This achieves our goal of making holographic ob-

jects a general-purpose library, as the wrapper can be applied to any representation

of VM state that can be used to implement the generic mirrors API. The library

provides similar holographic wrappers for the other related mirror interfaces. Most

importantly, the holographic implementation of MethodMirror.invoke does

not delegate to the wrapped method mirror, but instead emulates the semantics of

that method’s definition as described above.

5.1.2 Mutations

Although holographic execution is not allowed to read from or write to the state

of the outside world, many useful expressions that are semantically functional will

have internal side-effects that attempt to modify the internal object graph. For

example, looking up a string key in a HashMap as described earlier requires cal-

59

culating the string’s hash code, and the implementation of string hashing caches the

result in an instance field of the string the first time it is calculated. This means if

the method was not previously called on a string in the original VM, or if the string

was newly-created as part of holographic execution, the method will attempt to set

a new value on the mirror. The heap dump model is read-only, as many potential

mirror implementations will be, and hence this will trigger an exception.

To support mutation in holographic execution, the holographic adapters super-

impose a mutable mirror graph over the wrapped, potentially immutable graph.

Each wrapper is initially empty, exposing state identical to that of the wrapped

object. As values are written to the holographic objects they are stored in the wrap-

ping object, and future reads will return those values. The same approach applies

for other more subtle side-effects on the mirrors API, such as expanding the set

of classes loaded by a class loader by defining a new class. This polymorphism

between old and new state in the model is analogous to the polymorphism in the

RAPL interpreter’s Value type between the traceValueV data constructor and

the remaining data constructors, as described in Section 4.6.2.

Maintaining mutations on the object graph independently in this way also of-

fers flexibility in the semantics of multiple successive sessions of holographic ex-

ecution. If the same holographic VM instance is used for each, the side-effects of

prior executions will potentially affect future executions. This is consistent with a

developer’s experience when evaluating expressions in a normal debugging client.

Alternatively, a new holographic VM can be instantiated for each evaluation and

then discarded, so each successive evaluation proceeds from the same pristine ini-

tial snapshot state. This is equivalent to experimenting with a live process by re-

peatedly forking a new sandboxed process that can be perturbed in arbitrary ways

and then discarded.

5.1.3 Translating Code

The most obvious approach to implementing holographic execution would be cus-

tomizing a language runtime to support it, but this would be non-portable. We

instead chose the implementation strategy of translating programs into lifted ver-

sions equivalent to holographic object semantics. Each instance of a core language

60

operation is mapped to methods of the mirrors API, and the implementors of those

interfaces thus determine the runtime behaviour of the language.

This general approach applies to any programming language in which it is pos-

sible to express a large subset of the language’s semantics in a reflective interface.

Object-orientation is not a hard requirement, as illustrated by the implementation

for C described in Section 3.5; in that context a collection of methods such as byte

readMemory(void * addr) provide the equivalent interface to mirrors. In

addition, holographic execution will be more performant and less complicated to

implement if at least some of the operations in the language have copy-by-value se-

mantics, since those operations can be left untranslated and hence operate at native

speed. Holographic execution works well for JVM bytecode since it is not purely

object-oriented: primitive values are passed by value and primitive operations are

not customizable by user programs.

Listing 5.1: Original Java code for the sample Employee class

1 public class Employee {
2
3 private i n t age ;

4
5 public s t a t i c Set<Employee>

6 over40 (Employee [] i npu t) {
7
8 Set<Employee> r e s u l t =

9 new HashSet<Employee> () ;

10 for (Employee e : i npu t) {
11 i f (e . age > 40) {
12 r e s u l t . add (e) ;

13 }
14 }
15 return r e s u l t ;

16 }
17 }

Listing 5.2: Original JVM bytecode for the sample Employee class

1 public class Employee {
2
3 private I age

61

4
5 public s t a t i c over40 ([LEmployee ;) LSet ;

6 L0

7 NEW HashSet

8 DUP

9 1) | INVOKESPECIAL HashSet.< i n i t > () V

10 ASTORE 1

11 L1

12 ALOAD 0

13 DUP

14 ASTORE 5

15 2) | ARRAYLENGTH

16 ISTORE 4

17 ICONST 0

18 ISTORE 3

19 GOTO L2

20 L3

21 ALOAD 5

22 ILOAD 3

23 3) | AALOAD

24 ASTORE 2

25 L4

26 ALOAD 2

27 4) | GETFIELD Employee . age : I

28 BIPUSH 40

29 IF ICMPLE L5

30 L6

31 ALOAD 1

32 ALOAD 2

33 5) | INVOKEINTERFACE Set . add (LObject ;) Z

34 POP

35 L5

36 IINC 3 1

37 L2

38 ILOAD 3

39 ILOAD 4

40 IF ICMPLT L3

41 L7

42 ALOAD 1

43 ARETURN

62

44 }

Listing 5.3: Translated JVM hologram bytecode for the sample Employee

class

1 public class hologram / Employee

2 extends ObjectHologram {
3
4 / / I n h e r i t e d from ObjectHologram :

5 / / p u b l i c LOb jec tM i r ro r ; m i r r o r

6 public f i n a l s t a t i c LClassMi r ror ; c l a s s M i r r o r

7
8 public s t a t i c over40 (Lhologramarray1 / Employee ;)

9 Lhologram / Set ;

10 L0

11 LINENUMBER 17 L0

12 NEW hologram / HashSet

13 DUP

14 1) | GETSTATIC hologram / HashSet . c l a s s M i r r o r

15 | : LClassMi r ror ;

16 | INVOKEINTERFACE ClassMi r ro r . newRawInstance

17 | () L Ins tanceMi r ro r ;

18 | INVOKESPECIAL hologram / HashSet.< i n i t >

19 | (L Ins tanceMi r ro r ;) V

20 ASTORE 1

21 L1

22 ALOAD 0

23 DUP

24 ASTORE 5

25 2) | INVOKEINTERFACE Ar rayM i r ro r . leng th () I

26 ISTORE 4

27 ICONST 0

28 ISTORE 3

29 GOTO L2

30 L3

31 ALOAD 5

32 ILOAD 3

33 3) | INVOKESTATIC ObjectArrayHologram . getHologram

34 | (LOb jec tAr rayMi r ro r ; I) LHologram ;

35 | CHECKCAST hologram / Employee

36 ASTORE 2

63

37 L4

38 ALOAD 2

39 4) | GETSTATIC hologram / Employee . c l a s s M i r r o r

40 | : LClassMi r ror ;

41 | LDC ” age ”

42 | INVOKESTATIC InstanceHologram . g e t I n t F i e l d

43 | (LHologram ; LClassMi r ror ; LS t r i ng ;) I

44 BIPUSH 40

45 IF ICMPLE L5

46 L6

47 ALOAD 1

48 ALOAD 2

49 5) | INVOKEINTERFACE hologram / Set . add

50 | (LHologram ;) Z

51 POP

52 L5

53 IINC 3 1

54 L2

55 ILOAD 3

56 ILOAD 4

57 IF ICMPLT L3

58 L7

59 ALOAD 1

60 ARETURN

61 }

Our particular implementation targets the JVM, and hence the source language

it translates is JVM bytecode using the ASM bytecode processing framework [14].

We label the translated versions as hologram classes. These classes are encap-

sulated within the holographic VM API and never directly exposed to developers

or tools using holographic objects. All instance field declarations in the original

classes are replaced with a single ObjectMirror instance field, and the indi-

vidual bytecode instructions are lifted to operate on those instances. The transfor-

mations are all local and context free, although a single instruction will frequently

be translated into multiple instructions. Figures 5.1, 5.2 and 5.3 contain a small

example of how bytecode is transformed. Modified instructions are numbered in

both the original and translated bytecode listings. Only object and array instruc-

tions are modified; control flow and primitive instructions are left untouched. Note

64

that downcasts such as the one in Figure 5.3 are often necessary to ensure type

safety.

The semantics of holographic execution imply that holographic object refer-

ences require two orthogonal dimensions of polymorphism: the original class hier-

archy for virtual and overloaded method invocations, and the virtual mirror inter-

face methods for object state access. We have chosen to map the original hierarchy

into an isomorphic hierarchy of hologram types which preserve the subtype rela-

tion, allowing method invocation to operate as in the original bytecode. Our tech-

niques are similar in several respects to those used by Factor et. al. [27] to transpar-

ently rename classes in order to support instrumentation of core Java classes. Note

that another approach would be to replace object references with direct mirror ref-

erences and implement dynamic method dispatch manually instead. We suspect

that the overhead of handling method dispatch is likely equal to or worse than the

overhead of wrapping mirrors with hologram class instances.

Each source type is usually mapped to exactly one internal type, but in some

cases maintaining the subtyping relationship in user-level code requires splitting

the type into a concrete class and an interface. The mapping function between

hierarchies is therefore actually defined by two functions: HC, which is guaranteed

to be a concrete, instantiable class, and HT , which may be an interface. These

functions obey the following properties:

• For all types C in the original bytecode, HC(C)<: HT (C)

• For all types C and D in the original bytecode, if C <: D, then HT (C) <:

HT (D)

In general, HC(C) is used wherever new instances of C are created, or when

C is used as the superclass of another class, whereas HT (C) is used wherever C

is used as a reference type for local variable, method parameters, and so on. The

cases where the two functions differ are outlined below.

Interfaces: Object is both the base class of all concrete classes and the top

of the subtyping lattice, and hence a supertype of interfaces as well. References of

type Object are mapped to a Hologram interface, which all hologram classes

and interfaces implement and extend, and which has a single getMirror()

65

method. Where Object appears as a superclass, however, an ObjectHologram

class is used instead, which actually declares the mirror field and implements

getMirror().

Arrays: Each distinct array type, which is normally created automatically in

the JVM without requiring explicit class definitions in source, is mapped to a dis-

tinct class type; although there is no virtual method dispatch on arrays, array types

can still create valid method overrides when used as parameter types. These must

also be split, since they must be concrete and instantiable but also support multi-

ple inheritance because of covariance; for each interface A that B implements, the

hologram type for B[] must be a subtype of the hologram type for A[].

If T is an array type with reference element type E and n dimensions (i.e. the

type E[][](n)[]), we use HAC(E,n) and HAT (E,n) to refer to HC(T) and

HT (T), which will be a class and an interface, respectively. The extends and

implements clauses for these types are defined according to the following rules:

• HAC(E,n) implements HAT (E,n)

• If E extendsC, then HAT (E,n) implements HAT (C,n)

• If E implements I, then HAT (E,n) implements HAT (I,n)

• For all n > 0, HAT (Object,n) implements HAT (Object,n−1)

The last rule above is necessary because of array subtyping covariance and

the fact that Object[] <: Object. Note that HAT (Object,0) is simply

hologramType(Object), which is the Hologram interface.

Since the results of translating bytecode will be the same for successive holo-

graphic VMs on the same heap dump, our system caches translated bytecode on

disk to improve performance. The cache is a fast associative mapping keyed by

class name with sequential separate chaining to handle multiple classes with the

same name. This approach is effective since the name of a class is by far its most

specific characteristic, but still handles multiple classes with the same name occur-

ring in a single VM.

Holographic JVMs also provide an optional prepare operation that iterates

through all currently loaded classes and eagerly generates the translated bytecode

66

for each, which will pre-populate the cache. This will often be the preferred work-

flow: a holographic JVM could be prepared in advance and the cached bytecode

distributed along with the heap dump.

5.2 Scope
There are several obstacles that may prevent holographic execution from emulat-

ing live execution soundly. All are direct results of missing information in the

snapshot, although in most cases these can be solved by additional configuration

provided by the user. This section outlines the factors that limit the completeness

of this technique and the extent to which we are able to overcome them in our

implementation.

5.2.1 Missing Bytecode

The most immediate obstacle to holographic execution on the JVM is the fact that

heap dumps generally do not contain any bytecode, as most JVM implementations

maintain class definitions in a separate area of memory. We must somehow re-

cover the definitions of the classes in the heap dump in order to execute any code.

Class definition on the JVM is dynamic: the core ClassLoader class and its

subclasses are used to locate the bytecode for a requested class name at runtime.

The implementation of these class loaders can be arbitrarily complex and is often

non-trivial in popular application containers such as OSGi, and so providing the

missing bytecode in a holographic VM though manual configuration is not feasi-

ble.

Our solution is to leverage the fact that nearly all class loaders eventually load

bytecode from a class file on the file system, and more specifically one that matches

the requested class name. We use holographic execution itself to call the appropri-

ate method on the class’ loader to read the contents of the matching class file. This

approach is valid for the vast majority of Java code, but for full generality this

piece of the architecture is pluggable so that more unusual class loaders that dy-

namically modify or generate bytecode can be handled when the generic solution

fails to locate a class file.

Since the state of the original file system at execution time is also not captured

67

in the heap dump, an exception would normally be thrown when this mechanism

attempts to access the file system. However, the configuration of a holographic

VM includes a simple finite mapping from paths in the original file system to paths

in the file system of the host machine, creating what we call a holographic file

system. Whenever holographic execution attempts to access the original file sys-

tem, the path is remapped onto the host file system. This approach also works for

paths inside compressed class file archives (“jar” files), and could theoretically be

extended to support more atypical sources such as URLs.

This system, in combination with other hooks for external input and output

described in the following section, resembles how the KLEE symbolic execution

tool [15] simulates the external environment. Where KLEE represents values and

control flow affected by the external environment symbolically, the holographic

VM requires an exact simulation of the past environment and does not tolerate

uncertainty, instead raising an error to indicate missing information.

Assuming that the developer using this system can provide a copy of the same

version of the compiled class files, which should not be difficult given the preva-

lence of source version control systems in software development, the holographic

file system allows any class loading logic to read the correct bytecode from disk.

This solution also allows the holographic VM to load classes that were available

to the original VM but not yet loaded, which is often necessary when holographic

execution hits code that hadn’t yet been executed in the original VM. Further-

more, another workaround for the problem of unusual class loaders above is to

pre-generate the relevant bytecode as class files in the mapped file system.

5.2.2 Native Methods

Many programming language platforms feature standard runtime libraries that are

impure, in that some of the provided features are not implemented in the language

but instead handled by the runtime itself with no corresponding source code. In

the case of the JVM, many low-level methods in the core Java Runtime Environ-

ment (JRE) library are native methods, which means they have no bytecode but are

instead handled directly in the JVM. Such native methods cannot be called directly

on holographic objects, but holographic execution will inevitably encounter them.

68

Even calling a toString method as described earlier is almost guaranteed to hit

the native System.arraycopy method somewhere in its control flow.

Native methods may have arbitrary effects on the external environment of the

VM, and hence some cannot be called in holographic execution. Many are purely

functional in behaviour, however, and are only implemented in native code for ef-

ficiency. The holographic VM architecture includes another pluggable mechanism

for providing semantically equivalent, Mirror-based Native Methods (MNMS), and

includes such implementations for the most commonly encountered native methods

in the JRE.

In most cases the implementations of MNMs can be quite naive and unopti-

mized. In the context of supporting post-hoc debugging and analysis, the raw ef-

ficiency of the implementation is not the primary concern so long as the method’s

semantics can be accurately reproduced. See Section 5.3.2 for a discussion of the

efficiency of our architecture.

Native methods can be left unimplemented, or they can be expressly marked

as forbidden because their semantics require accessing their external environment.

In either case, the unsupported native method is replaced with an MNM stub that

throws an exception. This means that classes with unimplemented or forbidden

native methods can still be loaded and used in holographic execution so long as

those native methods are not actually called. This is critical since the classes in the

JRE include over 1000 native methods, many of which involve some form of input

from or output to the external environment.

Note that application classes outside of the standard language runtime can also

include native methods, and so if a developer wishes to execute holograph code that

will hit those methods they must provide the required MNMs themselves. Native

methods are much less prevalent in application code than in the core JRE, how-

ever, and the burden of providing these alternate implementations is far less than

the burden of re-implementing everyday code as in the reflection-based analysis

approach.

69

5.2.3 Class Initialization

Class initialization occurs in Java when a class is first used, and involves invoking

a special static method in the class’ bytecode called an initializer. This can have

arbitrary effects on the object graph, and holographic execution must preserve this

behaviour by invoking the initializer of any uninitialized class before accessing it.

Like a class’ bytecode, however, the initialization flag is not present in most

heap dumps, so there is no direct way to tell if a class was defined but not yet ini-

tialized at the time of the dump. Since failing to initialize an uninitialized class can

lead to inconsistent, unsound errors, holographic execution must raise an exception

if it attempts to load a class whose initialization status is indeterminate.

We observe that in almost all cases the initialization status of a class can be

automatically inferred from other data, based on the rules for when initialization

must occur. Before class initialization, every non-constant static field has a default

value: false for boolean fields, null for object references, and so on. Set-

ting a value on a static field forces initialization, so a non-constant static field in

the heap dump with a non-default value implies that the class must be initialized.

Conversely, if the execution of a class initializer has the definite effect of setting a

non-default value on a field but that field has the default value in the heap dump,

the class must not be initialized.

In addition, given the definition of each class’ initializer, we can define a pre-

ordering A.B to mean “the initialization of class A forces the initialization of class

B.” If we use initialized(A) to symbolize that class A is initialized, we have two

additional rules we can use to infer whether a class is initialized:

• If initialized(A)∧A.B, then initialized(B)

• If ¬initialized(B)∧A.B, then ¬initialized(A)

To take advantage of these rules, the holographic VM architecture performs

a conservative analysis of the effects of each class initializer method encountered

while translating bytecode. We use an abstract interpretation [21] similar to the

type inferencing algorithm used by JVMs to verify bytecode, where the abstract

values are three-valued booleans indicating whether a value is a default value, is

not, or could be either. The output of this data-flow analysis is both a three-valued

70

boolean for each static field and the set of classes the method’s execution is guar-

anteed to force the initialization of. When it is necessary to check if a holographic

class A is initialized, the class’ static field values are compared with the static anal-

ysis results as described above. All classes B for which A .B are also checked

recursively, and if any are definitely uninitialized A is determined to be uninitial-

ized as well.

This analysis is sound but not complete: classes may still be encountered for

which the rules above are not enough to infer whether it is initialized. We further

observe, however, that many class initializers are idempotent, in that they may be

executed more than once without any additional side-effects. This means they can

safely be run on classes that may already be initialized. The architecture thus in-

cludes another pluggable mechanism for users to mark specific classes as having

idempotent class initialization. In Section 5.3.3 we provide evidence that this ne-

cessity should be relatively rare. It is also possible for a class to have non-inferable

initialization status and a non-idempotent initializer, but we have yet to encounter

such a case.

5.2.4 Concurrency

Our holographic VM implementation is currently limited to single-threaded execu-

tion, but there are no assumptions in the architecture that would prevent concurrent

holographic execution. Like the JDI model, executing code in a holographic VM

happens in the context of a specific thread mirror from the heap dump, and uses

a dedicated native thread in the host VM to execute the translated bytecode. The

semantics are identical to invoking a method on a paused thread while debugging

a live process.

In order to support multiple native threads simulating multiple holographic

thread executions, the data structures used in the mutable object graph layer de-

scribed in Section 5.1.2 simply need to be replaced with their appropriately syn-

chronized equivalents: replacing HashMap instances with ConcurrentHashMap

instances, for example. The synchronization overhead will have a negative impact

on performance, which should be the subject of future evaluations, but this will

enable more complex post-hoc application simulation.

71

5.3 Evaluation
This section evaluates two primary research questions:

1. To what extent does the holographic VM architecture improve on the reflection-

based approach to heap dump analysis?

2. Is holographic execution responsive enough for a typical heap dump analysis

scenario?

5.3.1 Case Study: Diagnosing a Memory Leak

To evaluate the feasibility and utility of object holographs, we augmented the

Eclipse MAT to leverage them as much as possible and then used the modified

tool to diagnose a real world memory leak contributed by an end user.

Extending the Eclipse MAT

A large portion of the Eclipse MAT user interface centres around navigating and

summarizing the object graph through predefined parameterized queries, some of

which are directly analogous to source-level operations; “Extract List Values,” for

example, iterates through a list’s entries in the same way as list iterator objects do.

Our primary augmentation of the tool was to define two additional generic queries

whose implementation used holographic execution.

The first is “Evaluate Expression,” which parses and evaluates a given code

snippet in the context of the objects selected in the tool. This is accomplished

by adapting a holographic VM to the JDI and reusing the implementation of the

Eclipse debugging UI. It supports either evaluating the expression once for each se-

lected object or collecting all selected objects into a single Collection through

a boolean-valued “aggregate” parameter.

The second is “Load and Run Code,” which evaluates the contents of a spec-

ified method from a given class file on disk. This is accomplished by using holo-

graphic execution to create a new class loader instance, pass the class bytecode

into the appropriate method to make the class loader define the new class, and then

actually invoke the target method. This allows users to define more complicated

72

1 p u b l i c s t a t i c Map<St r ing , In teger>
2 f i n d D u p l i c a t e s (Co l l ec t i on<CPPASTName> names) {
3
4 SortedMap<St r ing , In teger> counts =
5 new TreeMap<St r ing , In teger > () ;
6
7 f o r (CPPASTName n : names) {
8 S t r i n g nKey = n + ” - ”
9 + Arrays . t o S t r i n g (n . getNodeLocations ()) ;

10
11 I n t ege r count = counts . get (nKey) ;
12 i f (count == n u l l) {
13 count = 0 ;
14 }
15 counts . put (nKey , count + 1) ;
16 }
17
18 r e t u r n counts ;
19 }

Figure 5.2: Analysis code used to diagnose the Eclipse CDT memory leak
bug

queries via additional code compiled against the original application binaries. This

query also supports the same “aggregate” parameter.

We also replaced several existing queries with equivalent versions that used

holographic execution. The “Extract List Values” query, for example, was reimple-

mented to invoke the iterator() method on any collection and use the result to

iterate over the collection’s elements. This not only increased the generality of the

resulting queries, in this case allowing it to work on any Collection rather than

only specific List subtypes, but also enabled them to accept newly created holo-

graphic objects as well as existing heap dump objects. Replacing these reflection-

based query implementations also eliminated thousands of lines of code, showing

that holographic execution also simplifies tool development.

73

Debugging Experience

The Juno release of the Eclipse C and C++ Development Tools (CDT) contained

a memory leak2: indexing a large project caused the Eclipse runtime to exhaust

all available memory, where the same project was successfully indexed in previous

versions of the CDT. The user reporting the bug was able to upload a 1 gigabyte

heap dump from the time of failure, but because the project that caused the error

contained proprietary code they were not allowed to provide the actual project

source. This hindered attempts by the CDT contributors in the following months

to reproduce the problem, despite multiple other users reporting the same bug.

The CDT contributors were able to determine that approximately 80% of the

heap was retained by over 1.8 million instances of the class CPPASTName and

their related child objects. This class is used to represent unique occurrences of

symbols in C++ source code after preprocessing, and the bug reporter’s estimate

of the actual number of such symbols in their code was smaller by a factor of six.

Our initial theory for the memory leak was that the indexing process was creating

multiple duplicate name objects representing the same locations in the source code.

A straightforward way to investigate this theory is to iterate over all of the name

objects and group them by their locations, in order to detect multiple names from

the same location.

Obtaining the necessary bytecode for the relevant classes in the uploaded heap

dump was not difficult in this case: we only required the appropriate versions of

the Java 6 JRE and the Juno Eclipse distribution. We then authored a small helper

method, built against the matching version of the CDT source code, which iterates

over a sequence of CPPASTName objects and populates a map keyed by a string

representation of their locations. See Figure 5.2 for the relevant source code. This

analysis would be very time-consuming to implement using reflection: although

the CPPASTName class has a field for storing its location, it is lazily calculated on

request using several related datatypes, and so for the majority of the objects in the

heap dump this field contains null.

We executed this code using the “Load and Run Code” query described above

on the first 100,000 CPPASTName objects in the heap dump, resulting in a new

2https://bugs.eclipse.org/bugs/show bug.cgi?id=400073

74

https://bugs.eclipse.org/bugs/show_bug.cgi?id=400073

holographic HashMap object. To examine its contents in the Eclipse MAT UI,

we executed a holographic query to extract the key and value pairs from any Map

instance. The results confirmed our theory that there were many sets of duplicates,

in many cases over a dozen symbols with the same name and location.

Given that many of the most duplicated symbols were from a common library,

our next theory was that the indexer was creating a separate symbol instance every

time a header file was included. We selected one of the most duplicated sym-

bols and began to test this new theory by writing code to print out the path of

include declarations for each. The first step was traversing the parse tree to find the

compilation unit containing each name, which we achieved using the “Evaluate

Expression” query on the string "getTranslationUnit()".

We were surprised to find that each symbol came from separate compilation

units. Executing "getFilePath()" on each revealed that they were all for the

same source file. From this point it was relatively simple to use existing MAT

queries to find the references keeping the extra parse trees from being collected by

the garbage collector, in particular a thread local that was not cleared after use. This

analysis was presented on the online bug report, and a fix was submitted shortly

after by one of the project contributors.

5.3.2 Performance

To determine whether holographic execution is performant enough for its intended

use, we created a test harness that executes the toString method on every ob-

ject in a VirtualMachineMirror, measuring the time taken to return from the

invocation. This benchmark was chosen because it is easy to implement and ap-

plicable to any Java codebase, and yet exercises a surprising amount of code; even

very simple implementations of toString are often only the tip of the iceberg

when all of the methods that are ultimately used in their control flow are included.

We ran our benchmark against three sample applications. jre only is a stub

application including only an empty main class, for the purpose of benchmarking

only the contents of the JRE. tomcat is the Apache Tomcat web server, version

7.0.37, after serving the initial welcome page. eclipse is the Eclipse IDE, build

20130614–0229, with a minimum of plugins installed in order to keep the total

75

Application jre only tomcat eclipse
Classes 456 2657 7610
Objects 2249 46387 99452

Live VM
Avg. toString time (ms) 15.9 25.9 33.2
Max. toString time (ms) 1748 22041 80234

Std. Dev. toString time (ms) 74.4 279.3 512.6

Holographic VM

Prepare time (s) 44 171 340
Avg. toString time (ms) 5.4 2.5 7.4
Max. toString time (ms) 1279 8804 55867

Std. Dev. toString time (ms) 38.7 78.7 325.6

Table 5.1: Results of executing Object.toString on every object in a VM,
comparing performance on a holographic VM versus a live VM via the
JDI

class and object count manageable.

For each sample application, we used the JDI to connect to and pause the live

process, captured a single heap dump, and then ran the benchmark against both

the live process and the snapshot. We used the performance of remote execution

on a live process as the baseline, measuring the performance of holographic exe-

cution as a kind of overhead compared to this baseline. These experiments were

performed on a MacBook Pro laptop with a 2.4 GHz Intel Core 2 Duo CPU and 8

GB of RAM, running Mac OS X version 10.7.4. Table 5.1 presents our results.

Although the time to translate the bytecode for all classes in the VMs is signifi-

cant, once loaded the local holographic VM actually executes these methods faster

than the remote process. In all cases the minimum toString() time was 0ms, as

several classes define the method to simply return a constant or recalculated value,

and hence return essentially instantaneously.

Since there is no convenient method for uniquely identifying objects in Java,

and hence no convenient way to correlate the object mirrors in the two different VM

mirrors, the data are analyzed as two independent sets. It would be instructive in

future work to develop an algorithm for matching objects between VMs, possibly

using structural comparison or raw memory addresses, in order to match times and

analyze the average overhead.

76

We were surprised to discover that holographic execution is actually faster in

all cases than remote execution using the JDI. We suspect this is due to the fact that

the JDI relies on inter-process communication to pass values between the target

and source VMs, whereas a holographic VM’s state resides in memory with the

caller, and for relatively simple objects this invocation overhead is greater than the

time needed for the execution itself. A future evaluation could connect the JDI

to a remote holographic VM instead of a local one to normalize this difference,

but this would require additional engineering to accomplish. In addition, since a

holographic VM does not have to reside in a separate process, the lower latency of

reflective calls is in fact observed in tooling, although traded off by the overhead

of keeping the object graph in memory locally.

The most expensive aspects of holograph execution are fetching the bytecode

for the original classes as described in Section 5.2.1 and translating that bytecode

to produce hologram classes as described in Section 5.1.3. When the extra step

of loading a heap dump and preparing the holographic VM are included, the total

times to run the benchmark on either a live or dead process are similar. Since the

results of this process for each class in the heap dump are cached on disk, however,

successive analysis runs can avoid this processing time. Our experience shows

that the translation time is consistently about 5 seconds per megabyte of class file

content. Preprocessing the entire JRE, which consists of over 20,000 classes and

over 60 MB of bytecode, can be done in just under five minutes.

5.3.3 Completeness

The major limitation on completeness in this system is the possibility that the exe-

cution of useful code could encounter unsupported or illegal native methods. Our

experimentation has initially targeted the Mac OS X distribution of Java 7 release

5, and for every native method in that JVM’s runtime we have either provided a

mirror-based alternate implementation or explicitly determined that it requires il-

legal access to the external environment and marked it as forbidden. Section A.1

lists our categorization of these native methods.

Our implementation currently includes 99 alternative implementations of na-

tive methods, with a total of 1443 source lines of code. This serves as a rough eval-

77

uation of the effort involved in supporting a particular VM implementation. Only

those methods in the sun.misc.Unsafe class are specific to the exact JVM im-

plementation we used, as they involve raw memory addressing that depends on the

exact memory layout of its objects. There are also a handful of platform-specific

classes such as UNIXFileSystem that contain native methods, but this is only

a superficial platform dependency since the actual MNMs for such methods are

only trivially different. 187 legal native methods are not yet implemented in our

prototype, as they were not encountered in our experiments, but these are all either

trivial variations on other implemented methods, such as alternatives for different

primitive types, or alternative ways of accessing the reflective properties already

supported by the mirrors API.

The other limitation on completeness is the possibility of encountering classes

in the heap dump with indeterminate initialization status. In the process of support-

ing our experiments we encountered only two3 such classes. We explicitly marked

these as having class initializers that were safe to re-run, implying they could safely

be executed even if they may have already run.

5.4 Related Work

5.4.1 Mirror-based Behavioural Intercession

Prior work has examined the idea of customizing the behaviour of a language’s

objects via implicit mirror implementations. Such objects have been called mi-

rages [46] or virtual values [8], and have largely been studied in the context of be-

havioural intercession, or augmenting or replacing behaviours on existing objects.

Holographic objects are similar in implementation, but focus instead on reproduc-

ing the behaviour of base objects with no actual base object available in the runtime

to provide the base behaviour. In our case, behavioural intercession is limited to

replacing native methods, with the specific requirement of not deviating from base

behaviour, and is not exposed to developers that use the library.

In addition, prior work has presented implementations of such objects in dy-

namic languages, and doing the same in a statically-typed language such as JVM

3java.lang.reflect.Modifier and java.security.KeyFactory

78

bytecode without requiring a custom language runtime presents fundamental chal-

lenges that affect the design of the interfaces to those objects. The Jikes Research

Virtual Machine [5] also implements the behaviour of a JVM on another JVM, and

the majority of its code is ordinary Java. Its object model is not intended to be

pluggable, however, and although it could be made so this would not necessarily

be any easier than customizing any other JVM implementation.

Lorenz and Vlissides [40] describe how pluggable reflection enables more flex-

ible language tools, using a documentation generator and an object-to-component

generator as examples. A holographic language runtime represents another client

of a language’s pluggable reflective API, and allows the language’s implementa-

tion itself to be decoupled from the representation of its runtime state. Unlike

Lorenz and Vlissides’ examples, holographic execution requires a reflective API

that represent computation and not just code, a distinction clarified by Bracha and

Ungar [13].

5.4.2 Reproducing Past State and Behaviour

The idea of checkpointing and resuming execution recurs in several contexts, no-

tably in operating system or hardware virtualization. Some language runtimes also

support resuming from a snapshot [1], and Java itself includes a small amount of

this behaviour in its shared memory class file cache feature. In all of these cases,

the restored process is a normal, unrestricted instance, and care must be taken to

ensure that invalid references to the outside world are not created. By contrast

holographic execution as described in this work is intended to support diagnosis

and analysis of the state of a system in the past. It requires no foresight, but at the

cost of restricting additional execution and hence not truly restoring a dead pro-

cess. It also does not currently support resuming execution from the exact time of

the snapshot, although this is conceivably possible if a more precise snapshot such

as a core dump were used, along with techniques for recreating the captured call

stack via program slicing [67].

79

5.4.3 Heap Dump Analysis

Several other approaches have been used to analyse heap dumps, usually in the

context of identifying the source of memory leaks. Maxwell et. al. [44] use graph

mining to locate potential leak candidates. As we have illustrated in Section 5.3.1,

holographic execution is a complementary technique which does not preclude the

use of the reflective API on a heap dump. For example, the aforementioned work

includes a case study of a memory leak in a scripting language parser. The graph

mining technique identifies a non-standard linked-list implementation containing

a long series of regular expression matches, which is helpful but does not fully

diagnose the root cause. We postulate that applying holographic execution to print

out the semantic contents of this list could be extremely useful in diagnosing the

actual source of the leak.

5.4.4 Static Code Analysis

Kozen and Stillerman [35] use a static analysis of class initializers similar to ours to

initialize classes eagerly, in order to improve startup performance and catch errors

earlier. Their algorithm ignores initializer effects with respect to static fields, but

is flow-sensitive and hence calculates a more precise definition of initialization

dependencies than our current implementation. Integrating their approach in the

future may improve the success rate of our algorithm and hence reduce the number

of initializers that must be marked safely repeatable.

5.5 Summary
We have presented an architecture for holographic objects, which enables restricted

execution starting from the state captured in a heap dump. We have shown that this

architecture supports analysis that is simple, type-safe, robust, secure, and familiar.

It provides a good fit for analysis that depends on application-specific semantics,

but also complements meta-level analysis by supporting a hybrid approach. Our ex-

perience with our implementation for Java bytecode suggests that this architecture

can be effectively realized without having to customize a JVM. We have presented

evidence that holographic execution is competitive with live execution and hence

is feasible for heap dump debugging and analysis. We have also applied this proto-

80

type implementation to diagnose a real-world memory leak bug that went unsolved

for several months.

81

Chapter 6

Retroactive Weaving for AspectJ

This chapter describes the architecture for our retroactive weaver for the AspectJ

AOP language, which builds on the architecture for holographic virtual machines

presented in the previous chapter, and provides evidence for the effectiveness of

this architecture through case studies and an evaluation of performance. This in

turn provides evidence for the feasibility and effectiveness of the time-travel pro-

gramming paradigm for mature, full-featured programming languages.

6.1 Architecture
At a high-level, we implement the process of retroactive weaving for AspectJ by

combining three large and orthogonal components. The first component is the

interface to the underlying execution recording, adapted to implement the generic

VirtualMachineMirror (VMM) interface described in Section 5.1.1. This hides the

details of whichever recording system is used, and indeed our evaluation applies

this architecture to two different systems. The second component is a holographic

virtual machine that wraps the first component and implements the same interface,

providing the ability to perform additional execution on top of the recording as

described throughout Section 5.1. The last component, the primary focus of this

chapter, is a reflective aspect weaver, which uses the metaprogramming facilities

of the VMM interface to trap dynamic join points as they occur in the recording and

execute matching aspects accordingly.

82

This architecture allows the weaver to focus only on the concern of dynami-

cally weaving aspects against a VMM, whether that program represents live execu-

tion or a recording, and only the holographic VM is concerned with emulating the

retroactive execution specified by aspects. The modular approach helps to reduce

the complexity of this system, by separating the execution recording technology

and the AOP language semantics as independent concerns. The key to achieving

this modularity is the VMM interface, which is a reflective definition of the target

programming language.

6.2 Events and Intercession
In Chapter 5, a VMM was only used to represent a snapshot of a running program at

one instance in time. To implement retroactive weaving for an execution recording,

this model must be extended to represent the behaviour of a program as it executes

over time. The necessary interface is somewhat similar to the reflective interface

a JVM provides for implementing debuggers, and indeed one of the scenarios we

use to evaluate retroactive weaving in Section 6.7 below involves adapting the Java

Debugging Interface described in Section 2.3 to the VMM interface.

The key new operation is the ability to register callbacks for runtime events,

such as method calls and field accesses, so that when events occur they are first

passed to those callbacks before they actually occur in the runtime. While the VMM

invokes such callbacks, the state of the runtime is frozen so that callback bodies

may read any necessary contextual state. Moreover, the callbacks are allowed to

modify the events, effectively changing runtime behaviour. This augments the run-

time with powerful metaprogramming facilities.

VMM instances are initially created in a paused state. Clients add initial call-

backs as above, and then invoke a resume method that conceptually continues

execution. For an execution recording, there may be no actual resumed execution.

The interface only requires that each requested event is delivered to the registered

callbacks in the correct order, with the VMM state emulating the context in which

each event occurred.

The VMM interface also includes a handful of operations for modifying the

structure of classes, such as adding new fields to an existing class, or declaring that

83

a class implements additional interfaces. These are used by the reflective weaver

to implement intertype declarations, as well as to attach extra state for the internal

representation of features such as cflow pointcuts.

Note that this interface is strictly more powerful that the reflective capabili-

ties of the Java or AspectJ programming languages themselves. As observed in

Section 2.2, it is not possible for base-level Java code to intercept and modify

method invocations using the reflective classes included in the Java standard run-

time libraries, such as java.lang.Class and java.lang.Method. It is

possible, however, to provide at least some of these capabilities when adapting

various execution recordings to the VMM interface. The wrapping holographic VM

then provides some of the missing metaprogramming functionality as well, just

as it already fills in missing state as described in Section 5.2. The holographic

VM implementation also raises events for holographic execution itself via hooks

in its generated hologram class bytecode, which ensures consistent semantics in

line with the definition of retroactive execution.

6.3 Reflective AspectJ Weaver
Our reflective weaver uses the metaprogramming facilities of the VMM interface de-

scribed above to achieve the semantics of AspectJ aspects. The weaving process

registers callbacks that perform additional execution or modify the events them-

selves, such that the observed behaviour is equivalent to static code modification.

Note that the reflective weaver is not a runtime weaver for AspectJ. Although

the flexibility and power of metaprogramming potentially supports operations such

as dynamically enabling and disabling aspects, those semantics are not included

in the definition of AspectJ, as noted in Section 2.5. Since the reflective weaver

is an alternative implementation of the same semantics of AspectJ, the weaver’s

use of metaprogramming is carefully controlled to avoid exposing any additional

behaviour.

The event requests which trigger the execution of aspect code are all installed

on the recorded VMM before actually resuming the recorded execution. Other re-

quests may be dynamically enabled or disabled as the recorded execution proceeds,

but only as needed to optimize the weaving process or implement late binding. For

84

example, when a new class is defined in the recording it may be necessary to create

new event requests to trap events in that class’ code. The holographic VM also

registers its own internal callbacks for specific events to collect data necessary for

correct holographic execution.

Reflective weaving borrows much of the load-time configuration implementa-

tion described in Section 2.5 as well, in particular support for Extended Markup

Language (XML) files that explicitly name aspects that should be woven. These

may be hand-written by developers, but are also automatically generated by the

AspectJ compiler when compiling aspects to their binary form for load-time weav-

ing.

The high-level process for retroactive weaving is:

1. Load an execution recording, adapted to implement a VMM;

2. Instantiate a holographic VM around it;

3. Read the list of names of aspects to weave from the relevant XML files;

4. Load the requested aspects by name in the holographic VM;

5. For each aspect:

(a) modify classes in the VM according to any intertype definitions, and

(b) register callbacks to execute advice at matching join points;

6. Resume the holographic VM

Note that the reflective weaver supports a -XweaveCoreClasses option in

the XML configuration which ajc does not. This is necessary because the reflec-

tive weaver, unlike ajc, is able to implement the semantics of weaving aspects

against classes in standard Java class libraries. Many existing AspectJ aspects as-

sume the weaver only affects user-provided classes, or those loaded by a specific

class loader. If these are woven against core classes using the reflective weaver,

they often become extremely slow or even incorrect. However, some of the aspects

in our evaluation case studies (see Section 6.6) do require access to core classes.

85

In addition, avoiding retroactive side-effects in the core libraries using the tech-

nique described in Section 3.4 requires weaving against core classes. Providing

this option allows clients to scope their aspects on a per-library basis.

6.3.1 Events as Join Point Shadows

The core of the ajc weaver already operates on an abstracted representation of

the AspectJ language in order to support both compile-time or binary weaving.

Creating support for reflective weaving largely reduces to creating another imple-

mentation of this abstraction backed by the mirrors API. Recall from Section 2.5

that the ajc weaver is architected around the idea of join point shadows, which are

locations in AspectJ code (source or binary) that give rise to dynamic join points.

Because the ajc weaver materializes the semantics of AspectJ by transforming

code into Java byte code with equivalent behaviour, the primary function of the

weaver is to iterate through all join point shadows in the code and test for advice

whose pointcuts match those shadows. When a match is found, shadow mungers

are applied that transform the bytecode as described above.

The reflective weaver repurposes this mechanism and reuses much of the ajc

implementation by adapting dynamic runtime events as join point shadows. It is

straightforward for a runtime event from a VMM instance to expose at least as much

metadata as the static area of code that gave rise to the event. For a method call,

for example, this includes the declaring class, method name and argument types,

as well as less fundamental properties such as the source file name and line number

of the method call.

Shadows backed by a runtime event also support actually evaluating the shadow.

This is exposed as a closure which can be replaced on the underlying event. For

a runtime event, a shadow munger will modify the event by wrapping the exposed

closure to add additional computation before, after, or around the shadow.

6.3.2 Efficient Event Requests

Given a pointcut, the weaver must create a minimal but sufficient set of event re-

quests to cover all matching dynamic join points. A valid but extremely inefficient

implementation of reflective weaving would be to register callbacks for all possible

86

events, since the generic pointcut matching logic will filter out irrelevant events. It

is possible to optimize the weaving process considerably, however, if the point-

cuts are partially and conservatively translated into event filters. The underlying

execution recording mechanism will frequently support some of these filters na-

tively and hence avoid some of the substantial overhead of detecting, instantiating

and handling unnecessary events. The details of implementing these filters in the

underlying VMM are examined in Section 6.4.

All relevant shadow evaluations are therefore handled in a two-phase approach:

filters are used to trap an over-approximation of all relevant events in the recording,

and all resulting events are checked against the relevant pointcuts before actually

applying their shadow mungers. This two-phase approach mirrors the implementa-

tion of compile-time or load-time weaving, where shadows are matched statically

to determine locations in code that may produce matching join points, but dynamic

testing logic often has to be inserted to match a portion of the pointcut at runtime.

AspectJ pointcuts are formed from a combination of several possible patterns.

They can be divided into four categories:

1. Kinded, such as call and set;

2. Scoping, such as within;

3. Contextual, such as this; and

4. The pointcut combinators &&, ||, ! and cflow

An early stage of pointcut concretization replaces cflow pointcuts with a

combination of explicit control flow tracking and pointcuts that refer to that state.

The remaining pointcut combinators resemble logical operators: &&, || and ! for

“and”, “or” and “not” respectively. Pointcuts thus have an equivalent concept of

Disjunctive Normal Form (DNF). Rewriting a pointcut in DNF is already imple-

mented and used by the ajc weaver to optimize the shadow matching process. In

our implementation it is helpful to lift all uses of || to the top-level, since event

requests for each conjunctive clause can be extracted independently.

The pseudocode for extracting a sufficient set of event requests for an advice

declaration is as follows:

87

Reduce the p o i n t c u t to d i s j u n c t i v e normal form

r e s u l t ← ∅
For each con junc t i ve clause :

Separate the kinded des ignators from the others

Ca lcu la te the set o f k inds t h a t w i l l match those des ignators

I f there are no kinded designators , match a l l j o i n po in t k inds

For each matching k ind :

request ← a new m i r r o r event request o f t h a t k ind

For example , a ‘ set ‘ corresponds to a ‘ F ie ldMir rorSetRequest ‘

For each other des ignator i n the clause :

and s igna tu re pa t t e rn i n each kinded des ignator :

I f the k ind does not suppor t t h i s pa t t e rn

(e . g . ‘ * MyClass . foo (i n t) ‘ f o r a ‘ set ‘) :

Continue wi th the next k ind

Otherwise :

I f the m i r r o r event request supports t h i s pa t t e rn

Add a corresponding f i l t e r to the ‘ request ‘

Add request to r e s u l t

r e t u r n r e s u l t

Note that if a conjunctive clause contains two kinded designators of different

kinds (e.g. set and call), the pointcut will have no matches, since kinds define

a partition on join points and hence no join point will ever match more than one

kind simultaneously.

It is important to optimize the implementation of cflow pointcuts to drasti-

cally reduce the number of events raised by the underlying execution recording.

For all pointcuts that contain cflow expressions, the event requests created to

match their join points are initially disabled. They are only enabled when a join

point that matches the argument to the cflow expression is entered, and then dis-

abled when the join point exits. This is especially critical given the idiom of using

cflow(adviceexecution()) to avoid retroactive side-effects, since many

of the relevant join points will occur very frequently in the base program. See

Section 6.7.1 for examples of such aspects.

88

6.4 Execution Recordings
Execution recording technologies vary in terms of how much information they

explicitly record and how much is implicit and inferred or reconstructed at con-

sumption time. To evaluate the effectiveness of our implementation of retroac-

tive weaving, we also adapted two implementations of execution recording to the

VMM interface: one based on a database of events and snapshots, and one based

on deterministic replay. The implementations we chose represent two contrast-

ing approaches to execution recording, and hence are intended to help measure

the behaviour of retroactive weaving over the range of all possible approaches to

execution recording.

Many recent approaches to execution recording use a combination of these two

techniques, including Pothier’s more recent work on omniscient debugging [55].

Such systems will often record multiple snapshots of system state, for example,

and then use partial replay to determine state in between them. By choosing highly

contrasting backends, our evaluation is intended to provide the maximum evidence

for how the effectiveness of retroactive weaving varies with the underlying ap-

proach. Implementing two very different backends also provides evidence that the

VMM interface is sufficiently generalized, and hence that reflective weaving will be

applicable to other possible execution recording technologies.

6.4.1 Events Database

Our first execution recording adapter is based on the tracing and database backend

of the Trace-oriented Debugger (TOD) presented by Pothier et al. [56]. At its heart,

this approach closely resembles the tracing implementation shown in Section 4.6.1,

since at a high level the events database is simply a sequence of instantaneous

events. Each event contains a synthetic timestamp, where events with the same

timestamp semantically occurred simultaneously in the original execution.

The TOD backend exposes a querying interface similar to that of a relational

database. The trace database provides an interface for creating a cursor over a sub-

set of events from the trace sequence. Filters can be applied to pick out only those

events that occurred within the source of a particular class, on a specific object,

and so on, and filters can be combined with conjunction and disjunction operators

89

to create compound filters. Events are aggressively indexed as they are recorded

to make these filters efficient to implement. The trace database also provides vari-

ous interfaces for querying the state of objects and arrays at any given timestamp.

These operations are used by the omniscient debugger UI to step forwards and

backwards in time, and to present a debugger-like view on the state of the recorded

program at any given point in time.

In the TOD VMM adaptor, each callback request is translated to an event cursor,

and each supported filtering operation translates almost directly to cursor filters. A

single stream of matching events is easy to produce using a merge sort process sim-

ilar to that described in [56]. The state of the adaptor includes a current timestamp,

effectively slicing the data to the state at this timestamp, and the VMM interfaces for

querying state are implemented by passing this fixed timestamp to the database

query methods. The resume operation semantically replays the recorded pro-

gram by iterating through the result of merging the cursors for all requests. Each

time the cursor moves to the next event, the VMM timestamp is updated to that of

the event. Then each applicable callback is invoked on the event. The adaptor only

reads state in a forwards direction, and hence does not take advantage of TOD’s

ability to debug backwards in time, but it may skip over large periods of time as it

travels forwards and queries only relevant events.

6.4.2 Deterministic Replay

Our approach to retroactive weaving based on deterministic replay is to enable de-

bugging on the DR process, attach a debugging connection to that process within a

second JVM using the Java Debugging Interface (JDI), and adapt that JDI connec-

tion as a VMM. This ensures isolation from whatever DR mechanism is used, at the

cost of decreased performance due to the inter-process communication. This cost

is mitigated somewhat by caching data within the holographic VM that wraps the

JDI adaptor.

The callback API in the VMM model is straightforward to implement using the

JDI’s similar event request mechanism. Although the VMM model supports con-

currency via threads, the JDI adaptor pauses all threads within the debugged VM

whenever an event is raised. Assuming asynchronous threads rather than concur-

90

rent threads in the VMM model greatly simplifies the holographic VM implementa-

tion, especially with respect to ensuring consistency in the aforementioned caching.

We assume that implementing the API for event callbacks does not cause per-

turbation of the underlying process. This is true as long as the underlying replay

mechanism is robust enough to be unaffected by the pauses in execution and addi-

tional reads of program state caused by event callbacks.

For the purposes of our evaluation we use the LEAP system for deterministic

replay of multi-processor systems [31]. Like many software-based approaches to

DR, LEAP works via static analysis and bytecode instrumentation of the source

program. It produces both a record and replay version of the source program;

the former records thread ordering data which the latter takes as input in order to

reproduce the recorded execution. Our experimental setup is therefore to connect

to the running replay process as the remote source of program state as above.

6.5 Soundness
Performing some operations may interfere with execution recording replay, be-

cause they would perturb the underlying VM such that there is not enough infor-

mation to continue the simulation. It is the responsibility of the execution recording

adaptor to guard against operations that would invalidate the recording, since the

precise definition of which operations are illegal will vary depending on the exact

recording mechanism.

The execution recoding adaptors are configured to disallow operations that

modify the VM’s state, such as setting fields and invoking methods. If such op-

erations occur in holographic execution, the adaptors will throw an instance of an

exception class named IllegalSideEffectError. This class is declared as

a subclass of VirtualMachineError, a base class used internally by JVM

implementations to indicate low-level failure conditions client code should not

be expected to catch and reasonably handle, such as exhausting memory or en-

countering internal VM bugs. We intend clients of the VMM interface to catch

IllegalSideEffectErrors instead, at the meta-level.

91

6.6 Case Studies
This section outlines the background and motivation behind the examples of As-

pectJ aspects we used to evaluate retroactive weaving for AspectJ. Our evaluation

targets both the effectiveness of the technique for the AspectJ language in particular

and our weaver implementation. The former is demonstrated by reusing existing

aspects, or by presenting alternate versions of dynamic analysis expressed as clear

and concise aspects. The latter is evaluated by measuring the performance penalty

of evaluating aspects retroactively, and by approximating the additional develop-

ment effort necessary to avoid illegal retroactive side-effects.

We have endeavoured to identify several classes of aspects that are well-suited

to retroactive weaving, and chosen one concrete aspect to represent each class. We

have in general preferred generic aspects, meaning those that are applicable to any

arbitrary Java or AspectJ program, so that we can use the same set of base programs

to record and retroactively weave. This helps to keep a consistent baseline for

comparing these different classes of aspects.

We present these case studies in roughly increasing order of complexity. The

following table summarizes which AspectJ and holographic execution features

each case study makes use of.

Table 6.1: Summary of case studies and the AspectJ features they use

contract tracing racerj leaks heap

stateful y y y y y
cflow y y y y y
around
toString y y
recorded threads y y y
retroactive threads y y
type reflection y
control reflection y

The features referenced by the table are as follows:

stateful: Whether the analysis code maintains its own state between join points.

cflow: Use of the cflow pointcut combinator.

around: The inclusion of around advice. Note that while around advice does

92

not appear in the source of any of the case studies, it is used heavily in the aspects

used to avoid illegal retroactive side-effects as illustrated in Section 6.7.1.

toString: Use of the Object.toString method to output objects in a

human-readable form.

recorded threads: Supporting the analysis of multiple threads in the original

execution.

retroactive threads: Analysis that spawns its own additional threads.

type reflection: Analysis that uses reflective methods to analyze the structure

of types that appear in the recording (e.g. Class.getDeclaredFields).

control reflection: Analysis that uses reflective methods to analyze the control

flow of the recorded program (e.g. Thread.getStackTrace).

6.6.1 Contract Verification

A commonly cited application for aspects is modularizing contracts when using the

Design by Contract (DbC) paradigm [45]. Some argue that using aspects in this

way fails to maintain the advantages of DbC [10], although there is recent work

on AOP languages intended to mitigate this [57]. However, contracts expressed as

aspects are also good candidates for retroactive weaving because of the pluggability

of aspects. They are often too expensive to leave enabled in production code,

but may offer valuable insight into the root cause of unexpected behaviour when

evaluated against an execution recording, where raw performance is less important.

The example we chose is a simple, lightweight aspect that detects resource

leaks. It leverages the semantics of the built-in java.io.Closeable interface:

any class which implements this interface represents a resource that should be re-

leased when the object is no longer needed. Newer versions of the Eclipse IDE will

provide compiler warnings for objects that are never closed, but the static analysis

the warning is based on cannot detect resource leaks for objects that escape their lo-

cal scope. The aspect in Figure 6.1, however, will detect such leaks dynamically by

capturing all instances of classes that implement java.io.Closeable, track-

ing when they are closed, and reporting on those that were never closed when the

program terminates.

93

1 p u b l i c aspect UnclosedCloseables {
2
3 p r i v a t e f i n a l Set<Closeable> unclosed = new HashSet<Closeable > () ;
4
5 a f t e r () r e t u r n i n g (Closeable c loseab le) : c a l l (Closeable +.new (. .)) {
6 unclosed . add (c loseab le) ;
7 }
8
9 a f t e r (Closeable c loseab le) : c a l l (* Closeable . c lose ())

10 && t h i s (c loseab le) {
11 unclosed . remove (c loseab le) ;
12 }
13
14 p u b l i c UnclosedCloseables () {
15 Runtime . getRuntime () . addShutdownHook (new Thread () {
16 p u b l i c vo id run () {
17 System . out . p r i n t (” Unclosed c losab les : ” + unclosed) ;
18 }
19 }) ;
20 }
21 }

Figure 6.1: A contract verification aspect

6.6.2 Tracing

The next case study is the quintessential tracing example described in Section 2.5.

While relatively simple, the most sophisticated version of this aspect makes use of

several AspectJ features that exercise the overall implementation well:

• Invoking the toStringmethod within advice, implying a non-trivial amount

of retroactive execution;

• A cflow pointcut to avoid infinite recursion when calling toString;

• References to the special form thisJoinPointStaticPart, which ex-

poses metadata about the join point; and

• The use of persistent state between advice invocations to implement tracing

indentation

See Listing 6.1 for an excerpt of the output of this aspect.

94

Listing 6.1: An excerpt of output from the AspectJ tracing aspect
1 - -> double t r a c i n g . C i r c l e . per imeter () : C i r c l e rad ius = 2.0 @ (3 . 0 , 3 .0)
2 <- - double t r a c i n g . C i r c l e . per imeter () : C i r c l e rad ius = 2.0 @ (3 . 0 , 3 .0)
3 c1 . per imeter () = 12.566370614359172
4 - -> double t r a c i n g . C i r c l e . area () : C i r c l e rad ius = 2.0 @ (3 . 0 , 3 .0)
5 <- - double t r a c i n g . C i r c l e . area () : C i r c l e rad ius = 2.0 @ (3 . 0 , 3 .0)
6 c1 . area () = 12.566370614359172
7 - -> double t r a c i n g . Square . per imeter () : Square s ide = 1.0 @ (1 . 0 , 2 .0)
8 <- - double t r a c i n g . Square . per imeter () : Square s ide = 1.0 @ (1 . 0 , 2 .0)
9 s1 . per imeter () = 4.0

10 - -> double t r a c i n g . Square . area () : Square s ide = 1.0 @ (1 . 0 , 2 .0)
11 <- - double t r a c i n g . Square . area () : Square s ide = 1.0 @ (1 . 0 , 2 .0)
12 s1 . area () = 1.0
13 - -> double t r a c i n g . TwoDShape . d is tance (TwoDShape) : C i r c l e rad ius = 4.0 @ (0 . 0 , 0 .0)
14 - -> double t r a c i n g . TwoDShape . getX () : C i r c l e rad ius = 2.0 @ (3 . 0 , 3 .0)
15 <- - double t r a c i n g . TwoDShape . getX () : C i r c l e rad ius = 2.0 @ (3 . 0 , 3 .0)
16 - -> double t r a c i n g . TwoDShape . getY () : C i r c l e rad ius = 2.0 @ (3 . 0 , 3 .0)
17 <- - double t r a c i n g . TwoDShape . getY () : C i r c l e rad ius = 2.0 @ (3 . 0 , 3 .0)
18 <- - double t r a c i n g . TwoDShape . d is tance (TwoDShape) : C i r c l e rad ius = 4.0 @ (0 . 0 , 0 .0)
19 c2 . d is tance (c1) = 4.242640687119285
20 - -> double t r a c i n g . TwoDShape . d is tance (TwoDShape) : Square s ide = 1.0 @ (1 . 0 , 2 .0)
21 - -> double t r a c i n g . TwoDShape . getX () : C i r c l e rad ius = 2.0 @ (3 . 0 , 3 .0)
22 <- - double t r a c i n g . TwoDShape . getX () : C i r c l e rad ius = 2.0 @ (3 . 0 , 3 .0)
23 - -> double t r a c i n g . TwoDShape . getY () : C i r c l e rad ius = 2.0 @ (3 . 0 , 3 .0)
24 <- - double t r a c i n g . TwoDShape . getY () : C i r c l e rad ius = 2.0 @ (3 . 0 , 3 .0)
25 <- - double t r a c i n g . TwoDShape . d is tance (TwoDShape) : Square s ide = 1.0 @ (1 . 0 , 2 .0)
26 s1 . d is tance (c1) = 2.23606797749979
27 s1 . t o S t r i n g () : Square s ide = 1.0 @ (1 . 0 , 2 .0)

95

6.6.3 Race Detection

Bodden and Havelund developed RACER [12] as an example implementation of an

algorithm for detecting data races. They proposed three novel pointcuts to enable

a whole class of aspects for analyzing concurrency bugs: lock and unlock,

for picking out join points that acquire and release locks, and maybeShared, a

scoping pointcut used to restrict other pointcuts to those involving data possibly

accessed by multiple threads.

RACER consists of two aspects. Locking uses the lock and unlock point-

cuts to track the locks held by a given thread and how many times each has been

locked. Racer picks out possibly shared field accesses and drives the RACER

algorithm’s state machine. While the algorithm itself is relatively simple, its com-

plete implementation in AspectJ is still over one thousand lines of code, and exe-

cuting it retroactively is a reasonably heavy stress test of the architecture.

RACER is particularly compelling as a case study for retroactive weaving be-

cause its overhead is relatively high. The more that this high runtime cost can be

pushed to the post-hoc processing environment, where raw performance is less of

a concern, the more practical such analysis becomes. With similar goals in mind,

Ansaloni et. al. [6] investigated the advantages of using buffered advice to offload

some of this overhead to a separate thread. Unlike buffered advice, retroactive

weaving does not require altering the specification and hence the semantics of the

original advice, although it instead introduces the possibility of runtime errors due

to illegal retroactive side effects as described in Section 6.5.

The maybeShared pointcut is used as an optimization to reduce the number

of join points matched by the Racer aspect and hence the overall runtime of the

algorithm. For the sake of simplicity, the retroactive weaver’s implementation of

this pointcut matches all join points; Bodden and Havelund note in [12] that this is

a valid implementation, and moreover that the observed improvement in runtime

speed due to their implementation based on a static thread-local objects analysis

was negligible.

96

6.6.4 Memory Leak Detection

Section 5.3.1 provided evidence for the benefits of retroactive execution in diag-

nosing memory leaks based on snapshots. It is logical to investigate whether these

benefits extend to execution recordings via retroactive weaving. Villazón et al. [66]

and Chen and Chen [16] both experimented with using aspects to detect memory

leaks, and illustrate that one of the advantages of this approach is the ability to

track the dynamic location of each object construction, namely via stack traces.

We use Villazón’s version for this evaluation since the full aspect’s source is

available for experimentation. This aspect maintains PhantomReferences to

constructed objects to ensure they can still be collected. Before collecting such

objects, the JVM adds the corresponding phantom references to a reference queue,

which the aspect monitors. As references appear in the queue the aspect removes

them from the set of potential leaked objects. This aspect therefore relies on the ef-

fectiveness of the JVM’s garbage collection to eliminate false positives, and hence

when woven retroactively stresses the fidelity of the holographic virtual machine.

To support this case study, we implemented a naive but semantically correct

version of retroactive garbage collection. The key requirement is being able to de-

termine when an object is not reachable either in the original execution or through

additional retroactive references. Our approach is to rely on the host JVM’s garbage

collection to collect holographic wrapper objects when they become unreachable.

We define finalize methods on a few key classes such that when a holographic

object is collected the holographic VM can check to see if the corresponding ob-

ject in the execution recording is reachable. The holographic implementation of

the native Runtime.gc() method can then enqueue holographic references to

any such objects.

By necessity, this split approach will not identify as many collectable objects

as the native garbage collection. In the worst case, where an object is minimally

reachable by a chain of n pairs of original and retroactive references, it will take n

iterations to clear the chain of garbage. This is a valid limitation of a JVM garbage

collector, however, as they are permitted to be non-deterministic and unpredictable.

Villazón’s aspect already accounts for the general imprecision of garbage collec-

tion by invoking Runtime.gc() and related methods multiple times until col-

97

lection reaches an approximate fixed point.

6.6.5 Profiling

Pearce et al. [52] investigated the effectiveness of implementing a general-purpose

Java profiler using AspectJ. Their conclusions were that AspectJ was sufficiently

expressive and efficient for reasonable implementations of several profiling use

cases. They also named several limitations of the standard implementation of As-

pectJ at the time that impacted its suitability, primarily the lack of support for

array construction and synchronization join points, and the lack of support for

weaving classes in the standard libraries. To date, however, these limitations have

mostly since been addressed: the requested join points have since been added, and

several alternate weaving approaches have been proposed for weaving standard

classes [66]. Reflective weaving is another such approach since it does not modify

the original bytecode.

Their implementation djprof includes several aspects for gathering statistics

on object lifetimes, heap usage, time spent, and time wasted. Profiling use cases

that involve measuring actual wall time for execution are not ideal for retroactive

weaving; modelling the current time during retroactive execution in a semantically

consistent manner is challenging, although an interesting avenue for future work.

However, analyzing execution in terms of operation frequencies or the size of data

is just as effectively measured post-hoc. We chose to reuse the HeapAspect in

particular from djprof, which estimates the total heap space allocated by each

method. Our primary reason was to demonstrate the advantage of source compat-

ibility in retroactive analysis: even though the aspect is generic and refers only

to types within the standard libraries, it makes heavy use of the reflective meth-

ods in Java (and hence AspectJ) to estimate object sizes. These calculations could

be implemented using other APIs for executions recordings, but using retroactive

weaving means the same existing code can be used as-is.

6.7 Evaluation
This section evaluates two primary research questions:

1. What amount of effort, in terms of orders of magnitude, is necessary to adapt

98

an aspect to make it valid for retroactive weaving?

2. Is retroactive weaving responsive enough for a typical execution recording

analysis scenario?

6.7.1 Adaptation Effort

This section quantifies the amount of additional programming necessary to adapt

the selected aspects to retroactive weaving, using the idiom described in Sec-

tion 3.4. One of our claimed benefits of retroactive weaving is the reuse of exist-

ing aspects as-is for post-hoc analysis. If substantial effort is necessary to avoid

retroactive side-effects and hence ensure sound analysis results, it reduces the

strength of this claim.

Many such effects occur within code that caches frequently requested data

within the standard runtime libraries. Avoiding this class of effects is usually as

simple as eliding the caching mechanism entirely, since retroactive weaving is not

a performance-critical environment. Figure 6.2 contains an example of such code

and advice for avoiding the retroactive side-effect. In this particular case, there is

only a single, highly-localized operation to omit, since the hash field is private and

only assigned to within this method, but in other cases it is necessary to use the

cflow pointcut to apply a more precise scope.

Other illegal side-effects occur because aspects legitimately need to alter be-

haviour in ways that do not semantically interfere with the original execution. For

example, three of the case study aspects we evaluated need to summarize and re-

port analysis at the end of execution. They achieve this by registering threads to be

run when the JVM is shutting down using the Runtime.addShutdownHook

method, which adds threads to a static list. If called retroactively, adding to this list

is an illegal side-effect.

The solution here is to declare an additional list for retroactive hooks on an

aspect, and to define advice that augments the shutdown hook mechanism to also

run hooks added to this second list. Figure 6.3 illustrates how this is done. This

version advises the low-level implementation of the shutdown hook mechanism,

at the cost of violating encapsulation. An alternative version could instead advise

higher-level code, at the cost of some code duplication.

99

1 public class S t r i n g {
2 . . .
3 public i n t hashCode () {
4 i n t h = hash ;
5 i f (h == 0 && value . leng th > 0) {
6 char va l [] = value ;
7
8 for (i n t i = 0 ; i < value . leng th ; i ++) {
9 h = 31 * h + va l [i] ;

10 }
11 hash = h ;
12 }
13 return h ;
14
15 }
16 . . .
17 }
18
19 p u b l i c aspect JREAroundFieldSets {
20 . . .
21 void around () : set (* S t r i n g . hash) {
22 / / Don ’ t proceed () , j u s t l e t i t be reca l cu l a t e d every t ime
23 }
24 . . .
25 }

Figure 6.2: Suppressing illegal side-effects with aspects

A key unanticipated technical challenge is that the process of loading the as-

pects themselves may also have illegal side-effects. These operations occur in the

implementation of class loading within the standard libraries and not in the control

flow of the base code it is loading. This creates a catch–22 situation where load-

ing the aspects to avoid retroactive side-effects can cause those effects themselves.

To avoid these side-effects, the holographic JVM implementation itself includes a

small amount of low-level metaprogramming to install callbacks that relocate state

and augment behaviour in much the same ways as described above. As discussed

at length earlier, this code is more difficult to write and debug, but is limited to the

bootstrapping phase of the holographic JVM.

In total, we encountered 21 instances of state the aspects attempted to retroac-

tively modify in their control flow, 18 of which had to be elided through metapro-

gramming instead of advice. It is likely that this set of bootstrap workarounds

100

1 p u b l i c aspect ShutdownHooks {
2
3 / / Augments ApplicationShutdownHooks . hooks
4 private s t a t i c IdentityHashMap<Thread , Thread> moreHooks
5 = new IdentityHashMap<Thread , Thread > () ;
6
7 / / Add r e t r o a c t i v e hooks to moreHooks ins tead
8 void around (Thread hook) :
9 execution (void Runtime . addShutdownHook (Thread))

10 && args (hook) {
11 moreHooks . put (hook , hook) ;
12 }
13
14 a f te r () : execution (void Shutdown . runHooks ()) {
15 / / Copy of ApplicationShutdownHooks . runHooks () ,
16 / / but r e f e r r i n g to moreHooks ins tead .
17 Co l l ec t i on<Thread> threads ;
18 synchronized (ShutdownHooks . c lass) {
19 threads = moreHooks . keySet () ;
20 moreHooks = nul l ;
21 }
22
23 for (Thread hook : threads) {
24 hook . s t a r t () ;
25 }
26 for (Thread hook : threads) {
27 t ry {
28 hook . j o i n () ;
29 } catch (I n te r rup tedExcep t i on x) { }
30 }
31 }
32 }

Figure 6.3: Relocating illegal side-effects with aspects

are adequate for many other retroactive aspects as well, since they are enough to

support safely loading any additional aspects necessary to avoid other side-effects.

The complete list of workarounds can be found in Section A.2.

6.7.2 Results and Runtime

We now present a basic evaluation of the retroactive weaver as applied to each of

the five case studies. We compared the output and runtime of the ajc load-time

weaver against the retroactive weaver using either TOD or LEAP execution record-

101

ings. The results are presented in Table 6.2. All run times are reported in seconds,

and are the average of five iterations with one warmup iteration (which has the side-

effect of populating the holographic JVM bytecode caches as in Section 5.3.2).

Table 6.2: Execution time comparison of retroactive weaving with load-time
weaving

contract tracing racerj leaks heap

Base program 0.29 0.26 0.26 0.43 0.44
ajc load-time weave 3.68 3.60 8.80 3.95 3.37
TOD record 11.33 13.30 N/A 11.98 11.34
TOD retroactive weave 12.98 44.35 N/A 107.65 34.58
LEAP record 0.40 0.39 0.25 0.25 0.45
LEAP retroactive weave 16.52 28.10 151.73 104.30 26.01

From these results we can see that retroactive weaving typically performs be-

tween 3X to 20X slower than runtime weaving. The TOD-based retroactive weaver

out-performed the LEAP-based weaver for the contract validation aspect because

the aspect matched very few joinpoints in the base program. This is the situation

where using an indexed execution trace offers an advantage, since the remaining

execution events that do not match can be skipped over quickly.

The leak detector aspect caused the worst overhead for both execution record-

ing adaptors at approximately 26X, but for very different reasons. As documented

in Villazón et al. [66], the aspect is often more useful if woven with a weaver that

supports core Java classes, and its corresponding base program contains a leak

that is only detected in that case. Hence the performance comparison is not com-

pletely fair as the LEAP-based retroactive weaver detects the intended leak and 28

other objects that are not reclaimed and the load-time weaver does not. On the

other hand, because the TOD system records events by augmenting the original

program’s bytecode, it is also not able to record events that occur in the code Java

classes, and hence retroactively weaving the leak detector aspect on a TOD record-

ing produces the same, less complete results as the load-time weaver. However,

the aspect also depends on garbage collection for completeness. The prototype

implementation of garbage collection in the TOD-based VMM is based on a naive

mark-and-sweep algorithm implemented at the metaprogramming level, and is un-

102

surprisingly very slow. By contrast the LEAP-based VMM is based on a live JVM

and can defer to its highly-optimized and asynchronous garbage collection.

Note that the RacerJ aspect cannot currently be used with the TOD-based back-

end because the TOD recorder and database does not record synchronization events

and hence does not support the lock() and unlock() pointcuts. It is likely

feasible to modify the TOD architecture to add this event type, however. An alter-

native scenario that only considers synchronized methods is possible, but ignoring

the many synchronized blocks commonly used in concurrent code would likely

produce many false positives.

It is important to put the runtime of retroactive weaving in perspective. The

retroactive weaver is not used in the same way as the load-time weaver, and not

intended to be an alternative to it nor competitive with it in runtime. The overhead

reported above is somewhat comparable to the overhead of running a program in

debug mode, and there is plenty of room for further optimization in future imple-

mentations. The advantage of time-travel programming is allowing the resources

given to and context of a program’s execution to vary independently from that of

the execution analysis. Retroactive execution does not require human interaction to

proceed, and is an ideal candidate for scheduling on idle computing resources. In

addition, multiple analysis aspects can be woven retroactively against the same ex-

ecution recording in parallel. Therefore, even though executing an aspect retroac-

tively may be an order of magnitude slower that live execution, the ability to do

so also saves the time otherwise needed to implement or reimplement the desired

analysis at the metaprogramming level or within an execution query language.

6.8 Related Work
Several query languages have been proposed that treat program execution events

as data, and define domain-specific constructs for selecting and aggregating that

data. The Program Trace Query Language [28] is a SQL-like relational query lan-

guage for Java based on several Java-specific relations for events such as object

allocation and method invocation. Our work is complimentary to such query lan-

guages, which can extract values from multiple points in time at once, but cannot

use the original source language to interpret those values. By contrast the Program

103

Query Language [42] uses flow-sensitive boolean conditions to identify applica-

tion errors. PQL queries can be evaluated dynamically to catch errors at runtime,

but can also be used to find sound approximations statically. Since the dynamic

instrumentation application can invoke or replace application code, it constitutes a

poincuts and advice language, one with more sophisticated pointcuts than AspectJ.

The PQL implementation supports identifying query matches post-hoc, which is

to say identifying matching join points given a program event stream, but does not

support executing the bodies of queries.

The execution metaprogramming approach described earlier is closely related

to the scriptable debugging paradigm, which involves driving debugging activi-

ties via a secondary language that operates on the debugging API as a first-class

datatype. The secondary language may actually be a subset of the target language,

as is the case with the Eclipse MAT utilities, but in that case the execution values

of the debugged program are represented at the metaprogramming level and not as

normal values within the debugging script or program. The Gnu debugger (GDB)

features a Python scripting interface for automating debugging, and the recent Ex-

positor [53] language supports time-travel debugging by allowing scripts to use

traces as first-class objects, including moving backwards and forwards in time ar-

bitrarily and retrieving, for example, the set of all points in time where a breakpoint

would have been hit. Note that our mirror-based implementation of AspectJ only

refers to the generic VM mirror interfaces, and do not require a holographic VM.

If applied to an adapted JDI mirror, the process will dynamically load the aspect

classes into the live process and execute advice bodies directly. This therefore can

be seen as another scriptable debugging implementation1 on a normal live process

based on AOP.

Ansaloni et. al. [6] propose optimizing non-interfering aspects by executing

them in parallel on multi-core architectures. To ensure consistency, however, the

aspects in question have to be rewritten to ensure that the necessary state is ex-

plicitly copied into the aspect space so that base execution can continue without

blocking. A possible improvement on this approach would be to use holographic

1Note that the completeness of this AspectJ implementation is limited by the JDI implementation;
in particular general around advice is not supported for the version of JDI we used as its support for
method invocation was not reentrant.

104

execution (in read-only mode) in combination with a copy-on-write layer to allow

parallel execution of unaltered aspects. Their primary example of a non-interfering

aspect is the Racer [21] algorithm that we included as a case study, which is com-

pelling since it is a useful but costly aspect.

6.9 Summary
In this chapter we have shown that combining a reflective aspect weaver for As-

pectJ with the holographic JVM implementation from Chapter 5 creates an AspectJ

retroactive weaver. We have shown that such a weaver can be used to evaluate a

wide variety of aspects against execution recordings instead of inline with the origi-

nal base program, with a high but not prohibitive runtime cost. We have also shown

that adapting aspects to be free of illegal side-effects in their control flow only re-

quires a handful of common auxiliary aspects and metaprogramming workarounds.

While these results are very preliminary, they demonstrate the basic feasibility of

this approach and lay the foundation for future implementations.

105

Chapter 7

Conclusion

We conclude with a review of the contributions of this thesis and how they support

our thesis statement. We also outline the limitations and threats to validity of this

work, and suggest several potential avenues of future research.

7.1 Summary
This thesis has presented Time-travel Programming, a novel programming paradigm

for interacting with prior executions of software. Its defining characteristic is sim-

ulating the behaviour code would have produced if evaluated during such past exe-

cutions. Its building blocks are Retroactive Execution, the simulation of evaluating

code at some past time and context, and Retroactive Weaving, the retroactive exe-

cution of a post-hoc aspect across an execution recording. Our thesis statement is

that TTP is effective, feasible, and flexible, which we have demonstrated as follows

below.

TTP is effective: In Section 3.1, Section 5.3.1, and Section 6.6, we have out-

lined several examples of program analysis that are straightforward and logical to

express using TTP, including debugging a long-standing memory leak in Eclipse.

TTP is feasible: By outlining a prototype for both retroactive execution and

retroactive weaving for the Java Virtual Machine and the AspectJ AOP program-

ming language in Chapter 5 and Chapter 6, we have provided evidence that TTP

can be implemented for a full-featured programming language. We have shown

106

that the implementation effort required is reasonable by reusing substantial amounts

of existing programming language implementation, and that it is feasible to work

around missing information in execution recordings through moderate adaption ef-

fort of the post-hoc code.

TTP is flexible: Chapter 4 examined the concepts behind TTP in the context

of a simple core language, and demonstrates how they interact with fundamental

programming language concepts. This provides evidence that TTP is applicable

to many programming languages that are built on these concepts. Orthogonally,

by evaluating our prototype TTP implementation against three different sources of

execution state (JVM heap dumps, execution traces and DR processes), we have

demonstrated that the execution recording mechanism may vary independently

from the TTP implementation for a particular programming language.

7.2 Limitations
Incomplete implementation of AspectJ: The reflective AspectJ weaver does not

yet support the complete AspectJ language, although supporting the evaluation

required a much more complete implementation that initially anticipated. Most

omissions are from a lack of need for evaluation rather than any architectural ob-

stacles.

Lack of core class weaving in ajc: For the most part the reflective AspectJ

weaver supports join points that occur in the code of all classes, but the ajc toolset

assumes an implementation based on bytecode rewriting and hence excludes some

packages1 from weaving. This artificially restricts valid aspects: advice on core

methods only produce a compile warning, but intertype definitions on core classes

produce compile errors even if load-time weaving is targeted. This means it is not

possible to use ajc to produce the binary form (see Section 2.5) used by retroactive

weaving of some valid retroactive aspects, which means developers must avoid

AspectJ features that would otherwise provide the most elegant expression of their

analysis.

1java.*, javax.*, sun.reflect.*, and org.aspectj.*. The latter package is ex-
cluded to avoid infinite recursion if the classes involved in the weaving implementation itself are
woven.

107

7.3 Threats to Validity
Reflection may introduce unsound results: It is possible for the rich reflection

interface in AspectJ to observe changes to type definitions or control flow, and this

potential source of retroactive side-effects is not currently guarded against by the

holographic JVM. This is unlikely to be a serious concern since the AspectJ lan-

guage does not specify precisely how weaving affects these features of the runtime.

For example, weaving often introduces extra stack frames between the caller and

callee frames, and the exact nature of these changes depends on internal optimiza-

tion decisions. Therefore, any code that depends on this data would be extremely

fragile.

Double weaving of joint points in aspects: When ajc compiles aspects into

their binary class form, it also applies compile-time weaving to the join points in

those aspects. When such aspects are then loaded and woven by the reflective

weaver against all events that occur in the runtime, advice may be applied twice

to those join points. For the case studies in this thesis the only advice that applies

to other advice code involves cflow tracking, whose application happens to be

idempotent and hence does not affect execution semantics. Unfortunately, ajc

does not expose any options for separating weaving from compiling, although it

would be a relatively small change to support this in the tool’s architecture.

Lack of generalization to other language implementations: The abstract

concepts defined by TTP theoretically apply to any programming language. The

general model described in Section 4.5 for retroactive weaving, for example, can

theoretically be applied to many AOP languages, and provides a definition of

the semantics of a retroactive weaver for any such language. However, the ac-

tual implementation techniques presented here may not be applicable for other

AOP language runtimes, in particular for fundamentally different joinpoint models.

The fact that our implementations overlapped significantly with existing language

implementations is promising, but is no guarantee that other languages runtimes

would be equally compatible with the TTP paradigm.

108

7.4 Future Work
Although we have shown that the implementation of our architecture is performant

enough to be useful, there is still plenty of room for optimization that would greatly

improve the scope of scenarios these techniques are feasible for. An important di-

rection to pursue is to improve the bytecode loading and translating workflow in

the holographic JVM implementation. Ideally, it should be possible to produce

hologram bytecode once for each version of a class as it is developed, rather than

repeatedly for each heap dump it occurs in. The translation process cannot cur-

rently be applied to a single class file in isolation, however, as the standard JVM

bytecode type inferencing algorithm requires access to the context of the class

hierarchy. Additional engineering effort should make it possible to remove this de-

pendency, possibly by abstracting the type inferencing to leave placeholder types

and replacing them with actual types only after caching the translated bytecode.

With regard to inferring class initialization state in the holographic JVM, Kozen

and Stillerman [35] use a static analysis of class initializers similar to ours to ini-

tialize classes eagerly, in order to improve startup performance and catch errors

earlier. Their algorithm ignores initializer effects with respect to static fields, but

is flow-sensitive and hence calculates a more precise definition of initialization

dependencies than our current implementation. Integrating their approach in the

future may improve the success rate of our algorithm and hence reduce the number

of initializers that must be marked safely repeatable.

It should be possible to apply the general model defined in Section 4.5 to AOP

languages beyond those based on pointcuts and advice, such as crosscutting con-

tracts as in AspectJML [57]. There are also several more radical paths other than

retroactive weaving to explore in the intersection of AOP and execution record-

ings. It could be useful to expose future knowledge about the original execution

through specialized pointcuts valid only in retroactive weaving; a garbage(x)

pointcut, for example, that only matches join points where x is an object value that

is garbage collectable at the end of execution. Such pointcuts would need to be de-

signed carefully to only bind and clone immutable, self-contained values from the

future environment, since retroactive execution of advice bodies cannot sensibly

proceed in the context of more than one environment at once.

109

Similarly, given that execution recordings are often very large, it is intrigu-

ing to consider how time-travel programming can be parallelized without entirely

losing the benefits of source code compatibility. For example, the workload of ap-

plying toString to every object in a heap dump as described in Section 5.3.2

could be parallelized by splitting the set of objects into multiple subsets, under

the assumption that the effects of invoking toString on some objects do not

affect the results of others. The portability of execution recordings and of holo-

graphic JVMs means that all state can be safely replicated in a distributed farm.

Retroactive weaving of certain stateless or mostly stateless aspects could then be

parallelized by partitioning the timeline of execution.

Finally, this work to date has focussed exclusively on analyzing a single pro-

cess at once, but computer systems are becoming increasingly multi-process and

distributed. The scope of time-travel programming as a concept could easily be ex-

tended to evaluate additional code in the context of multiple independently recorded

processes. This could be applied very naturally to actor-based systems, where

retroactive aspects in the applicable AOP language could create additional actors

themselves in order to communicate analysis data across processes, again restoring

the advantages of a programming paradigm even when that programming happens

after the fact.

110

Bibliography

[1] Clozure cl documentation - 4.9. saving applications. URL
http://ccl.clozure.com/manual/chapter4.9.html#Saving-Applications.
Accessed October 2013. → pages 79

[2] The AspectJ programming guide. URL
https://eclipse.org/aspectj/doc/released/progguide/index.html. Accessed
May 2017. → pages 14

[3] Eclipse memory analyzer open source project. URL
http://www.eclipse.org/mat/. Accessed October 2013. → pages 20

[4] VAssert programming guide, 2008. URL
https://www.vmware.com/pdf/ws65 vassert programming.pdf. Accessed
June 2011. → pages 24, 28

[5] B. Alpern, S. Augart, S. Blackburn, M. Butrico, A. Cocchi, P. Cheng,
J. Dolby, S. Fink, D. Grove, M. Hind, et al. The jikes research virtual
machine project: building an open-source research community. IBM Systems
Journal, 44(2):399–417, 2005. → pages 79

[6] D. Ansaloni, W. Binder, A. Villazón, and P. Moret. Parallel dynamic
analysis on multicores with aspect-oriented programming. In Proceedings of
the 9th International Conference on Aspect-Oriented Software Development,
AOSD ’10, pages 1–12, New York, NY, USA, 2010. ACM. → pages 96, 104

[7] M. Attariyan, M. Chow, and J. Flinn. X-ray: Automating root-cause
diagnosis of performance anomalies in production software. In Proceedings
of the 10th USENIX Conference on Operating Systems Design and
Implementation, OSDI’12, pages 307–320. USENIX Association, 2012. →
pages 26

[8] T. Austin, T. Disney, and C. Flanagan. Virtual values for language extension.
In Proceedings of the 2011 ACM international conference on Object

111

http://ccl.clozure.com/manual/chapter4.9.html#Saving-Applications
https://eclipse.org/aspectj/doc/released/progguide/index.html
http://www.eclipse.org/mat/
https://www.vmware.com/pdf/ws65_vassert_programming.pdf

oriented programming systems languages and applications, pages 921–938.
ACM, 2011. → pages 78

[9] J. Baker and W. Hsieh. Runtime Aspect Weaving Through
Metaprogramming. In Proceedings of the 1st International Conference on
Aspect-oriented Software Development, AOSD ’02, pages 86–95, New York,
NY, USA, 2002. ACM. → pages 16

[10] S. Balzer, P. T. Eugster, and B. Meyer. Can Aspects Implement Contracts?
In N. Guelfi and A. Savidis, editors, Rapid Integration of Software
Engineering Techniques, number 3943 in Lecture Notes in Computer
Science, pages 145–157. Springer Berlin Heidelberg, 2006. → pages 93

[11] F. Bellard. QEMU, a fast and portable dynamic translator. In USENIX
Annual Technical Conference, 2005. → pages 32

[12] E. Bodden and K. Havelund. Racer: effective race detection using aspectj.
In Proceedings of the 2008 international symposium on Software testing and
analysis, ISSTA ’08, pages 155–166, New York, NY, USA, 2008. ACM.
ACM ID: 1390650. → pages 25, 96

[13] G. Bracha and D. Ungar. Mirrors: design principles for meta-level facilities
of object-oriented programming languages. In Proceedings of the 19th
annual ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, OOPSLA ’04, pages 331–344. ACM,
2004. → pages 59, 79

[14] E. Bruneton, R. Lenglet, and T. Coupaye. ASM: a code manipulation tool to
implement adaptable systems. In Adaptable and extensible component
systems, 2002. → pages 64

[15] C. Cadar, D. Dunbar, and D. Engler. Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs. In
Proceedings of the 8th USENIX Conference on Operating Systems Design
and Implementation, OSDI’08, pages 209–224, Berkeley, CA, USA, 2008.
USENIX Association. → pages 68

[16] K. Chen and J.-B. Chen. Aspect-Based Instrumentation for Locating
Memory Leaks in Java Programs. In Computer Software and Applications
Conference, 2007. COMPSAC 2007. 31st Annual International, volume 2,
pages 23–28, July 2007. → pages 97

112

[17] J. Choi and B. Alpern. DejaVu: Deterministic Java Replay Debugger for
Jalapeno Java Virtual Machine. OOPSLA 2000 Companion, 2000. → pages
26

[18] J. D. Choi, B. Alpern, T. Ngo, M. Sridharan, and J. Vlissides. A
perturbation-free replay platform for cross-optimized multithreaded
applications. In Parallel and Distributed Processing Symposium.,
Proceedings 15th International, 2001. → pages 2

[19] J. Chow, T. Garfinkel, and P. M. Chen. Decoupling dynamic program
analysis from execution in virtual environments. In USENIX Annual
Technical Conference, 2008. → pages 35

[20] J. Cook and A. Nusayr. Using AOP for Detailed Runtime Monitoring
Instrumentation. In WODA 2008: the sixth international workshop on
dynamic analysis. → pages 25

[21] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In
Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, POPL ’77, pages 238–252. ACM, 1977. → pages
70

[22] D. S. Dantas and D. Walker. Harmless advice. In Conference record of the
33rd ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, POPL ’06, pages 383–396, New York, NY, USA, 2006. ACM.
→ pages 17

[23] B. De Fraine, E. Ernst, and M. Südholt. Essential AOP: The A Calculus. In
ECOOP 2010 - Object-Oriented Programming, volume 6183 of Lecture
Notes in Computer Science, pages 101–125. Springer Berlin Heidelberg,
2010. → pages 53

[24] D. Devecsery, M. Chow, X. Dou, J. Flinn, and P. M. Chen. Eidetic systems.
In Proceedings of the 11th USENIX Conference on Operating Systems
Design and Implementation, OSDI’14, pages 525–540. USENIX
Association, 2014. → pages 18, 26

[25] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M. Chen. ReVirt:
enabling intrusion analysis through virtual-machine logging and replay.
Operating Systems Design and Implementation, 2002. → pages 18, 34, 35

113

[26] C. Dutchyn, D. B. Tucker, and S. Krishnamurthi. Semantics and scoping of
aspects in higher-order languages. Science of Computer Programming, 63
(3), Dec. 2006. ISSN 0167-6423. → pages 16, 40, 53

[27] M. Factor, A. Schuster, and K. Shagin. Instrumentation of standard libraries
in object-oriented languages: the twin class hierarchy approach. In
Proceedings of the 19th annual ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications,
OOPSLA ’04, page 288300. ACM, 2004. → pages 65

[28] S. F. Goldsmith, R. O’Callahan, and A. Aiken. Relational queries over
program traces. In Object-Oriented Programming, Systems, Languages, and
Applications, page 402, 2005. → pages 24, 103

[29] O. Gruber, B. Hargrave, J. McAffer, P. Rapicault, and T. Watson. The
eclipse 3.0 platform: adopting osgi technology. IBM Systems Journal, 44(2):
289–299, 2005. → pages 22

[30] E. Hilsdale and J. Hugunin. Advice Weaving in AspectJ. In Proceedings of
the 3rd International Conference on Aspect-oriented Software Development,
AOSD ’04, pages 26–35, New York, NY, USA, 2004. ACM. → pages 15

[31] J. Huang, P. Liu, and C. Zhang. LEAP: lightweight deterministic
multi-processor replay of concurrent java programs. In Proceedings of the
eighteenth ACM SIGSOFT international symposium on Foundations of
software engineering, pages 207–216, 2010. → pages 18, 91

[32] A. Joshi, S. T. King, G. W. Dunlap, and P. M. Chen. Detecting past and
present intrusions through vulnerability-specific predicates. In Proceedings
of the twentieth ACM symposium on Operating systems principles, SOSP
’05, pages 91–104, New York, NY, USA, 2005. ACM. → pages 28

[33] G. Kiczales and J. D. Rivieres. The Art of the Metaobject Protocol. MIT
Press, Cambridge, MA, USA, 1991. ISBN 0262111586. → pages 10

[34] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold. An overview of AspectJ. In Proceedings of the 15th European
Conference on Object-Oriented Programming, ECOOP ’01, pages 327–353,
London, UK, UK, 2001. Springer-Verlag. → pages 40

[35] D. Kozen and M. Stillerman. Eager class initialization for java. In
Proceedings of the 7th International Symposium on Formal Techniques in
Real-Time and Fault-Tolerant Systems: Co-sponsored by IFIP WG 2.2,
FTRTFT ’02, pages 71–80. Springer-Verlag, 2002. → pages 80, 109

114

[36] S. Krishnamurthi. Programming Languages: Application and Interpretation.
2007. URL http://www.plai.org. Accessed March 2015. → pages 38

[37] G. Lefebvre, B. Cully, M. J. Feeley, N. C. Hutchinson, and A. Warfield.
Tralfamadore: unifying source code and execution experience. In EuroSys,
2009. → pages 32

[38] B. Lewis. Debugging backwards in time. In Automated and Analysis-Driven
Debugging, 2003. → pages 18

[39] K. J. Lieberherr and D. Orleans. Preventive program maintenance in
Demeter/Java (research demonstration). In International Conference on
Software Engineering, pages 604–605, Boston, MA, 1997. ACM Press. →
pages 45

[40] D. H. Lorenz and J. Vlissides. Pluggable reflection: decoupling
meta-interface and implementation. In 25th International Conference on
Software Engineering, 2003. Proceedings, pages 3– 13. IEEE, May 2003. →
pages 79

[41] C. K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. J. Reddi, and K. Hazelwood. Pin: Building customized program analysis
tools with dynamic instrumentation. In Programming Language Design and
Implementation, 2005. → pages 24

[42] M. Martin, B. Livshits, and M. S. Lam. Finding application errors and
security flaws using PQL: a program query language. Object-Oriented
Programming, Systems, Languages and Applications, 2005. → pages 104

[43] H. Masuhara and G. Kiczales. Modeling crosscutting in aspect-oriented
mechanisms. In ECOOP 2003 - Object-Oriented Programming, volume
2743 of Lecture Notes in Computer Science, pages 2–28. Springer Berlin
Heidelberg, 2003. → pages 13, 45

[44] E. K. Maxwell, G. Back, and N. Ramakrishnan. Diagnosing memory leaks
using graph mining on heap dumps. In Proceedings of the 16th ACM
SIGKDD international conference on Knowledge discovery and data
mining, KDD ’10, pages 115–124. ACM, 2010. → pages 80

[45] B. Meyer. Applying ’design by contract’. Computer, 25(10):40–51, Oct.
1992. → pages 93

115

http://www.plai.org

[46] S. Mostinckx, T. Van Cutsem, S. Timbermont, and E. Tanter. Mirages:
Behavioral intercession in a mirror-based architecture. In Proceedings of the
2007 symposium on Dynamic languages, pages 89–100. ACM, 2007. →
pages 78

[47] G. Necula, S. McPeak, S. Rahul, and W. Weimer. CIL: intermediate
language and tools for analysis and transformation of c programs. In
Compiler Construction. 2002. → pages 29

[48] T. Ngo and J. Barton. Debugging by remote reflection. In Euro-Par 2000
Parallel Processing, pages 1031–1038, 2000. → pages 26

[49] E. B. Nightingale, D. Peek, P. M. Chen, and J. Flinn. Parallelizing security
checks on commodity hardware. In Architectural Support for Programming
Languages and Operating Systems, 2008. → pages 2, 26

[50] Oracle. Java platform debugger architecture. URL
http://docs.oracle.com/javase/7/docs/technotes/guides/jpda/index.html.
Accessed October 2013. → pages 59

[51] A. Orso and B. Kennedy. Selective capture and replay of program
executions. In ACM SIGSOFT Software Engineering Notes, volume 30,
pages 1–7, New York, NY, USA, May 2005. ACM. ACM ID: 1083251. →
pages 2

[52] D. J. Pearce, M. Webster, R. Berry, and P. H. J. Kelly. Profiling with AspectJ.
Software: Practice and Experience, 37(7):747–777, 2007. → pages 98

[53] K. Y. Phang, J. S. Foster, and M. Hicks. EXPOSITOR: Scriptable
Time-Travel Debugging with First Class Traces. In Proceedings of the 2013
International Conference on Software Engineering, 2013. → pages 104

[54] A. Popovici, G. Alonso, and T. Gross. Just-in-time aspects: efficient
dynamic weaving for java. In Aspect-Oriented Software Development, 2003.
→ pages 16

[55] G. Pothier and E. Tanter. Summarized trace indexing and querying for
scalable back-in-time debugging. In Proceedings of the 25th European
Conference on Object-oriented Programming, ECOOP’11, pages 558–582,
Berlin, Heidelberg, 2011. Springer-Verlag. → pages 18, 47, 89

[56] G. Pothier, É. Tanter, and J. Piquer. Scalable omniscient debugging. ACM
SIGPLAN Notices, 42(10), 2007. → pages 18, 89, 90

116

http://docs.oracle.com/javase/7/docs/technotes/guides/jpda/index.html

[57] H. Rebêlo, G. T. Leavens, M. Bagherzadeh, H. Rajan, R. Lima, D. M.
Zimmerman, M. Cornélio, and T. Thüm. AspectJML: Modular specification
and runtime checking for crosscutting contracts. In Proceedings of the 13th
International Conference on Modularity, MODULARITY ’14, pages
157–168, New York, NY, USA, 2014. ACM. → pages 93, 109

[58] J. A. Robinson. A machine-oriented logic based on the resolution principle.
J. ACM, 12(1):23–41, Jan. 1965. ISSN 0004-5411. → pages 30

[59] R. Salkeld and R. Garcia. Essential Retroactive Weaving. In Companion
Proceedings of the 14th International Conference on Modularity,
MODULARITY Companion 2015, pages 52–57, New York, NY, USA,
2015. ACM. → pages v

[60] R. Salkeld and G. Kiczales. Interacting with dead objects. In Proceedings of
the 2013 ACM SIGPLAN International Conference on Object Oriented
Programming Systems Languages and Applications, OOPSLA ’13, pages
203–216, New York, NY, USA, 2013. ACM. → pages v, 49

[61] R. Salkeld, W. Xu, B. Cully, G. Lefebvre, A. Warfield, and G. Kiczales.
Retroactive aspects: Programming in the past. In Proceedings of the Ninth
International Workshop on Dynamic Analysis, WODA ’11, pages 29–34,
New York, NY, USA, 2011. ACM. → pages v

[62] V. Schuppan, M. Baur, and A. Biere. JVM independent replay in java.
Electronic Notes in Theoretical Computer Science, 113:85–104, Jan. 2005.
→ pages 2

[63] M. X. Sheldon, G. V. Weissman, and V. M. Inc. Retrace: Collecting
execution trace with virtual machine deterministic replay. In Modeling,
Benchmarking and Simulation, 2007. → pages 2, 35

[64] B. C. Smith. Reflection and semantics in lisp. In Proceedings of the 11th
ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, POPL ’84, pages 23–35, New York, NY, USA, 1984. ACM. →
pages 10

[65] A. Srivastava and A. Eustace. ATOM: a system for building customized
program analysis tools. In Proceedings of the ACM SIGPLAN 1994
conference on Programming language design and implementation, pages
196–205, Orlando, Florida, United States, 1994. ACM. → pages 24

117

[66] A. Villazón, W. Binder, and P. Moret. Aspect Weaving in Standard Java
Class Libraries. In Proceedings of the 6th International Symposium on
Principles and Practice of Programming in Java, PPPJ ’08, pages 159–167,
New York, NY, USA, 2008. ACM. → pages 97, 98, 102

[67] G. Xu, A. Rountev, Y. Tang, and F. Qin. Efficient checkpointing of java
software using context-sensitive capture and replay. In Proceedings of the
the 6th joint meeting of the European software engineering conference and
the ACM SIGSOFT symposium on The foundations of software engineering,
ESEC-FSE ’07, pages 85–94. ACM, 2007. → pages 79

[68] Z. Yang, M. Yang, L. Xu, H. Chen, and B. Zang. ORDER: object centric
deterministic replay for java. In Proceedings of the 2011 USENIX
conference on USENIX annual technical conference, USENIXATC’11, page
3030. USENIX Association, 2011. → pages 18

118

Appendix A

Appendices

A.1 Illegal Native Methods in the JRE
This appendix contains our classification of all illegal native methods in the JRE.

See Table A.1 for the complete list.

119

Category Class Method

Core Class Initialization

* registerNatives

java.lang.System initProperties

java.util.concurrent.atomic.AtomicLong VMSupportsCS8

sun.misc.VM initialize

Drivers
sun.print.* *

sun.security.smartcardio.* *

GUI

apple.laf.* *

com.apple.eawt.* *

com.apple.laf.* *

com.sun.java.swing.plaf.gtk.* *

java.awt.*, sun.awt.* *

sun.lwawt.* *

Graphics

com.sun.imageio.plugins.jpeg.* *

sun.dc.pr.* *

sun.font.* *

sun.java2d.* *

120

Category Class Method

IO

com.apple.eio.* *

com.sun.java.util.jar.pack.NativeUnpack *

java.io.*, java.nio.*, sun.nio.* *

java.util.logging.FileHandler *

java.util.prefs.* *

sun.misc.MessageUtils *

JIT Compilation java.lang.Compiler *

Java 7 Method Handles java.lang.invoke.* *

Management

com.sun.demo.jvmti.hprof.* *

oracle.jrockit.jfr.* *

sun.management.* *

sun.misc.Perf *

sun.tracing.dtrace.JVM *

Media com.sun.media.sound.* *

Native Libraries
java.lang.ClassLoader$NativeLibrary *

java.lang.System mapLibraryName

Network

java.net.*, sun.net.* *

sun.rmi.* *

Security apple.security.*, sun.security.* *

121

Category Class Method

Shared superclass
java.lang.Object *

java.lang.Throwable *

System

apple.applescript.* *

apple.launcher.* *

com.apple.concurrent.* *

com.apple.jobjc.* *

com.apple.resources.LoadNativeBundleAction *

com.sun.management.* *

java.lang.ProcessEnvironment environ

java.lang.Runtime *

java.lang.UNIXProcess *

java.util.TimeZone *

sun.misc.GC *

sun.misc.NativeSignalHandler *

sun.misc.Signal *

Table A.1: Categorization of forbidden methods in the Java Runtime Environment

122

A.2 Illegal Side-effects in AspectJ Case Studies
This appendix contains the complete list of illegal side-effects encountered in the

control flow of the retroactive aspects evaluated in Chapter 6. Table A.2 summa-

rizes the state that the execution the aspects attempted to modify, and how these

effects were elided with either additional aspects or (in the case of effects en-

countered when booting the holographic JVM) low-level metaprogramming. The

second column indicates whether the side-effects occurred when loading aspects

themselves, making it necessary to implement the strategy using metaprogram-

ming instead. The strategies named in the third column are as follows:

Skip method: Simply removing invocations of methods that are not necessary

for correctness.

Avoiding cache: Eliding the side-effect, nullifying the effect of the relevant

caching.

Secondary cache: Duplicating the referenced storage so that retroactive exe-

cution reads and writes independently but equivalently.

Secondary counter: Duplicating a numerical counter that is incremented to

generate distinct values. This strategy is valid as long as overlapping retroactive

values with original values does not interfere with soundness.

Augmenting collection: Allocating a secondary collection of values that se-

mantically augments the original and advising interactions with that collection to

maintain consistency, as illustrated in Figure 6.3.

Secondary I/O: Replacing standard output streams with independent streams

that can be explicitly accessed by TTP clients.

Reduced concurrency: A specific case during class loading to avoid updating

storage that tracks locks per class, wherein the class loader itself is synchronized

on instead. This leads to decreased concurrency in retroactive weaving but does

not interfere with correctness.

123

Table A.2: Illegal side-effects encountered by case studies

State Bootstrap Strategy

java.io.UnixFileSystem.cache y Secondary cache
java.io.UnixFileSystem.javaHomePrefixCache y Secondary cache
java.lang.ApplicationShutdownHooks.hooks Augmented collection
java.lang.Class.declaredFields y Secondary cache
java.lang.ClassLoader.getClassLoadingLock y Reduced concurrency
java.lang.String.hash y Avoided cache
java.lang.System.stdout Secondary I/O
java.lang.System.stderr Secondary I/O
java.lang.Thread.threadInitNumber y Secondary counter
java.lang.Thread.threadSeqNumber y Secondary counter
java.lang.ThreadLocal.nextHashCode y Secondary counter
java.lang.ThreadLocal values y Augmented collection
java.net.URLClassLoader.closeables y Augmented collection
java.nio.charset.Charset.cache1 y Secondary cache
java.nio.charset.Charset.cache2 y Secondary cache
java.util.zip.ZipCoder.dec y Secondary cache
java.util.zip.ZipCoder.enc y Secondary cache
sun.reflect.NativeConstructorAccessorImpl.numInvocations y Secondary counter
sun.misc.Hashing.randomHashSeed y Secondary counter
sun.misc.MetaIndex.registerDirectory y Skip method
sun.nio.cs.ThreadLocalCoders$Cache.cache y Secondary cache

124

A.3 RAPL Interpreter Source Code
This appendix contains the complete source code for the RAPL interpreter de-

scribed in Chapter 4.

125

Listing A.1: Complete RAPL interpreter source code
1 #lang plai

2
3 (require "rapl.rkt")

4 (require "rapl_parser.rkt")

5 (require "rapl_serialization.rkt")

6
7 ;;

8 ;; Rapl interpreter

9 ;;

10
11 (define-type Value

12 (numV (n number?))

13 (boolV (b boolean?))

14 (symbolV (s symbol?))

15 (closV (params (listof symbol?)) (body ExprC?) (env Env?))

16 (boxV (l Location?))

17 (voidV)

18 (taggedV (tag Value?) (value Value?))

19 (traceValueV (v Value?))

20 (resumeV (label string?) (pos number?)))

21
22 (define-type Binding

23 [bind (name symbol?) (value Value?)])

24 (define Location? number?)

25 (define Env? (listof Binding?))

26 (define mt-env empty)

27
28 (define-type Storage

29 [cell (location Location?) (val Value?)])

126

30 (define Store? (listof Storage?))

31 (define mt-store empty)

32
33 (define-type Advice

34 [aroundappsA (advice Value?)])

35 (define AdvStack? (listof Advice?))

36 (define mt-adv empty)

37
38 (define-type Control

39 [interp-init]

40 [app-call (abs Value?) (args (listof Value?))]

41 [app-result (r Value?)])

42
43 (define-type State

44 [state (c Control?) (adv AdvStack?) (sto Store?) (tin TraceIn?)])

45
46 (define-type TraceOut

47 [traceout (states (listof State?))])

48 (define mt-traceout (traceout empty))

49
50 (define/contract (append-traceout . ts) (->* () () #:rest (listof TraceOut?) TraceOut?)

51 (traceout (foldl append '() (map traceout-states (reverse ts)))))

52
53 (define-type TraceIn

54 [tracein (states (listof State?))])

55 (define mt-tracein (tracein empty))

56
57 (define/contract (trace-state tin) (-> TraceIn? State?)

58 (first (tracein-states tin)))

59
60 (define/contract (next-trace-state tin) (-> TraceIn? TraceIn?)

127

61 (tracein (rest (tracein-states tin))))

62
63 (define-type Result

64 [v*s*t*t (v Value?) (s Store?) (tin TraceIn?) (tout TraceOut?)])

65
66 ;; Numbers and arithmetic

67
68 (define (num+ l r)

69 (cond

70 [(and (numV? l) (numV? r))

71 (numV (+ (numV-n l) (numV-n r)))]

72 [else

73 (error 'num+ "one argument was not a number")]))

74
75 (define (num* l r)

76 (cond

77 [(and (numV? l) (numV? r))

78 (numV (* (numV-n l) (numV-n r)))]

79 [else

80 (error 'num* "one argument was not a number")]))

81
82 (define (numWrite v)

83 (cond

84 [(numV? v)

85 (write (numV-n v))]

86 [else

87 (error 'numWrite "argument was not a number")]))

88
89 ;; Booleans and conditionals

90
91 (define/contract (deep-untag v) (-> Value? Value?)

128

92 (type-case Value v

93 [taggedV (tag tagged)

94 (deep-untag tagged)]

95 [else v]))

96
97 (define/contract (equal-values l r) (-> Value? Value? boolean?)

98 (equal? l r))

99
100 ;; Identifiers and functions

101
102 (define/contract (lookup for env) (-> symbol? Env? Value?)

103 (cond

104 [(empty? env) (error 'lookup (string-append "name not found: " (symbol->string for)))]

105 [else

106 (type-case Binding (first env)

107 [bind (name value)

108 (cond

109 [(symbol=? for name) value]

110 [else (lookup for (rest env))])])]))

111
112 (define/contract (apply f args adv sto tin) (-> Value? (listof Value?) AdvStack? Store? TraceIn? Result?)

113 (type-case Value (deep-untag f)

114 [closV (params body env)

115 (let ([bs (map bind params args)])

116 (interp body (append bs env) adv sto tin))]

117 [resumeV (label pos)

118 (if (unbox retroactive-error-checking)

119 (rw-call pos args adv sto tin)

120 (rw-call-no-error args adv sto tin))]

121 [traceValueV (tf)

122 (apply (lift-trace-value tf) args adv sto tin)]

129

123 [else (error (string-append "only functions can be applied: " (value->string f)))]))

124
125 (define z-combinator

126 (parse-string "(lambda (f) ((lambda (x) (f (lambda (y) ((x x) y))))

127 (lambda (x) (f (lambda (y) ((x x) y))))))"))

128
129 ;; Mutations and side-effects

130
131 (define/contract (storage-at storage loc) (-> (listof Storage?) Location? (or/c Storage? #f))

132 (cond

133 [(empty? storage) #f]

134 [else

135 (let ([s (first storage)])

136 (type-case Storage s

137 [cell (l val)

138 (cond

139 [(= loc l) s]

140 [else (storage-at (rest storage) loc)])]))]))

141
142 (define/contract (fetch sto tin b) (-> Store? TraceIn? Value? Value?)

143 (type-case Value (deep-untag b)

144 [boxV (loc)

145 (let ([storage (storage-at sto loc)])

146 (if storage

147 (type-case Storage storage

148 [cell (l val) val])

149 (error "location not found")))]

150 [traceValueV (v)

151 (type-case State (trace-state tin)

152 [state (c adv sto-t tin-t)

153 (fetch sto-t tin-t v)])]

130

154 [else (error "attempt to unbox a non-box")]))

155
156 (define/contract (new-loc sto) (-> Store? Location?)

157 (length sto))

158
159 (define override-store cons)

160
161 (define (list-box-push! b x)

162 (set-box! b (cons x (unbox b))))

163 (define (list-box-pop! b)

164 (let* ([next (first (unbox b))]

165 [_ (set-box! b (rest (unbox b)))])

166 next))

167
168 (define read-source (box (lambda (prompt)

169 (display prompt)

170 (display "> ")

171 (string->number (read-line)))))

172 (define write-sink (box (lambda (s) (begin (display s) (newline)))))

173
174 ;; Lifting trace values

175
176 (define/contract (lift-binding b) (-> Binding? Binding?)

177 (type-case Binding b

178 [bind (name value)

179 (bind name (lift-trace-value value))]))

180
181 (define/contract (lift-trace-value v) (-> Value? Value?)

182 (type-case Value v

183 [numV (_) v]

184 [boolV (_) v]

131

185 [symbolV (_) v]

186 [closV (params body env)

187 (closV params body (map lift-binding env))]

188 [boxV (l) (traceValueV v)]

189 [traceValueV (tv) (traceValueV v)]

190 [voidV () v]

191 [taggedV (tag tagged)

192 (taggedV (lift-trace-value tag) (lift-trace-value tagged))]

193 [resumeV (label pos) v]))

194
195 (define/contract (prepend-trace t r) (-> TraceOut? Result? Result?)

196 (type-case Result r

197 [v*s*t*t (v-r s-r tin-r tout-r)

198 (v*s*t*t v-r s-r tin-r (append-traceout t tout-r))]))

199
200 ;; Advice

201
202 (define/contract (apply-with-weaving f args adv adv2 sto tin) (-> Value? (listof Value?) AdvStack?

AdvStack? Store? TraceIn? Result?)

203 (type-case Result (weave adv adv2 f sto tin)

204 (v*s*t*t (woven-f s-w tin-w tout-w)

205 (type-case Result (apply woven-f args adv2 s-w tin-w)

206 (v*s*t*t (r s-r tin-r tout-r)

207 (let ([call-state (state (app-call f args) adv sto tin)]

208 [return-state (state (app-result r) adv s-r tin-r)])

209 (v*s*t*t r s-r tin-r (append-traceout (traceout (list call-state))

210 tout-w

211 tout-r

212 (traceout (list return-state))))))))))

213
214 ; Applies all advice in scope for all tags on f

132

215 (define/contract (weave adv adv2 f sto tin) (-> AdvStack? AdvStack? Value? Store? TraceIn? Result?)

216 (type-case Value f

217 [taggedV (tag tagged)

218 (type-case Result (weave adv adv2 tagged sto tin)

219 [v*s*t*t (v-w s-w tin-w tout-w)

220 (prepend-trace tout-w (weave-for-tag adv adv2 tag v-w s-w tin-w))])]

221 [else (v*s*t*t f sto tin mt-traceout)]))

222
223 ; Applies all advice in scope for a single tag on f

224 (define/contract (weave-for-tag adv adv2 tag f sto tin) (-> AdvStack? AdvStack? Value? Value? Store?

TraceIn? Result?)

225 (if (empty? adv)

226 (v*s*t*t f sto tin mt-traceout)

227 (type-case Result (weave-advice adv2 tag (first adv) f sto tin)

228 [v*s*t*t (v-w s-w tin-w tout-w)

229 (prepend-trace tout-w (weave-for-tag (rest adv) adv2 tag v-w s-w tin-w))])))

230
231 ; Apply a single advice function to f

232 (define/contract (weave-advice adv tag advice f sto tin) (-> AdvStack? Value? Advice? Value? Store?

TraceIn? Result?)

233 (type-case Advice advice

234 [aroundappsA (g)

235 (apply g (list tag f) adv sto tin)]))

236
237 ;; Debugging

238
239 (define/contract (display-value v out) (-> Value? output-port? void?)

240 (type-case Value v

241 [numV (n) (display n out)]

242 [boolV (b) (display b out)]

243 [symbolV (s) (write s out)]

133

244 [closV (params body env)

245 (begin (display params out) (display " -> " out) (display (exp-syntax body) out) (newline

out) (display-env env out))]

246 [boxV (l)

247 (begin (display "box(" out) (display l out) (display ")" out))]

248 [traceValueV (v)

249 (begin (display "tracevalue(" out) (display-value v out) (display ")" out))]

250 [voidV ()

251 (display "(void)" out)]

252 [taggedV (t v)

253 (begin (display "(tag " out) (display-value t out) (display " " out) (display-value v out)

(display ")" out))]

254 [resumeV (label f) (display label out)]))

255
256 (define/contract (value->string v) (-> Value? string?)

257 (letrec ([out (open-output-string)]

258 [_ (display-value v out)])

259 (get-output-string out)))

260
261 (define/contract (display-context env sto t out) (-> Env? Store? TraceIn? output-port? void?)

262 (begin (display "=======================================\n" out)

263 (display "Environment: \n" out)

264 (display-env env out)

265 (display "Store: \n" out)

266 (display-store sto out)

267 (if (empty? (tracein-states t))

268 (void)

269 (begin (display "Trace Store: \n" out)

270 (display-store (state-sto (trace-state t)) out)))))

271
272 (define/contract (display-env env out) (-> Env? output-port? void?)

134

273 (for ([def env])

274 (type-case Binding def

275 [bind (n v)

276 (begin (display "\t\t" out) (display n out) (display " -> " out) (display-value v out)

(display "\n" out))])))

277
278 (define/contract (display-store sto out) (-> Store? output-port? void?)

279 (for ([c sto])

280 (type-case Storage c

281 [cell (l v)

282 (begin (display "\t" out) (display l out) (display " -> " out) (display-value v out)

(display "\n" out))])))

283
284 (define/contract (display-state s out) (-> State? output-port? void?)

285 (type-case State s

286 [state (c adv sto tin)

287 (type-case Control c

288 [interp-init ()

289 (begin (display "(interp-init)" out))]

290 [app-call (f args)

291 (begin (display "(app-call " out) (display-value f out) (display ")" out))]

292 [app-result (result)

293 (begin (display "(app-return " out) (display-value result out) (display ")"

out))])]))

294
295 (define/contract (display-advice a out) (-> Advice? output-port? void?)

296 (display-value (aroundappsA-advice a) out))

297
298 (define/contract (display-advice-stack adv out) (-> AdvStack? output-port? void?)

299 (begin (display "[" out) (display "\n" out)

300 (map (lambda (a) (begin (display " " out) (display-advice a out) (display "," out) (display

135

"\n" out))) adv)

301 (display "]")))

302
303 (define/contract (display-with-label label val out) (-> string? Value? output-port? void?)

304 (begin (display label out) (display ": " out) (display-value val out) (newline out)))

305
306 ;; Main interpretation function

307
308 (define verbose-interp (box false))

309 (define retroactive-error-checking (box true))

310
311 (define/contract (interp expr env adv sto tin) (-> ExprC? Env? AdvStack? Store? TraceIn? Result?)

312 (begin

313 (if (unbox verbose-interp)

314 (begin

315 (display "Expression: ") (display (exp-syntax expr)) (newline)

316 (display-context env sto tin (current-output-port))

317 (newline))

318 '())

319
320 (type-case ExprC expr

321
322 ;; Numbers and arithmetic

323
324 [numC (n) (v*s*t*t (numV n) sto tin mt-traceout)]

325
326 [plusC (l r) (type-case Result (interp l env adv sto tin)

327 [v*s*t*t (v-l s-l tin-l tout-l)

328 (type-case Result (interp r env adv s-l tin-l)

329 [v*s*t*t (v-r s-r tin-r tout-r)

330 (v*s*t*t (num+ (deep-untag v-l) (deep-untag v-r)) s-r tin-r

136

331 (append-traceout tout-l tout-r))])])]

332
333 [multC (l r) (type-case Result (interp l env adv sto tin)

334 [v*s*t*t (v-l s-l tin-l tout-l)

335 (type-case Result (interp r env adv s-l tin-l)

336 [v*s*t*t (v-r s-r tin-r tout-r)

337 (v*s*t*t (num* (deep-untag v-l) (deep-untag v-r)) s-r tin-r

338 (append-traceout tout-l tout-r))])])]

339
340 ;; Booleans and conditionals

341
342 [boolC (b) (v*s*t*t (boolV b) sto tin mt-traceout)]

343
344 [equalC (l r) (type-case Result (interp l env adv sto tin)

345 [v*s*t*t (v-l s-l tin-l tout-l)

346 (type-case Result (interp r env adv s-l tin-l)

347 [v*s*t*t (v-r s-r tin-r tout-r)

348 (v*s*t*t (boolV (equal-values (deep-untag v-l) (deep-untag

v-r))) s-r tin-r

349 (append-traceout tout-l tout-r))])])]

350
351 [ifC (c t f) (type-case Result (interp c env adv sto tin)

352 [v*s*t*t (v-c s-c tin-c tout-c)

353 (type-case Result (if (boolV-b (deep-untag v-c))

354 (interp t env adv s-c tin-c)

355 (interp f env adv s-c tin-c))

356 [v*s*t*t (v-b s-b tin-b tout-b)

357 (v*s*t*t v-b s-b tin-b (append-traceout tout-c tout-b))])])]

358
359 ;; Identifiers and abstractions

360

137

361 [idC (n) (v*s*t*t (lookup n env) sto tin mt-traceout)]

362
363 [lamC (params b) (v*s*t*t (closV params b env) sto tin mt-traceout)]

364
365 [appC (f args) (type-case Result (interp f env adv sto tin)

366 [v*s*t*t (v-f s-f tin-f tout-f)

367 (type-case ResultList (map-expr-list (lambda (e s t) (interp e env adv s t))

args s-f tin-f)

368 [vs*s*t*t (v-args s-args tin-args tout-args)

369 (prepend-trace (append-traceout tout-f tout-args)

370 (apply-with-weaving v-f v-args adv adv s-args

tin-args))])])]

371
372 [recC (f) (interp (appC z-combinator (list f)) env adv sto tin)]

373
374 [letC (s v in) (type-case Result (interp v env adv sto tin)

375 [v*s*t*t (v-v s-v tin-v tout-v)

376 (prepend-trace tout-v (interp in (cons (bind s v-v) env) adv s-v

tin-v))])]

377
378 ;; Boxes and sequencing

379
380 [boxC (a) (type-case Result (interp a env adv sto tin)

381 [v*s*t*t (v-a s-a tin-a tout-a)

382 (let ([where (new-loc sto)])

383 (v*s*t*t (boxV where)

384 (override-store (cell where v-a) sto)

385 tin-a

386 tout-a))])]

387
388 [unboxC (a) (type-case Result (interp a env adv sto tin)

138

389 [v*s*t*t (v-a s-a tin-a tout-a)

390 (v*s*t*t (fetch s-a tin-a v-a) s-a tin-a tout-a)])]

391
392 [setboxC (b val) (type-case Result (interp b env adv sto tin)

393 [v*s*t*t (v-b s-b tin-b tout-b)

394 (type-case Result (interp val env adv s-b tin-b)

395 [v*s*t*t (v-v s-v tin-v tout-v)

396 (type-case Value (deep-untag v-b)

397 [boxV (l) (v*s*t*t (voidV)

398 (override-store (cell l v-v) s-v)

399 tin-v

400 (append-traceout tout-b tout-v))]

401 [traceValueV (v) (error 'retroactive-side-effect "attempt

to retroactively set box")]

402 [else (error 'interp "attempt to set-box! on a

non-box")])])])]

403
404 [seqC (b1 b2) (type-case Result (interp b1 env adv sto tin)

405 [v*s*t*t (v-b1 s-b1 tin-b1 tout-b1)

406 (prepend-trace tout-b1 (interp b2 env adv s-b1 tin-b1))])]

407
408 [voidC () (v*s*t*t (voidV) sto tin mt-traceout)]

409
410 ;; Advice

411
412 [symbolC (s) (v*s*t*t (symbolV s) sto tin mt-traceout)]

413
414 [tagC (tag v)

415 (interp-tag tag v env adv sto tin)]

416
417 [aroundappsC (advice extent)

139

418 (interp-aroundapps advice extent env adv sto tin)]

419
420 ;; Input/Output

421
422 [fileC (path) (interp (parse-file path) mt-env adv sto tin)]

423
424 [writeC (l a) (type-case Result (interp a env adv sto tin)

425 [v*s*t*t (v-a s-a tin-a tout-a)

426 (begin ((unbox write-sink) (string-append l ": " (value->string v-a)))

427 (v*s*t*t (voidV) s-a tin-a tout-a))])]

428
429 [readC (l) (let* ([val ((unbox read-source) l)]

430 [_ (record-interp-input val)])

431 (v*s*t*t (numV val) sto tin mt-traceout))]))

432)

433
434 (define/contract (interp-tag tag v env adv sto tin) (-> ExprC? ExprC? Env? AdvStack? Store? TraceIn?

Result?)

435 (type-case Result (interp tag env adv sto tin)

436 [v*s*t*t (v-tag s-tag tin-tag tout-tag)

437 (type-case Result (interp v env adv s-tag tin-tag)

438 [v*s*t*t (v-v s-v tin-v tout-v)

439 (v*s*t*t (taggedV v-tag v-v) s-v tin-v (append-traceout tout-tag tout-v))])]))

440
441 (define/contract (interp-aroundapps advice extent env adv sto tin) (-> ExprC? ExprC? Env? AdvStack?

Store? TraceIn? Result?)

442 (type-case Result (interp advice env adv sto tin)

443 [v*s*t*t (v-a s-a tin-a tout-a)

444 (let ([new-adv (cons (aroundappsA v-a) adv)])

445 (prepend-trace tout-a (interp extent env new-adv s-a tin-a)))]))

446

140

447 (define-type ResultList

448 [vs*s*t*t (vs (listof Value?)) (s Store?) (tin TraceIn?) (tout TraceOut?)])

449 (define/contract (append-result rl r) (-> ResultList? Result? ResultList?)

450 (type-case ResultList rl

451 (vs*s*t*t (vs old-s old-tin old-tout)

452 (type-case Result r

453 (v*s*t*t (v s tin tout)

454 (vs*s*t*t (append vs (list v)) s tin (append-traceout old-tout tout)))))))

455
456 (define/contract (map-expr-list f exprs sto tin) (-> (-> ExprC? Store? TraceIn? Result?) (listof ExprC?)

Store? TraceIn? ResultList?)

457 (let ([helper (lambda (e rl)

458 (type-case ResultList rl

459 [vs*s*t*t (vs s tin-rl tout-rl)

460 (append-result rl (f e s tin-rl))]))])

461 (foldl helper (vs*s*t*t '() sto tin mt-traceout) exprs)))

462
463 (define/contract (interp-exp exp) (-> ExprC? Value?)

464 (v*s*t*t-v (interp exp mt-env mt-adv mt-store mt-tracein)))

465
466 (define/contract (app-chain exps) (-> (listof ExprC?) ExprC?)

467 (foldl (lambda (next chained) (appC chained next)) (first exps) (rest exps)))

468
469 ;; Replay

470
471 (define interp-input (box '()))

472
473 (define (record-interp-input (x number?))

474 (list-box-push! interp-input x))

475 (define get-interp-input

476 (lambda () (reverse (unbox interp-input))))

141

477
478 (define-type RaplRecording

479 [raplRecForReplay (program list?) (input list?)])

480
481 (define/contract (interp-with-recording exps recording-path) (-> (listof ExprC?) path-string? Result?)

482 (let* ([result (interp-exp (app-chain exps))]

483 [input (get-interp-input)]

484 [recording (raplRecForReplay exps input)]

485 [_ (write-struct-to-file recording recording-path)])

486 result))

487
488 (define/contract (replay-interp recording-path) (-> path-string? Result?)

489 (let* ([recording (read-struct-from-file recording-path)]

490 [remaining-input (box (raplRecForReplay-input recording))]

491 [_ (set-box! read-source (lambda (prompt) (list-box-pop! remaining-input)))])

492 ((interp-exp (app-chain (raplRecForReplay-program recording))))))

493
494 ;; Tracing

495
496 (define/contract (interp-with-tracing exprs trace-path) (-> (listof ExprC?) path-string? Value?)

497 (type-case Result (interp (app-chain exprs) mt-env mt-adv mt-store mt-tracein)

498 [v*s*t*t (v s tin tout)

499 (let ([trace (append (list (state (interp-init) mt-adv mt-store mt-tracein))

500 (traceout-states tout)

501 (list (state (app-result v) mt-adv s tin)))])

502 (begin

503 (if (file-exists? trace-path)

504 (delete-file trace-path)

505 (void))

506 (write-struct-to-file trace trace-path)

507 v))]))

142

508
509 ;; TODO-RS: Gah, can't figure out how to get a hold of the current module

510 (define rapl-ns (module->namespace (string->path

"/Users/robinsalkeld/Documents/UBC/Code/rapl/rapl_interpreter.rkt")))

511
512 (define/contract (interp-query trace-path exprs) (-> path-string? (listof ExprC?) Value?)

513 (let* ([_ (set-box! read-source (lambda (prompt) (error 'retroactive-side-effect "attempt to

retroactively read input")))]

514 [tin (tracein (read-struct-from-file rapl-ns trace-path))]

515 [resume (resumeV "top-level thunk" (length (tracein-states tin)))])

516 (type-case Result (interp (app-chain exprs) mt-env mt-adv mt-store mt-tracein)

517 [v*s*t*t (v-a s-a tin-a tout-a)

518 (type-case Result (apply-with-weaving v-a (list resume) mt-adv mt-adv s-a tin)

519 [v*s*t*t (v-t s-t tin-t tout-t)

520 (type-case Result (apply v-t (list) mt-adv s-t tin-t)

521 [v*s*t*t (v-r s-r tin-r tout-r)

522 (if (or #t (= (length (tracein-states tin-r)) 0))

523 v-r

524 (error 'interp-query "Trace not fully read ˜s" tin-r))])])])))

525
526 (define/contract (all-tags v) (-> Value? (listof Value?))

527 (type-case Value v

528 [taggedV (tag tagged)

529 (cons tag (all-tags tagged))]

530 [else empty]))

531
532 (define/contract (deep-tag tags v) (-> (listof Value?) Value? Value?)

533 (foldr taggedV v tags))

534
535 (define/contract (is-trace-advice? a) (-> Advice? boolean?)

536 (type-case Advice a

143

537 [aroundappsA (advice)

538 (traceValueV? advice)]))

539
540 (define/contract (lift-advice a) (-> Advice? Advice?)

541 (type-case Advice a

542 [aroundappsA (advice)

543 (aroundappsA (traceValueV advice))]))

544
545 (define/contract (new-trace-advice trace-adv adv) (-> AdvStack? AdvStack? AdvStack?)

546 (if (empty? adv)

547 (map lift-advice trace-adv)

548 (if (is-trace-advice? (first adv))

549 (new-trace-advice (rest trace-adv) (rest adv))

550 (new-trace-advice trace-adv (rest adv)))))

551
552 (define/contract (without-trace-advice adv) (-> AdvStack? AdvStack?)

553 (let ([result (filter (lambda (a) (not (is-trace-advice? a))) adv)])

554 (begin ;(display "with trace advice: ") (display-list adv) (newline)

555 ;(display "without trace advice: ") (display-list result) (newline)

556 result)))

557
558 (define (display-list l)

559 (begin (display "[") (newline)

560 (map (lambda (e) (begin (display " ") (display e) (display ",") (newline))) l)

561 (display "]")))

562
563 (define/contract (merge-advice-stacks trace-adv adv) (-> AdvStack? AdvStack? AdvStack?)

564 (let ([result (append (reverse (new-trace-advice (reverse trace-adv) (reverse adv))) adv)])

565 (begin ;(display "trace-adv: ") (display-list trace-adv) (newline)

566 ;(display "adv: ") (display-list adv) (newline)

567 ;(display "result: ") (display-list result) (newline)

144

568 result)))

569
570 ;; Without error checking

571
572 (define/contract (rw-resume-value-no-error v) (-> Value? Value?)

573 (deep-tag (all-tags v) (resumeV "dummy" 0)))

574
575 (define/contract (rw-replay-call-no-error f args adv sto tin) (-> Value? (listof Value?) AdvStack?

Store? TraceIn? Result?)

576 (apply-with-weaving (rw-resume-value-no-error f) (map lift-trace-value args) (without-trace-advice

adv) adv sto tin))

577
578 (define/contract (rw-call-no-error args adv sto tin) (-> (listof Value?) AdvStack? Store? TraceIn?

Result?)

579 (rw-result-no-error adv sto (next-trace-state tin)))

580
581 (define/contract (rw-result-no-error adv sto tin) (-> AdvStack? Store? TraceIn? Result?)

582 (type-case State (trace-state tin)

583 [state (c adv-t sto-t tin-t)

584 (type-case Control c

585 [interp-init ()

586 (error 'rw-result-no-error "Unexpected state")]

587 [app-call (f args)

588 (type-case Result (rw-replay-call-no-error f args (merge-advice-stacks adv-t

adv) sto tin)

589 (v*s*t*t (v-r s-r tin-r tout-r)

590 (rw-result-no-error adv s-r (next-trace-state tin-r))))]

591 [app-result (r)

592 (v*s*t*t (lift-trace-value r) sto tin mt-traceout)])]))

593
594 ;; With error checking

145

595
596 (define/contract (rw-replay-call f args adv sto tin) (-> Value? (listof Value?) AdvStack? Store?

TraceIn? Result?)

597 (type-case Result (rw-check-result

598 (apply-with-weaving (rw-resume-value f tin)

599 (map lift-trace-value args)

600 (without-trace-advice adv) adv sto tin)

601 tin)

602 [v*s*t*t (v-r s-r tin-r tout-r)

603 (v*s*t*t v-r s-r (next-trace-state tin-r) tout-r)]))

604
605 (define/contract (rw-check-result result tin-before) (-> Result? TraceIn? Result?)

606 (type-case Result result

607 [v*s*t*t (v-r s-r tin-r tout-r)

608 (if (< (length (tracein-states tin-r)) (length (tracein-states tin-before)))

609 (let ([r (app-result-r (state-c (trace-state tin-r)))])

610 (if (equal-values v-r r)

611 result

612 (error 'retroactive-side-effect

613 (format "incorrect retroactive result: expected\n ˜a but got\n ˜a" r

v-r))))

614 (error 'retroactive-side-effect "retroactive advice did not proceed"))]))

615
616 (define/contract (rw-resume-value v t) (-> Value? TraceIn? Value?)

617 (let ([r (resumeV (value->string v) (length (tracein-states t)))])

618 (deep-tag (all-tags v) r)))

619
620 (define/contract (rw-call pos passed adv sto tin)

621 (-> number? (listof Value?) AdvStack? Store? TraceIn? Result?)

622 (cond [(= pos (length (tracein-states tin)))

623 (type-case Control (state-c (trace-state tin))

146

624 [interp-init ()

625 (rw-result adv sto (next-trace-state tin))]

626 [app-call (abs args)

627 (if (andmap equal-values passed (map lift-trace-value args))

628 (rw-result adv sto (next-trace-state tin))

629 (error 'retroactive-side-effect

630 (format "incorrect argument passed retroactively: expected\n ˜a but

got\n ˜a" args passed)))]

631 [else (error 'rw-call "Unexpected state")])]

632 [else (error 'retroactive-side-effect "retroactive advice proceeded out of order")]))

633
634 (define/contract (rw-result adv sto tin) (-> AdvStack? Store? TraceIn? Result?)

635 (let* ([t-state (trace-state tin)]

636 [_ (if (unbox verbose-interp)

637 (begin

638 (display "Weaving state: ") (display-state t-state (current-output-port)) (newline))

639 '())])

640 (type-case State t-state

641 [state (c adv-t sto-t tin-t)

642 (type-case Control c

643 [interp-init () (error 'rw-result "Unexpected state")]

644 [app-call (f args)

645 (type-case Result (rw-replay-call f args (merge-advice-stacks adv-t adv) sto

tin)

646 (v*s*t*t (v-r s-r tin-r tout-r)

647 (prepend-trace tout-r (rw-result adv s-r tin-r))))]

648 [app-result (r)

649 (v*s*t*t (lift-trace-value r) sto tin mt-traceout)])])))

147

	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	List of Listings
	Glossary
	Acknowledgements
	1 Introduction
	1.1 Analyzing Past Executions
	1.2 Time-travel Programming
	1.3 Thesis Statement
	1.4 Claims and Contributions
	1.5 Organization

	2 Background
	2.1 Complexity and Abstraction
	2.2 Reflection and Metaprogramming
	2.3 Debugging
	2.4 Aspect-oriented Programming
	2.5 AspectJ
	2.6 Execution Recording
	2.6.1 Snapshots
	2.6.2 Traces
	2.6.3 Deterministic Replay

	3 Motivation
	3.1 Compatibility with Program Source
	3.2 Coordination with Past Execution
	3.3 Access to Program State
	3.4 Avoidance of Side-Effects
	3.5 Exploratory Implementation
	3.5.1 Compiler
	3.5.2 Runtime
	3.5.3 Lessons Learned

	3.6 Summary

	4 Essential Retroactive Weaving
	4.1 Introduction
	4.2 Base Language
	4.3 Adding Aspects
	4.4 Aspect Weaving
	4.5 Defining Retroactive Aspects
	4.6 Retroactive Weaving
	4.6.1 Recording and Reading Traces
	4.6.2 Retroactive State
	4.6.3 Retroactive Control

	4.7 Ensuring Soundness
	4.7.1 Deterministic Replay

	4.8 Related Work
	4.9 Summary

	5 Retroactive Execution on the JVM
	5.1 Holographic Virtual Machines
	5.1.1 Mirrors
	5.1.2 Mutations
	5.1.3 Translating Code

	5.2 Scope
	5.2.1 Missing Bytecode
	5.2.2 Native Methods
	5.2.3 Class Initialization
	5.2.4 Concurrency

	5.3 Evaluation
	5.3.1 Case Study: Diagnosing a Memory Leak
	5.3.2 Performance
	5.3.3 Completeness

	5.4 Related Work
	5.4.1 Mirror-based Behavioural Intercession
	5.4.2 Reproducing Past State and Behaviour
	5.4.3 Heap Dump Analysis
	5.4.4 Static Code Analysis

	5.5 Summary

	6 Retroactive Weaving for AspectJ
	6.1 Architecture
	6.2 Events and Intercession
	6.3 Reflective AspectJ Weaver
	6.3.1 Events as Join Point Shadows
	6.3.2 Efficient Event Requests

	6.4 Execution Recordings
	6.4.1 Events Database
	6.4.2 Deterministic Replay

	6.5 Soundness
	6.6 Case Studies
	6.6.1 Contract Verification
	6.6.2 Tracing
	6.6.3 Race Detection
	6.6.4 Memory Leak Detection
	6.6.5 Profiling

	6.7 Evaluation
	6.7.1 Adaptation Effort
	6.7.2 Results and Runtime

	6.8 Related Work
	6.9 Summary

	7 Conclusion
	7.1 Summary
	7.2 Limitations
	7.3 Threats to Validity
	7.4 Future Work

	Bibliography
	A Appendices
	A.1 Illegal Native Methods in the JRE
	A.2 Illegal Side-effects in AspectJ Case Studies
	A.3 RAPL Interpreter Source Code

