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Abstract

The representation and processing of concepts is considered to be one of
the hardest challenges in cognitive science. While computer scientists and
engineers have focused on developing advances for particular tasks, philoso-
phers and cognitive scientists have focused on elucidating the structural
nature of meaning.

A remarkable bridge between these two limited-success approaches can
be found in behavioral research, since, in a variety of tasks, humans process
information at a conceptual level in a way that is incompatible with classi-
cal probability and fuzzy set theory. Recently, this incompatibility has been
shown to occur at a deep structural level, and attempts have been made to
use mathematical schemes founded on quantum structures as alternative ap-
proaches. For this reason, the application of quantum structures to this type
of phenomena has received increasing attention. The quantum approach al-
lows to faithfully model a number of non-classical deviations observed in
experimental data. Moreover, it shows that genuine quantum theoretical
notions, such as contextuality, superposition, emergence, and entanglement,
are powerful epistemic tools to understand and represent cognitive phenom-
ena.

In this thesis, we identify the limitations of classical theories to han-
dle some important cognitive tasks, and introduce the fundamentals of the
quantum cognitive approach to concepts. Next, we perform a mathematical
analysis of current concept combination models and develop an extension
that allows for concrete representations of multiple exemplars simultane-
ously. Our analysis indicates that a superposition of logical reasoning and
a specific form of non-logical reasoning, where non-logical reasoning is dom-
inant, allows to faithfully represent the experimental data. Therefore, the
non-logical reasoning introduced by this model represents an important but
unexplored form of reasoning in humans.

In addition, we develop novel experimental methodologies to identify
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Abstract

quantum conceptual structures for concept combinations in the context of
natural language processing and psychological experiments. Namely, we
present a methodology to build entangled concepts represented as sets of
words with respect to a corpus of text, and present a computational and
psychological methodology to discern if a collection of concepts behaves
statistically as a collection of quantum or classical particles. Using both
methodologies we have identified a significant presence of quantum concep-
tual structure in the context of natural language processing and psycholog-
ical experiments.
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Preface

In this thesis, I performed a systematic study of the quantum-cognitive
approach to concepts. First, I made a comprehensive literature review to
motivate the use of the quantum-cognitive approach in cognitive science.
Next, I developed a mathematical analysis of the current quantum-cognitive
models of concepts, and introduced a novel mathematical tools to produce
concrete representations of experimental data. Finally, I introduced new ex-
perimental methodologies to identify quantum conceptual structures in the
context of natural language processing and psychological experiments.

Some of the material presented in the thesis has been published in the
following scientific journals1:
Chapter 2:
Veloz T.(40%), Gabora L.(20%), Eyjolfson M.(20%), Aerts D.(20%) (2011).
Toward a Formal Model of the Shifting Relationship between Concepts and
Contexts during Associative Thought, Lecture Notes in Computer Science,
2011, Volume 7052/2011, 25-34.
I performed the theoretical and data analysis.

Aerts D.(30%), Broekaert J.(20%), Gabora L.(20%), Veloz T.(20%) (2012).
The Guppy Effect as Interference. In Quantum Interaction, (pp. 36–
47)Springer Berlin Heidelberg, .
I performed the data analysis.

Chapter 5:
Veloz T.(50%), Desjardins S.(50%) (2015). Unitary Transformations in the
Quantum Model for Conceptual Conjunctions and its Application to Data
Representation, Frontiers in Psychology (accepted).
I performed the theoretical analysis.

Chapter 6:

1The relative contribution of each author is indicated with a percentage value after the
name
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Aerts D.(40%), Sozzo S.(40%), Veloz T(20%). (2015). Quantum Structure
in Cognition and the Foundations of Human Reasoning, International Jour-
nal of Theoretical Physics, (accepted).
I collaborated on the development of the theoretical analysis. The theoreti-
cal and data analyses has been improved in the final version of this thesis.

Aerts D.(40%), Sozzo S.(40%), Veloz T.(20%) (2015). A New Funda-
mental Evidence of Non-Classical Structure in the Combination of Natural
Concepts, Philosophical Transactions of the Royal Society A (accepted).
I performed some of the data analysis. The theoretical and data analyses
have been improved in the final version of this thesis.

Chapter 7:
Aerts D.(20%), Sozzo S.(20%), Veloz T.(60%) (2015). The Quantum Nature
of Identity in Human Concepts: Bose-Einstein Statistics for Conceptual In-
distinguishability, International Journal of Theoretical Physics, 1-14.
I developed the theoretical analysis, the experiment design and performance,
and the data analysis.

Veloz T.(50), Zhao X.(30%), Aerts A.(20%) (2013). Measuring Concep-
tual Entanglement in Collections of Documents. In Quantum Interaction
(pp. 134–146). Springer Berlin Heidelberg.
I developed the theoretical analysis, the experiment design, and the data
analysis.
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Chapter 1

Introduction

A well-established fact in cognitive science is that cognitive phenom-
ena cannot be appropriately modeled using the traditional representational
tools [Fod98, Gar90, Daw13]. This fact has serious implications in our un-
derstanding of what cognition is and, it is one of the major impediments to
the advance of many research areas related to cognitive modeling such as
knowledge representation and decision-making [McC].

An alternative approach to cognitive modeling borrows the represen-
tational tools of quantum theory to study cases where traditional meth-
ods fail. For example, in the field of decision-making, the conjunction fal-
lacy [Fra09] and the Ellsberg paradox [ADS11] are important cases where
quantum-inspired models have been used to overcome the limitations of tra-
ditional modeling. Quantum-inspired models have recently been developed
for phenomena in multiple areas including psychology [BPFT11, BPB13],
economics [Khr10], and computer science [MP13, BKL13]. The research
field that applies the mathematical formalism of quantum theory to study
cognitive phenomena is known as quantum cognition [BBG13].

One area where quantum cognition has found interesting results is the
field of concept modeling. Scholars, from a wide range of communities such
as philosophy, linguistics, and psychology, agree that concept combinations
cannot in most cases be represented using traditional tools such as logic
and probability theory. In fact, it has been shown that the conditions for a
logical or probabilistic model for concept combinations are usually violated
by data collected in psychological experiments [SO81, Ham88a, Ham88b].
However, quantum-inspired models, with genuine quantum features such as
state superposition, interference, and entanglement, provide faithful repre-
sentations for most concept combinations [Aer09, AGS13].

In view of the promising results provided by the quantum-cognitive ap-
proach to concept combinations, we propose to carry out a systematic review
of this approach to better understand why quantum cognition provides ade-
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Chapter 1. Introduction

quate representations of concept combinations, and to propose a framework
that enhances the range of applications of concept combination models.

This thesis is divided into three parts:

1. A systematic review of the structural properties of conceptual phe-
nomena, and an introduction to the quantum approach to cognitive
modeling.

2. An analysis of the mathematical framework for quantum-cognitive
models of concept combinations, and the development of new mod-
els that have broader applications.

3. A philosophical argument and some empirical evidence for the appli-
cation of quantum cognition in artificial intelligence.

In the first part of the thesis, we introduce concept modeling, and identify
three structural problems that prevent the development of an adequate the-
ory of concepts. This is done in part by presenting cognitive phenomena
that cannot be represented by using traditional mathematical tools. Next,
we introduce the quantum approach to cognitive modeling, and demonstrate
how quantum-cognitive models can be used to represent those cognitive phe-
nomena.

In the second part, we give a detailed mathematical analysis of the two
most important quantum models of concept combination developed in the
literature: The Hilbert space and tensor product models for concept con-
junctions and disjunctions. We focus on the conditions required by each
model to represent experimental data, and identify the minimal dimension
that is required by each model to reach maximal modeling power. We then
show that the Hilbert and tensor product models entail two fundamentally
different ways to reason about concepts, and combine these two models into
a more general model: the two-sector Fock space model.

In the two-sector Fock space model, the Hilbert and tensor product mod-
els are recovered as extreme cases. Intermediate cases between these two
extremes correspond to superposed modes of thought. These superposed
modes of thought can represent instances of concept combinations that do
not have a representation in the original two models. In addition, we show
that the concrete representations provided by the aforementioned models for
concept combinations are not consistent with the quantum cognitive princi-
ples that inspire the abstract model: conceptual states must be independent

2



Chapter 1. Introduction

of the exemplar, and measurement operators must be exemplar-dependent.
We use unitary transformations in the concrete spaces C3 and C3 ⊗ C3

to construct representations of multiple exemplars in accordance with the
quantum modeling principles, and extend this representation method to the
two-sector Fock space model.

Next, we extend the two-sector Fock space model of conjunctions to the
case of conjunctions and negations. We first develop a theoretical analysis
that characterizes classical data for the case of conjunctions and negations.
Then, we introduce experimental data showing that concept combinations
involving negations of concepts do not satisfy the conditions of classical
data, elaborate concrete representations in the space C8⊕C8⊗C8, and an-
alyze these representations to show that the extended two-sector Fock space
model can faithfully represent the experimental data.

In the last part, we consider the limitations of current artificial intelli-
gence methodologies from the perspective of quantum cognition, and provide
examples that justify the development of quantum-inspired models in arti-
ficial intelligence. In particular, we explain how the problems of vagueness,
contextuality, and non-compositionality are relevant to a sub-area of artifi-
cial intelligence, known as natural language processing. We provide exper-
imental evidence of quantum structures in natural language processing by
showing that quantum entanglement can be found in the word co-occurrence
statistics of a corpus of text, and that Bose-Einstein statistics can be found
in psychological experiments and in the retrieval statistics of a search engine.
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Chapter 2

Basics of Cognitive Modeling

2.1 From the Mind-Body Problem to a Theory of
Concepts

Human beings have the capacities to observe elements of reality, to iden-
tify and represent relations among such elements, and to hypothesize and
test unobserved relations. These capacities have lead to the emergence of a
number of fields of knowledge that have developed to explain physical real-
ity. Among these fields, the basic sciences occupy a privileged place because
their methodologies have lead to the development of important technological
advances.

All known human cultures have recognized the existence of a second non-
physical realm that must be incorporated to the physical realm to complete
the picture of the factuality of human existence. This realm, where human
manifestations such as ideas, emotions, and self-awareness reside, is known
as ‘The Mind’ [Sea04]. Whether or not these two realms exist independently
of each other is one of the most fundamental questions in western philos-
ophy. This is known as the ‘the mind-body problem’ [Wig61]. In modern
science, the interdisciplinary effort toward the study of the realm of the mind
is known as cognitive science [Daw13].

2.1.1 Cognitive Science

Cognitive science is defined as the scientific study of the mind and its
processes. It examines what cognition is, what it does and how it works, and,
like any other science, it aims to develop technologies and tools to advance
our understanding of, in this case, the mind. Such investigation includes
considerations of multiple aspects of intelligence and behaviour, and focuses
on how information is represented, processed, and transformed. In particu-
lar, cognitive science investigates cognitive phenomena such as perception,
language, memory, reasoning, and emotion.

4



2.1. From the Mind-Body Problem to a Theory of Concepts

The majority of cognitive scientists assume that cognition is the prod-
uct of neurological processes occurring mostly in the brain [Tho85]. Hence,
the dominant attitude regarding the mind-body problem is that the mind
is a ‘result’ of the body. This is better understood by noting that most
approaches to study cognition start from a basic ‘cognitive architecture.’
For example, neuroscience and clinical psychology assume that cognitive
phenomena are the output of a nervous system that is controlled by the
human brain [Daw13]. For artificial intelligence, the cognitive phenomena
are asssumed to be the output of a specific software implemented on a ma-
chine [Gar90].

An alternative view, held mainly by a mix of applied mathematicians
and cognitive psychologists [Nei76], focuses on understanding the structural
aspects of the cognitive phenomena from an abstract, and usually mathemat-
ical, perspective. This alternative approach, known as cognitive modeling, is
the one we follow here. Therefore, we will identify some fundamental struc-
tural properties underlying cognitive phenomena, and attempt to represent
them using the language of mathematics.

2.1.2 Cognitive Modeling

A cognitive model is an approximation to a cognitive phenomenon for
the purpose of comprehension and prediction. Cognitive models normally
focus on a single cognitive phenomenon. For example, we could study how
a person directs visual attention to certain images, or how a person decides
which links to follow on a webpage. Cognitive modeling can also study how
two phenomena interact. For example, we can combine the last two phe-
nomena to study the effect of how we direct our visual attention on the
choice of links we make in a webpage.

There are many mathematical approaches to cognitive modeling. They
range from basic arithmetic operations to highly abstract representations
based on category theory. The most popular mathematical tools applied to
cognitive modeling are logic, probability theory, linear algebra, and network
theory [RN95]. We will cover some of these approaches in Appendix A. Re-
gardless of the mathematical approach, we can divide the modeling efforts
developed within the cognitive modeling community into two main classes.

The first kind consists of ‘ad-hoc’ cognitive models. Here, the purpose
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2.1. From the Mind-Body Problem to a Theory of Concepts

is to model a particular phenomena in a specific domain of application.
One example is the model of visual categorization of geometrical shapes
based on ontologies presented in [MT08]. The authors introduce a list of
features that play an important role in visual categorization and their rela-
tions, and an algorithmic procedure, based on Bayesian statistics, to cate-
gorize them. Examples of such categorization elements in the ontology are
sphere-like, rounded, uniform texture, etc., and an example of a relation is
(rounded,uniform texture)→(sphere-like). The algorithms in this model as-
sume three incremental stages: i) knowledge acquisition, ii) learning, and iii)
categorization. The model is useful for the task for which it was developed,
especially in the case of smooth shapes. However, its design is not meant to
represent anything else other than visual categorization, nor is it compatible
with other models.

The second kind includes the so-called concept theories, which are gen-
eral representation frameworks for cognitive phenomena. Here, concepts
are envisaged as the units that underlie cognitive phenomena. Since under-
standing the nature of these units leads to a first-principles basis for a theory
of cognition [RMG+76, SBZ01, Gär00], the aim of the theories of concepts
is to reveal the formal structure of concepts.

In this work, we focus on the second kind of approach. Namely, we are
interested in the structural aspects that the notion of concept needs in order
to be properly applied to produce cognitive models. We aim at a characteri-
zation that, on the one hand, identify the fundamental structural aspects of
concepts, and on the other, can be represented within a mathematical theory.

2.1.3 Theories of Concepts

Traditional models of concepts concentrate on categories possessing con-
crete or imaginary instances, such as ‘horse,’ or ‘dragon’ [Bea64, Ros73,
Mac09a]. Modern approaches, however, extend to include abstract instances
such as topics of discussion [SG07, BL06], music genres [AP03], and im-
ages [BHAT05]. In cognitive science, there are three main proposals for
a theory of concepts that are mathematically sound: the classical the-
ory [Med89], the prototype theory [RMG+76], and the exemplar theory [Nos86].

The classical theory follows the tradition of classical logic, and assumes
that concepts are determined by a fixed set of attributes. Hence, any in-

6



2.1. From the Mind-Body Problem to a Theory of Concepts

stance that holds these attributes is a member of the concept. Classical
logic or some of its extensions are applied for inferential tasks, and for con-
cept combinations. This theory of concepts thus assigns membership truth
values: an instance is or is not associated with a particular concept (Ap-
pendix A).

The prototype theory proposes that concepts are not defined by a fixed
set of attributes, but instead by one or multiple prototypes that incorporate
the most relevant properties. Each exemplar has a degree of membership
and, if the membership is positive, a degree of typicality. The prototype has
the maximum degree of typicality. Prototype theory, formulated in the lan-
guage of fuzzy sets (Appendix A.2), is more general than the classical theory
of concepts in that it introduces a graded structure for the membership in
terms of such things as typicality, similarity, and representativeness [GA02].

The exemplar theory assumes that a concept is defined by a list of stored
entities that represent the current understanding of a certain agent concern-
ing the concept in a given context. One can assess similarity estimations
among the instances, and apply logical techniques to infer the similarity to
new instances, as well as to combine concepts. Thus, the notion of proto-
type is recovered in this theory, for one can refer to some instances as more
typical. However, the mathematical framework of this theory requires a
number of parameters that grows with the number of exemplars, and these
parameters do not have a clear interpretation [Nos86].

Throughout this thesis, we will denote concepts with single quotations
in italic style with the first letter capitalized on each word, and by capi-
tal caligraphic letters when denoted in abstract form. For example, let A
denote the concept ‘Animal.’ Conceptual instances, also called exemplars,
will be denoted between quotations without italics, and by lowercase letters
when denoted in abstract form. For example, we say p =‘dog’ is an exem-
plar of concept A. Properties, also called attributes or features, apply to
both concepts and instances. We will denote properties in italics without
quotations: has four legs is a property of the exemplar ‘dog’ of the concept
‘Animal.’
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2.2. Challenges for a Theory of Concepts

2.2 Challenges for a Theory of Concepts

There is a particular set of phenomena in concept research that high-
lights the problems of current cognitive models. These problematic phe-
nomena challenge not only the accuracy of traditional models, but also the
philosophical principles these models are built upon. We take a closer look
at these phenomena to better understand the traditional models, and to
identify their weaknesses. We can identify three issues that are problematic
in cognitive modeling: vagueness, contextuality, and non-compositionality.
In this chapter, we introduce these three issues, and present cognitive phe-
nomena that characterize problems associated with them.

2.2.1 Vagueness

Concepts we reason with in our daily life are not sharply defined, nei-
ther in their boundaries nor in their implications [Wit58, Zad65]. Cognitive
psychologists, mostly during the seventies and eighties, investigated the im-
precise use of concepts in reasoning. They carried out a large number of
experiments to characterize how people understand the meaning of con-
cepts we use in daily life, and concluded that the way people estimate the
meaning of concepts cannot be modeled using binary systems (‘yes’/‘no’),
but requires instead graded relations that reflect their structural vague-
ness [Ros73, RMG+76, SM81, SL97].

This is illustrated in studying how people estimate the membership of
different exemplars with respect to a concept. For example, consider the
concept ‘Pet,’ and suppose we want to estimate the membership of the ex-
emplars ‘dog,’ ‘snake,’ and ‘robot.’ Clearly, we can be more certain about
the first instance being a member of ‘Pet’ than about the second instance,
and in turn, we can be more certain about the second instance being a mem-
ber of ‘Pet’ than about the third instance. This suggests that membership
should be quantified and that a graded structure is required.

Several cognitive scientists believe that the membership of an exemplar
with respect to a concept depends on how much the exemplar resembles the
prototype for the concept. Here, the prototype represents the most typical
exemplar of a concept. Hence, membership of an exemplar with respect to a
concept is measured by the similarity between the prototype and the exem-
plar [RMG+76]. This idea is one of the milestones of the prototype theory
of concepts. In particular, prototypes of concepts can be experimentally
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obtained by requesting participants to estimate the typicality of a list of
exemplars with respect to a concept [RMG+76, Ros99]. Using similar meth-
ods, we can also measure experimentally the extent to which an exemplar
resembles the prototype of a concept. Experiments confirm that the more
similar an exemplar is to the prototype of a concept, the larger its degree of
membership is [Ham07].

But the prototype-based approach to membership becomes unclear when
a concept has more than one prototype because, after assessment of the sim-
ilarity of an exemplar to one of the prototypes, there are now different ways
to assign membership to the concept as a function of prototypes. Although
several similarity measures have been proposed in the literature [Gol94],
none of them gives a satisfactory answer to the relation between member-
ship and similarity to prototypes [Tve77, TG82, Ham07]. Furthermore, since
prototypes are highly specific, it is difficult to determine a priori which pro-
totypes are required to characterize a concept. Consider for example the
concept ‘Pet’ with two prototypes ‘cat’ and ‘dog.’ Neither of these two pro-
totypes is similar enough to the exemplar ‘goldfish’ to provide a membership
assessment. Hence, ‘goldfish’ should also be considered a prototype. By ap-
plying a similar reasoning to other possible pets such as ‘spider,’ ‘robot,’ and
‘rabbit,’ it becomes clear that similarity-based approaches are inadequate to
assess the membership of exemplars.

An alternative way to measure the degree of membership of an exemplar
with respect to a concept is to consider the most representative properties
of the concept. In fact, the prototypes of a concept can be recovered from
the set of most representative properties [Nos87, Bal04]. In the literature,
the notions of typicality and similarity have also been assessed using the
idea of representative properties of a concept, or of its prototypes [Tve77].
However, the relation between the representative properties and the mem-
bership of exemplars to a concept is unclear for at least two reasons. First,
since there can be many properties for a given concept, selecting the set of
representative properties of a concept is subjective [GA09]. Second, the se-
lection from these properties can mislead our membership estimations. For
example, able to fly is generally a representative property of the concept
‘Bird,’ but a ‘penguin’ is a ‘Bird’ that is not able to fly [AG05a].

In conclusion, although researchers have put forward several alternative
methods to assess degrees of membership, experimental evidence does not
provide conclusive results concerning the relation between these methods
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and the membership of a concept. Therefore, the way in which typical-
ity, similarity, and representativeness relate to the notion of membership is
vague [Fod98]. Throughout the thesis, we will refer to membership, typ-
icality, similarity, and representativeness using the generic term semantic
estimation, and refer to the fact that the relation among these forms of se-
mantic estimation is unclear as the “vagueness problem” of concepts.

2.2.2 Context Dependence

Because the meaning of concepts people use in daily life is generally
contextual, we can achieve significant improvements by incorporating the
notion of context in the study of concepts. People do not think about con-
cepts in isolation, but rather, in an environment that involves both internal
and external circumstances. From now on, we refer to this problem as the
“contextuality problem” of conceptual structures.

Paradoxically, the notion of context seems harder to define than the
notion of concept itself. Depending on the area of application, different
perceptions of what constitutes a context become the focus of the defini-
tion. While context is roughly understood as ‘the circumstances in which
something occurs’ [Mei12], a total of more than 150 definitions have been
proposed in different areas such as linguistics, cognitive science, psychology,
and philosophy [BB05].

For concept theories, context entails all the priors at the moment of elicit-
ing a concept. Cognitive psychologists have performed multiple experiments
to observe how these priors affect the semantic estimations of concepts.
These semantic estimations involve exemplar membership [Ros99, RMG+76,
Ham07], typicality [GA02, AG05a, VGEA11], property relevance [MS88,
AG05a], and similarity [Nos87, Nos88] among others. For a detailed review
of contextual effects on different semantic estimations see [PH14]. In all
cases, they conclude that context radically affects the meaning of a concept.

In an experiment reported in [VGEA11], ninety-eight University of British
Columbia undergraduates who were taking a first-year psychology course es-
timated the typicality of different exemplars of a concept given different con-
texts. The concept chosen was ‘Hat,’ and the chosen exemplars p1 =‘cowboy
hat,’ p2 =‘baseball cap,’ p3 =‘helmet,’ p4 =‘top hat,’ p5 =‘coonskincap,’
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p6 =‘toque,’ and p7 =‘Medicine Hat2.’ Properties of ‘Hat’ were used to cre-
ate a context. We denote the context by the name of the property in italic
letters and capitalize the first letter to differentiate it from a property. The
contexts chosen for the experiment were e1 = Is a hat, e2 = Is worn to be
funny, e3 = Is worn for protection, e4 = Is worn in the South, and e5 = Is
not worn by a person. Typicality estimations were made using a Likert-scale
ranging from 0 to 7. The average and normalized typicality estimates for
each context are shown in Table 2.1. The normalized typicality corresponds
to the ratio between the average exemplar typicality and the sum of the
exemplar typicalities for a given context.

The data shows that the typicality of exemplars for the concept ‘Hat’
is strongly affected by the contexts under consideration. Context e1 was
specifically introduced to minimize the contextual influence, so that the
conventional typicality of the exemplars with respect to the concept can be
determined. The other contexts were chosen to influence the meaning of the
concept. Particularly, e5 was chosen to induce a context that is counterin-

2Medicine Hat is a city in Canada.

Table 2.1: Data table of context-dependence typicality experiment for con-
cepts. For each pair of numbers, the first number indicates the average
typicality of the exemplar, and the second number indicates the normalized
typicality. The total typicality of each context is shown in the last row. Con-
texts e1 =Is a hat, and e5 =Is not worn by a person are shaded according to
their normalized typicality (the larger the number, the darker the shade).

Exp. Data e1 e2 e3 e4 e5

cowboy hat (5.44;0.18) (3.57;0.14) (3.06;0.13) (6.24;0.28) (0.69;0.05)

baseball cap (6.32;0.21) (1.67;0.06) (3.16;0.13) (4.83;0.21) (0.64;0.04)

helmet (3.45;0.11) (2.19;0.08) (6.85;0.28) (2.85;0.13) (0.86;0.06)

top hat (5.12;0.17) (4.52;0.17) (2.00;0.08) (2.81;0.12) (0.92;0.06)

coonskincap (3.55;0.11) (5.10;0.19) (2.57;0.10) (2.70;0.12) (1.38;0.1)

toque (4.96;0.16) (2.31;0.09) (4.11;0.17) (1.52;0.07) (0.77;0.05)

pylon (0.56;0.02) (5.46;0.21) (1.36;0.05) (0.68;0.03) (3.95;0.29)

Medicine Hat (0.86;0.02) (1.14;0.04) (0.67;0.03) (0.56;0.02) (4.25;0.31)

N(e) 30.30 25.98 23.80 22.22 13.51
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tuitive to the meaning of ‘Hat.’ Exemplars were chosen to cover the wide
range of uses of the concept ‘Hat.’ For example, the exemplars ‘pylon’ and
‘Medicine Hat’ are hardly members of ‘Hat.’ This can be verified by the
extremely small typicality they receive in the context e1. It is interesting
to note that ‘pylon’ and ‘Medicine Hat’ become the most typical exemplars
under context e5. Moreover, the correlation coefficient for the typicality
estimations between contexts e1 and e5 is p = −0.93. This strong anti-
correlation is evidence for the possibility that, when contexts of a concept
have opposite meanings, then the corresponding typicality estimations of
the concept are anticorrelated. This suggests that structural comparisons
between the typicality estimations obtained for different contexts could be
used to characterize semantic relations between contexts and between ex-
emplars [VGEA11].

From a mathematical point of view, there are cognitive experiments
showing that the way context influences concepts is incompatible with the as-
sumptions of probability theory (Appendix A.3). In what follows, we present
experiments that reveal the incompatibility of probabilistic approaches in
three cognitive situations: direct probability estimation, order-effects in
psychological surveys, and decision-making experiments involving successive
bets.

Direct Probability Estimation: The Conjunction Fallacy

In the course of their extremely influential research program on decision
making, Amos Tversky and the Nobel laureate Daniel Kahnemann 3 intro-
duced for the first time the conjunction fallacy [TK83]. This phenomenon
states that people generally estimate the occurrence of conjunctions of events
to be more likely than the occurrence of the former events alone. Thus, it
contradicts probabilistic rules about conjunction. For example, let E1 and
E2 be two events, and the probability of their conjunction be given by

P (E1and E2) = P (E1 ∩ E2). (2.1)

Then, the following inequality should hold:

P (E1 ∩ E2) ≤ min(P (E1), P (E2)). (2.2)

3As an historical note, Kahneman recognized in his Nobel prize acceptance speech that
he should have shared the award with Tversky, who died six years before.
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Note that in a standard logical setting such as classical and fuzzy logic,
the membership for the conjunction of two categories is smaller or equal than
the minimum of the memberships of the former categories (Appendix A.2).
However, experimental data shows that people’s estimations usually violate
Eq. (2.1). The example used by Tversky and Kahneman in [TK83] is pre-
sented in Fig. 2.1.

Advocates of Boolean or fuzzy logical approaches to natural language
have proposed multiple participants’ misunderstandings to explain this ef-
fect. Namely, participants might misunderstand the meaning of the words
‘and’ [BHN93] and ‘probable’ [Gig96], or participants might tend to believe
that a) implies that ‘Linda is not a feminist’ [TK83, BTO04]. Measures were
taken in subsequent experiments to mitigate these and other possible misun-
derstandings. They included either the training of participants, or explicitly
stating the logical consequences of the possible choices in explanatory text.
Although in most cases the percentage of participants committing the fal-
lacy is reduced, the fallacy remains significant (above 30%) in all reasonable
experimental settings. For a detailed review of the experiments where the
paradox has been tested, see [Mor09].

The conjunction fallacy has been confirmed in several studies that in-
cluded hypothetical situations as well as real life situations like diagno-

Linda is 31 years old, single, outspoken, and very bright. She majored
in philosophy. As a student, she was deeply concerned with issues of
discrimination and social justice, and also participated in anti-nuclear
demonstrations.

Which is more probable?
a) Linda is a bank teller
b) Linda is active in the feminist movement
c) Linda is a bank teller and is active in the feminist movement

Figure 2.1: Tversky and Kahneman experiment on conjunction probability
estimation. The original experiment contained five other alternatives. We
present only three for the sake of simplicity.
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sis and prognosis in clinical settings [DH91, Rao09], forecasts of sports
results [NA10], effects of government policies [BTO04], and political out-
comes [LGS09]. Moreover, the fact that the same result is confirmed in dif-
ferent experimental settings, ranging from those choosing children [Agn91]
to those using statistics experts [TK81] as participants, and considering
different methodologies like choice [TBO04], ranking [SOSS03], and fre-
quency [TC12] among others [TML96, BTO04, WM08], provides powerful
empirical evidence for the conjunction fallacy.

Survey Answering: Order Effects

Researchers in psychology know that the order in which questions are
presented influences the statistics of the responses. This is because ear-
lier questions can provide context for the questions that follow, and hence
can produce non-commutative effects. For example, when people are asked,
‘What is the most important problem facing the nation?,’ the answer par-
ticipants give becomes the object of focus for their answer to a subsequent
question: ‘Do you approve or disapprove of the way the president is handling
his job?’ Indeed, most people will tend to judge the president’s performance
primarily on the issue they selected in the first question [KK90].

But even though these non-commutative effects are understood, most
decision-making models in psychology are based on classical probability,
where the probability of joint events commute by definition.

In a classical probabilistic setting, answers ‘yes’ to two questions F and
H are represented by sets Fy, Hy ⊆ Σ, where Σ is the space of events
(Appendix A.3). The event corresponding to answer ‘yes’ to F and H is
defined by

Fy and Hy = Fy ∩Hy, (2.3)

which is commutative. In Bayesian probability, the likelihood that a subject
answers ‘yes’ to the question H given that the answer to F is ‘yes’ is rep-
resented by the conditional probability P (Hy|Fy). Analogously, P (Fy|Hy)
represents conditional probabilities for the reverse order. The two probabil-
ities are related by Bayes rule:

P (Fy)P (Hy|Fy) = P (Fy ∩Hy) = P (Hy)P (Fy|Hy). (2.4)
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Experimental evidence confirms that Eq. (2.4) does not hold in gen-
eral [BW07, WB13, TB11]. Bayesian models involving more elaborated
forms of conditioning can account for order effects. However, these mod-
els involve ad-hoc assumptions that can be accomodated only a posteriori,
and thus have no predictive capacity [WSSB14]. Similarly, Markov mod-
els that can account for order effects have been constructed, but they also
require the introduction of ad-hoc elements to accommodate the different
kinds of deviations reported in the literature [WB13]. For extensive reviews
of the kinds of experiments and deviations measuring order effects, we refer
to [SB74, SP96, HE92, TRR00].

Decision Making: Ellsberg and Machina Paradoxes

In economics, the predominant model of decision making is given by the
Expected Utility Theory [VNM07]. A fundamental principle, the so-called
Savage’s Sure-Thing Principle, ensures that if the possible outcomes of a
variable x do not change the utility of a decision situation S, then the vari-
able x can be neglected in the decision analysis. In [Sav72], the principle is
introduced with the story shown in Fig. 2.2:

Let the events D and R represent the two disjoint possible outcomes
of the presidential election, and let B represent the businessman buys the
property. We have

A businessman contemplates buying a certain piece of property. He con-
siders the outcome of the next presidential election relevant. So, to clar-
ify the matter to himself, he asks whether he would buy if he knew that
the Democratic candidate were going to win, and decides that he would.
Similarly, he considers whether he would buy if he knew that the Repub-
lican candidate were going to win, and again finds that he would. Seeing
that he would buy in either event, he decides that he should buy, even
though he does not know which event obtains, or will obtain, as we would
ordinarily say.

Figure 2.2: An example of the Sure-Thing principle.
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P (D) + P (R) = 1,

P (D ∩R) = 0.
(2.5)

Moreover, the fact that in both possible outcomes of the presidential election
the businessman prefers to buy the property implies that

P (B|D) ≥ 0.5,

P (B|R) ≥ 0.5.
(2.6)

As P (B|R) + P (B|D) = P (B) ≤ 1, we conclude that P (B) = 1. Therefore,
because P (B) is equal to one, buying the property is deterministic with re-
spect to the presidential election.

In a well-known study [Ell61], Daniel Ellsberg demonstrated that the
Savage’s Sure-Thing principle is inconsistent with the reality of human
decision-making. The experiment performed by Ellsberg describes a sit-
uation such as the one in Fig. 2.3:

Participants in the experiment are confronted by the following 4 options:
(I) bet on red, (II) bet on black, (III) bet on red or yellow, (IV) bet on black
or yellow. Subjects must decide between options (I) and (II), and then de-
cide between options (III) and (IV).

The experimental results presented in [Ell61] show that a high proportion
of participants prefer (I) over (II), and (IV) over (III). But, this violates the
Sure-Thing Principle, which requires that (I) preferred over (II) would mean
(III) is preferred over (IV). A possible explanation for this violation could be
that people make a mistake in their choice, and that the paradox is caused
by an error of reasoning, or by aversion to ambiguity [FT95]. A number of

Consider an urn with 30 red balls and 60 balls that are either black or
yellow in an unknown proportion. A bet regarding the color of a ball
drawn from the urn is proposed under the following rules: When bet on
c, a prize is given if the ball drawn is c, otherwise no prize is given. c
can be a color or a disjunction of two colors.

Figure 2.3: An Ellsberg paradox situation.
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models have tried to account for these possible errors in judgement. Most
notable among them, Choquet expected utility [Gil87], max-min expected
utility [GS89], variational preferences [MMR06], and second-order proba-
bilities [KMM05]. All of these models are generalizations of the expected
utility model based on either Bayesian inference schema, or on a framework
that generalizes some specific aspect of a σ-algebra classical probabilistic
setting [AST12]. Recently, a new decision situation, the so-called Machina
paradox [Mac09b], was shown to be incompatible with all the above mod-
els [BLP11, Mac14].

The Machina paradox considers an urn with four kinds of balls, each al-
located a number between 1 and 4. The number of balls with the number 1
together with the number of balls with the number 2 is fifty, and the number
of balls with the number 3 or 4 is fifty-one. The event Ej indicates that a
ball with a number j has been drawn from the urn. In a first stage of the
experiment, participants are explained that the choices fi, i = 1, ..., 4, have
payoffs defined by Table 2.2. Next, participants are asked to decide between
betting on f1 or f2.

If a participant is sufficiently ambiguity averse, he will prefer f1 over
f2, because although f2 presents a slight Bayesian advantage, f1 has no
ambiguity in its payoffs. The person is then asked to bet on f3 or f4. In
this case, both choices present ambiguity in their payoffs. Thus, a decision
maker who values unambiguous information would be indifferent between f3

and f4. On the other hand, f4 benefits from the 51 balls, hence in this case
the Bayesian advantage implies that f4 should be preferred over f3 because
of the different payoffs for cases E2 and E3. However, most participants
preferring f1 over f2, later prefer f4 over f3.

Table 2.2: Payoff table of Machina paradox. In the above, E1, f1 pays 202,
in E2, f1 pays 201, and so on.

Act E1 E2 E3 E4

f1 202 202 101 101
f2 202 101 202 101
f3 303 202 101 0
f4 303 101 202 0
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The paradox appears because none of the existing models can represent
the participants’ contextual behaviour [AST12]. Namely, in a first stage,
participants are in a context where there is enough information to discern
which act has a more ambiguous payoff, and choose f1 over f2, exposing their
aversion towards ambiguity. In the second stage, however, participants are
in a context where there is not enough information to discern which act has
a more ambiguous payoff, and choose f4 over f3, recognizing the Bayesian
advantage.

2.2.3 Non-Compositionality

The vagueness and contextuality problems, mentioned in § 2.2.1 and
§ 2.2.2 respectively, occur for individual concepts. In a general setting,
a cognitive situation might include multiple concepts forming aggregated
structures [Rip95]. For example, the concepts ‘Fruit’ and ‘Vegetable’ can be
combined to form a new concept ‘Fruit or Vegetable’ [Ham88a]. This con-
cept combination is built with the connective ‘or,’ which is also an operation
mathematically defined in logic and probability. The question becomes, is
it possible to apply the mathematical definition of the connective ‘or’ to
build the structure of ‘Fruit or Vegetable’ from the structures of ‘Fruit’ and
‘Vegetable’?

Traditional approaches to the study of cognitive phenomena assume that
this question has a positive answer. This assumption, known as the principle
of compositionality [Pel94], was first introduced to formalize logical infer-
ence, and later applied to linguistics [Gra90] and concept theory [RMG+76].
But modern cognitive psychologists still don’t agree on whether or not
concepts are compositional [FP88, Fod98]. They have performed several
experiments measuring various semantic estimations for concept combina-
tions built with connectives used in logic such as ‘Pet and Fish,’ and ‘Not
Sport’ [Ham88b, Ham88a, Ham97a], and adjective-noun compounds such as
‘Red Apple’ [MS88, KP95, Med89] among others [Ham97b]. The evidence
collected during two decades of research reveals that concept combinations
are not compositional in general, at least in the sense suggested by fuzzy
logic and probability theory. From now on, we refer to this problem as the
“non-compositionality” problem of conceptual structures.

One of the most illustrative phenomena, called borderline contradiction,
considers the gradedness structure of a concept in conjunction with its nega-
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tion. Namely, a borderline contradiction case is a logical sentence of the type
p(x) and Not p(x) that is estimated to be ‘true,’ for a certain predicate p
and a borderline exemplar x. For example, in [AP11], participants esti-
mate the truth value of the predicate p(x) =‘x Is Tall’ for an instantiation
x =‘John,’ whose height assumes the values in Table 2.3.

To fit the evidence found in borderline contradiction, pioneering inves-
tigations [BOVW99] assumed the ignorance of participants, and proposed
weakening of logical rules for truth estimations. Other models assumed
truth gaps based on pragmatic logic [AP11], slight relaxations of proba-
bility theory [Rip11], paraconsistent logic [Rip13], and models inspired by
fuzzy logic [Sau11]. None of these approaches has provided faithful model-
ing of empirical data with a coherent explanation of how to model concept
combinations [BPB13, Soz14].

And for combinations involving any two concepts combined by conjunc-
tion or disjunction, the gradedness structure exhibits features that are even
less obvious than what has been found in borderline contradiction research.
Aerts, in [Aer09], formally states the conditions that characterize the exis-
tence of a classical probability model for concept conjunction and disjunc-
tion:

Definition 2.1. Let µx(A), µx(B), and µx(A and B) be the membership
weights of an item x with respect to a pair of concepts A and B and their
conjunction A and B. We say that these membership weights are clas-
sical conjunction data if there exists a Kolmogorovian probability space
(Ω, σ(Ω), P ), and events EA, EB ∈ σ(Ω) such that

P (EA) = µx(A),

P (EB) = µx(B),

P (EA ∩ EB) = µx(A and B).

(2.7)

Table 2.3: Experimental data in borderline contradiction for x =‘John.’

height 5′4′′ 5′7′′ 5′11′′ 6′2′′ 6′6′′

% p(x) =‘true’ 14.5 21.1 44.6 28.9 5.3
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Theorem 2.2. The membership weights µx(A), µx(B), and µx(A and B)
of an item x with respect to concepts A, B and their conjunction A and B
are classical conjunction data if and only if

0 ≤ µx(A and B) ≤ µx(A) ≤ 1,

0 ≤ µx(A and B) ≤ µx(B) ≤ 1,

µx(A) + µx(B)− µx(A and B) ≤ 1.

(2.8)

Definition 2.3. Let µx(A), µx(B), and µx(A or B) be the membership
weights of an item x with respect to a pair of concepts A and B and their
disjunction A or B. We say that these membership weights are classical dis-
junction data if there exists a Kolmogorovian probability space (Ω, σ(Ω), P ),
and events EA, EB ∈ σ(Ω) such that

P (EA) = µx(A),

P (EB) = µx(B),

P (EA ∪ EB) = µx(A or B).

(2.9)

Theorem 2.4. The membership weights µx(A), µx(B), and µx(A or B) of
an item x with respect to concepts A, B and their conjunction A or B are
classical disjunction data if and only if

0 ≤µx(A) ≤ µx(A or B) ≤ 1,

0 ≤µx(B) ≤ µx(A or B) ≤ 1,

0 ≤µx(A) + µx(B)− µx(A or B).

(2.10)

A large body of experimental evidence indicates that the membership
weights of exemplars with respect to concept combinations do not form
classical conjunction or classical disjunction data. In particular, for the case
of conjunction, the membership weight with respect to the conjunction of
concepts is generally larger than the membership weight of at least one of the
former concepts. This phenomenon is called “single overextension.” When
it is larger than both of the former membership weights it is called “double
overextension.”

In Table 2.4, we show two cases reported in [Ham88b]. Here the mem-
bership weights µx1(A1), µx1(B1), and µx1(A1B1) of the item x1 =‘coffee ta-
ble’ with respect to concepts A1 =‘Furniture,’ B1 =‘Household Appliances,’
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and their conjunction A1B1 show single overextension, and the membership
weights µx2(A2), µx2(B2), and µx2(A2B2) of the item x2 =‘tree house’ with
respect to concepts A2 =‘Building,’ B2 =‘Dwelling,’ and their conjunction
A2B2 show double overextension.

The phenomenon of overextension has also been demonstrated not only
for membership weights, but also in typicality estimations. A famous ex-
ample, known as the guppy effect, states that the typicality of ‘guppy’ with
respect to ‘Pet and Fish,’ is larger than the typicalities of ‘Pet,’ and of
‘Fish’ [SO81, SDBVMR98, Ham96]. Estimations of the applicability of rel-
evant properties of concepts and their conjunctions exhibit the same effect.
For example, talk is not a relevant property for either ‘Pet’ or ‘Bird,’ but it
is for ‘Pet and Bird’ [Ham97a, Ham97c, FL96, AG05a, AG05b]. Overexten-
sions have also been observed in experiments considering negated concepts.
For example, ‘chess’ is overextended with respect to the concepts ‘Game’
and ‘not Sport’ and their conjunction [ASV14b].

For the disjunction of two concepts, the analogous underextension effect
also occurs. That is, semantic estimations of an exemplar with respect to
the disjunction of two concepts can be smaller than the semantic estimation
of exemplar of the individual concepts [Ham88a, Ham97b, Ham07].

Evidence supports the idea that overextension of conjunction and un-
derextension of disjunction are common traits of conceptual combinations
rather than mere cognitive effects. A case study in [ABGV12] reports that
all 16 exemplars studied were overextended (Fig. 2.4).

Furthermore, the average seems to be a better estimator for the typi-
cality of the conjunction than the fuzzy minimum rule. In particular, the
difference between the normalized data typicality estimations of the con-

Table 2.4: Experimental membership weights for exemplars x1 =‘coffee ta-
ble,’ and x2 =‘tree house.’

X = A1 X = B1 X = A1B1 X = A2 X = B2 X = A2B2

µx1(X) 1 0.18 0.35 - - -

µx2(X) - - - 0.5 0.9 0.95
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junction and the fuzzy minimum formula is 0.026 on average, while it is
0.011 with the average of the former concepts’ typicalities. Moreover, the
correlation between the normalized data and the minimum is 0.795, while it
is 0.899 for the average of the former concepts’ typicalities.

From a structural point of view however, the average formula is still not
a solid estimator because of the existence of double overextended exemplars.
In Fig. 2.4, the 4th and 14th value on the x-axis are double overextended.
These exemplars correspond to ‘hifi’ and ‘desk lamp’ respectively. Formally
speaking, double overextended exemplars cannot be described in terms of
t-norms that entail all possible convex combinations of the former concepts’
typicalities (Appendix A.2).

Figure 2.4: Normalized typicality estimations of the concepts ‘Furniture,’
‘Household Appliance,’ and their conjunction with respect to 16 exemplars
(on x-axis). The minimum and maximum of the former concepts in the
combination are shown in grey lines, the typicality of the conjunction is
the black line, and the average formula is the black-dashed line. Double
overextended exemplars are marked by red points.
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Chapter 3

The Quantum Approach to
Cognitive Modeling

3.1 Quantum Physics and Quantum Structures

Quantum theory emerged at the beginning of the 20th century as a the-
ory for microscopic phenomena that could not be explained by the current
classical theories. These include the radiation profile of black bodies at
different temperature levels and the measurement of electric currents in ma-
terials exposed to light. These two phenomena are known as the black-body
problem and the photoelectric effect, respectively. Quantum theory was able
to explain and incorporate these challenging phenomena into a unified rep-
resentation of the microscopic realm that proposed an entirely different way
of thinking.

This new perspective captured the attention of not only physicists, but
also of philosophers and mathematicians. Whereas philosophers were con-
cerned with the ontological nature of quantum entities, mathematicians fo-
cused on the development of suitable mathematical tools to describe quan-
tum theory and its relation to other theories such as classical, relativity,
and information theory. The area of research that lies in the intersection of
the physical, philosophical, and mathematical aspects of quantum systems
is named quantum structures.

From a philosophical standpoint, the differences between classical and
quantum theories are the following: in the classical theory, the outcomes we
observe when performing experiments exist as concrete states in the system
prior to measurement, and are deterministically obtained from measure-
ments; in the quantum theory, the outcomes we observe when performing
experiments exist in potential states prior to measurement, and the mea-
surement acts as a context that co-determines the observed outcome in a
non-deterministic manner.
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These differences are best illustrated by taking a closer look at the no-
tions used to represent physical systems. While in classical physics systems
are described by particles, and are not influenced by measurements, in quan-
tum physics systems are described by waves modeled by complex valued
functions, and measurements influence the system. Specifically, a quantum
system is a superposition of waves of different wavelengths. Each wavelength
represents a possible energy level for the system. Therefore, the state of su-
perposition of a quantum system does not represent a real physical system,
but embodies the potentiality of encountering different physical energy-level
configurations. When a measurement is performed, a probabilistic change
occurs to the superposition state. This change consists of the collapse of the
superposition of waves into only one wave. Thus a measurement acts as a
context that destroys the evolution of potentialities of the quantum system,
and collapses the quantum system into a realistic physical configuration in
which its properties can be observed.

An interesting phenomenon related to the potentiality of quantum sys-
tems is quantum interference. The states that make up the superposed
state of a quantum system interact prior to measurement. This interaction
changes the probabilistic structure of the wave and, unlike classical interfer-
ence, quantum interference does not require the existence of an observable
flow of particles. So, quantum interference is a phenomenon that occurs
for one entity, prior to measurements, and is related to the potentiality of
quantum systems.

Another important difference, which comes as a result of this shift in
perspective, involves the mathematical representation of a system as a col-
lection of sub-systems. A system formed by two sub-systems A and B with
state spaces SA and SB respectively, is represented in classical physics by
an element of the Cartesian product SA×SB. In a Cartesian product, each
subsystem is separately described within the joint system. In quantum the-
ory, however, the state of the sub-systems are unit vectors in the Hilbert
spaces HA and HB respectively, and the joint system is a unit vector of
the tensor product denoted by HA ⊗HB. In a tensor product, it is not al-
ways the case that subsystems are described separately. Specifically, a joint
system in quantum theory can exist in a state that is not the composition
of the states of the two separate systems, but rather, is an entangled state
(see Definition 3.8). Thus joint systems in quantum theory are in general
non-compositional.
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A consequence of non-compositionality in quantum theory is the phe-
nomenon of “quantum entanglement.” Namely, when two or more particles
interact, their superposed states may become entangled, and thus evolve as
a single emergent entity even if they become spatially separated. In particu-
lar, measuring one of the two particles will result in a collapsed state for both
regardless of the distance separating them. This was first conjectured in the
celebrated Einstein Podolsky Rosen (EPR) paradox [EPR35], then mathe-
matically formalized by the Bell-inequality formulation [B+64], and finally
tested experimentally by Alain Aspect’s Bell-test experiment [ADR82].

In summary, quantum theory is a formal theory that is fundamentally
different from its classical counterpart. The differences involve what is
known as quantum structures. In particular, the central features of quantum
structures are: i) they exist in states of potentiality, ii) they acquire con-
crete features through contextual processes, and iii) they evolve as emergent
systems when combined.

3.2 Conditions of Possible Experience and
Non-classical Statistics

Non-deterministic cognitive phenomena must be studied using a proba-
bilistic model that describes a system by quantifying its tendency to behave
in one way or another (Appendix A.3). The model is generally verified by
observing the phenomena a large number of times through some experimen-
tal procedure. The behavioral tendencies of the system are reflected in the
observed relative frequencies, also called statistics, of the experimental out-
comes.

For example, consider an urn containing a large number of balls, and let
us define the following measurements: E1 =‘the ball is red,’ and E2 =‘the
ball is wooden.’ Note that other measurements such as

not E1 = ‘the ball is not red,’

not E2 = ‘the ball is not wooden,’

E1 ∩ E2 = ‘the ball is red and wooden,’

E1 ∪ not E2 = ‘the ball is red or not wooden,’

(3.1)
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can be defined using σ-algebraic constructions.

Draw a ball from the urn, and record the result of one or more measure-
ments. A probabilistic model for this experiment should give a consistent
description of the outcomes of these measurements. Consider the probabil-
ities P (E

yes
1 ), P (E

yes
2 ) and, P (E

yes
1 ∩ Eyes

2 ) to obtain the outcome ‘yes’
for the measurements E1, E2, and E1 ∩E2. Then, the following consistency
conditions must be satisfied:

P (E
yes
1 ∩ E

yes
2 ) ≤ min(P (E

yes
1 ), P (E

yes
2 )), (3.2)

P (E
yes
1 ) + P (E

yes
2 )− P (E

yes
1 ∩ E

yes
2 ) ≤ 1. (3.3)

Eq. (3.3) is equivalent to requiring that P (E
yes
1 ∪ E

yes
2 ) be well defined.

The consistency conditions given in Eqs. (3.2)-(3.3) are some of the condi-
tions of possible experience derived by George Boole to restrict the possible
statistics of an experimental situation to plausible results [Boo54].

Suppose we extract 100 balls and obtain 60 balls are red, 75 balls are
wooden, and 32 are both red and wooden. Then, the estimated probabilities
are P (E

yes
1 ) = 0.6, P (E

yes
2 ) = 0.75, and P (E

yes
1 ∩ E

yes
1 ) = 0.32. Note

that Eq. (3.3) is not satisfied since

P (E
yes
1 ) + P (E

yes
2 )− P (E

yes
1 ∩ E

yes
2 ) = 1.03. (3.4)

Clearly, this example cannot occur for any real urn since these proportions
of the balls pose a logical contradiction [Pit94].

If all properties are measurable within a single sample, then the condi-
tions of possible experience cannot be violated, and there exists a classical
probabilistic representation [Pit89]. However, not all systems allow all prop-
erties to be measured in a single sample. For example, because most mea-
surements in quantum systems will involve non-deterministic disturbances,
they cannot allow for multiple measurements in a single sample. In these
cases measurements are called incompatible. It may still be possible to build
a probabilistic representation of the system from a subset of the complete
σ-algebra of measurements using the notions of marginal and joint proba-
bility (Appendix A.3). But there are statistical situations where a detailed
analysis reveals non-trivial violations even though the marginal probabilities
appear to satisfy the conditions of possible experience.
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The first example of this type was put forward by the mathematician
Vorob’ev [Vor62]. He considered an abstract system with three experiments
E1, E2, and E3, each one having two outcomes Eji , for i = 1, 2, 3, and
j = 1, 2. For the experiment to involve incompatible measurements, he
assumed that only two out of the three experiments can be performed on
each sample. We now show that the system violates the conditions of pos-
sible experience.

Consider the following marginal probabilities:

P(E1
1 , E

1
2) = P(E2

1 , E
2
2) = 1/2, (3.5)

P(E1
1 , E

1
3) = P(E2

1 , E
2
3) = 1/2, (3.6)

P(E1
2 , E

2
3) = P(E2

2 , E
1
3) = 1/2. (3.7)

Note that Eq. (3.5) implies that

P(E2
1 , E

2
2 , E

1
3) + P(E2

1 , E
2
2 , E

2
3) = 1/2. (3.8)

Analogously, we can use Eq. (3.6) and (3.7) to obtain

P(E1
1 , E

1
2 , E

1
3) + P(E1

1 , E
2
2 , E

1
3) = 1/2, (3.9)

P(E2
1 , E

1
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3) = 1/2, (3.10)
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2
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2
2 , E

1
3) = 1/2. (3.11)

If we subtract Eq. (3.9) and Eq. (3.11), we have

P(E1
1 , E

1
2 , E

1
3) = P(E2

1 , E
2
2 , E

1
3). (3.12)

Hence, replacing the right-hand side of Eq. (3.12) in Eq. (3.8) yields

P(E1
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2
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2
3) = 1/2. (3.13)

Now, to have a well-defined probability for these events, we also require that
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(3.14)

Substituting Eqs. (3.13), (3.10), and (3.11) in Eq. (3.14) gives
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P(E2
1 , E

1
2 , E

1
3) + P(E1

1 , E
2
2 , E

2
3) = −1/2. (3.15)

Since probabilities cannot be negative, this shows that the conditions of pos-
sible experience are violated. Therefore, this system cannot be represented
by a classical probabilistic model.

3.3 The Birth of Quantum Cognition

Some scientists and philosophers, and remarkably, among them the found-
ing fathers of quantum theory such as Bohr [Boh63] and Heisenberg [Sch92],
have recognized that the joint measurement of properties is a relevant issue
for cognitive phenomena. However, if properties measured in cognitive phe-
nomena cannot be jointly measured, then non-classical probabilistic models,
and particularly quantum-probabilistic modeling, might yield more accurate
results [BK99, Bor10, Ama93, Khr10, Smi03]. In these cases, it is possible
that cognitive phenomena could exhibit quantum-probabilistic features.

The first example of a cognitive phenomenon exhibiting non-classical
probabilistic features was put forward by Aerts in [AA97]. The example
consists of an opinion poll that contains three questions, each question hav-
ing only two possible answers: ‘yes’ or ‘no.’ What brings the non-classicality
to this situation is the fact that some participants do not have a predefined
answer to the questions; but rather their answer must be formed at the mo-
ment the question is posed.

To draw an analogy between this cognitive situation and the urn example
in the previous section, a participant ‘forming his answer at the moment the
question is posed’ would correspond to ‘a ball acquiring its colour when the
ball is extracted from the urn.’ Clearly, balls do not acquire their color when
they are extracted from an urn, but our thought process can be influenced
by a question. Similarly, quantum systems do acquire their properties when
observed. This is exactly what the collapse of the wave function embodies:
an enquiry itself influencing an outcome. And it is why the formalism of
quantum theory provides a reasonable approach to model cognitive phenom-
ena.

The questions for the opinion poll are given in Table 3.1.
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Consider the case where for each question, 50% of the participants answer
‘yes,’ and only 30% of the total participants are certain of their answers
before the question is posed, with 15% ‘yes’ and 15% ‘no.’ This means that
70% of the participants form their answer when the question is posed.

A probabilistic model, known as the ε-model, was constructed to as-
sign probabilities for the various outcomes (Fig. 3.1). The ε-model has also
been applied to study the relation between classical and quantum probabili-
ties [Aer98, Aer96, AA97]. We can use this model to compute the probabili-
ties for this experiment for question U as follows. Assume that the points on
the perimeter of the circle represent all the possible states a participant can
be in before the question is asked, and let the points u and −u represent the

Table 3.1: Cognitive experiment revealing non-classical statistics.

U: Are you a proponent of the use of nuclear energy?

V: Do you think it would be a good idea to legalize soft-drugs?

W: Do you think it is better for people to live in a capitalistic system?

Figure 3.1: Graphical description of the proportion of participants with or
without predetermined answers for question U [AA97].
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states where answers ‘yes’ and ‘no’ are completely deterministic. Imagine
an elastic band joining these two points, and assume that this elastic band
can break at any point along the unshaded portion. When the question is
asked, the points fall sideways into the line determined by the elastic and
the elastic breaks. We say that the participant answered ’yes,’ if it is on the
portion of the elastic that fell toward u, and ‘no’ if it is on the portion that
fell toward −u. This process is shown in Fig. 3.2.

Note that, because the elastic can only break in the unshaded portion,
all points in the shaded region are deterministic. They correspond to par-
ticipants with predetermined answers. Furthermore, because the elastic
can break at any point in the unshaded region, the answer for the partici-
pants without a predetermined answer is obtained in a probabilistic manner.
Moreover, the closer the point representing a participant is to one of the cer-
tainty regions, the more likely the process will lead to the answer the region
represents. The case in which 50% of the participants answer ‘yes’ to each
question is modeled by assuming that the probability that the elastic breaks
at each point is given by a symmetric distribution with respect to the mid-
point. The calculation of the probability of a certain outcome corresponds
to the expected value of getting the outcome for all the states and all the
elastic breaking points. We refer to [AA97] for a detailed description of
how to compute the probabilities in the ε−model.

Figure 3.2: Measurement process in the ε−model [AA97]. In a) the state of
the participant prior to that question is on the circle, in b) the point falls
into the elastic, in c) the elastic breaks, and in d) the point is attached to
one of the extremes revealing the outcome [AA97].
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Now consider the full experiment as described in Fig. 3.3. We can com-
pute the relative proportions of participants with or without predetermined
answers with respect to the three questions using the ε−model graphical
description. Region 1 in the figure corresponds to the participants whose
answer is ‘yes’ for question U prior consultation, but who do not have a
predetermined answer for questions V and W . Region 2 corresponds to par-
ticipants with a predetermined answer ‘yes’ for questions U and V , but no
predetermined answer for W , and so on.

The conditional probabilities of getting an answer, given that we know
the answer to another question, can now be computed. The conditional
probability of obtaining the answer U =‘yes’ given that V =‘yes,’ denoted
by P (U = ‘yes’|V = ‘yes’), is obtained by estimating how likely it is that
participants in the regions 2, 3, and 4 are attached to point u after the
measurement process. Since they are deterministic, all points in region 2
will be attached to u. We refer to [AA97] for the trigonometric calculations
required to compute the likelihood that the points in regions 3 and 4 lead
to u after the measurement process. The conditional probabilities of all
other outcomes can be calculated from the respective deterministic and non-
deterministic regions as shown in Fig. 3.3. In particular, we have that

P (U = ‘yes’|V = ‘yes’) = 0.78, (3.16)

Figure 3.3: Graphical description of the proportion of participants with or
without predetermined answers to the three questions U, V , and W [AA97].
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P (U = ‘yes’|W = ‘yes’) = 0.22, (3.17)

P (V = ‘yes’|W = ‘yes’) = 0.78. (3.18)

The conditional probabilities given in Eqs. (3.16)-(3.18) cannot be repre-
sented by a classical statistical model [AA97]. To prove this, denote the
outcomes U =‘yes,’ V =‘yes,’ W =‘yes,’ by U+, V+, and W+ respectively.
Analogously, denote U =‘no,’ V =‘no,’ W =‘no,’ by U−, V−, and W− re-
spectively. Since the probability of having a ‘yes’ outcome for each question
is equal to 0.5, the following marginal probabilities are

P (U+) = P (V+) = P (W+) = 0.5. (3.19)

Bayes rule (Eq. (2.4)) gives

P (U+|W+) =
P (U+ ∩W+)

P (U+)
. (3.20)

We use this fact to obtain

P (U+ ∩W+) = P (U+ ∩ V− ∩W+) + P (U+ ∩ V+ ∩W+) = 0.11. (3.21)

A similar procedure yields

P (U− ∩ V+ ∩W+) + P (U+ ∩ V+ ∩W+) = 0.39. (3.22)

Subtracting Eqs. (3.22) and (3.21), we obtain

P (U− ∩ V+ ∩W+) = 0.28 + P (U+ ∩ V− ∩W+). (3.23)

On the other hand, Eq. (3.16) implies

P (U−|V+) = 1− P (U+|V+) = 0.22. (3.24)

Using Bayes rule, and repeating the previous comparison, yields

P (U− ∩ V+ ∩W+) = 0.11− P (U− ∩ V+ ∩W−). (3.25)

Finally, we combine Eqs. (3.23) and (3.25) to obtain

P (U+ ∩ V− ∩W+) + P (U− ∩ V+ ∩W−) = −0.17. (3.26)

Since all the probabilities must be positive, we have shown that this system
cannot be represented by a classical probabilistic model. It can however, be
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represented by the non-classical ε-model.

The discovery of non-classical statistical results in this cognitive phe-
nomenon inspired the development of quantum models for multiple cogni-
tive phenomena including decision making [BB12], psychology of catego-
rization [Aer09], human memory [BKNM09], and finances [HK13], among
others [Khr10, PB13]. The use of quantum probability, and of quantum-
inspired models for cognitive systems, is an emergent area of research known
as Quantum Cognition [BBG13].

3.4 Fundamentals of Quantum Modeling in
Cognition

This section introduces some mathematical elements of standard quan-
tum theory and shows how they can be applied to cognition.

In quantum theory, the state of a quantum entity is described by a
complex-valued vector of unit length. Vectors are denoted using the bra-ket
notation introduced by Paul Dirac [Dir39]. In Dirac notation, there are two
kinds of vectors: ‘bra’ vectors denoted by 〈A|, and ‘ket’ vectors denoted by
|A〉. By convention, the state of a quantum entity is described by a ‘ket’
vector.

Definition 3.1. Let α, β ∈ C. Consider the vectors 〈A| and |B〉. The
operation bra-ket defined by the inner product 〈A|B〉 is

1. linear in the ket: 〈A|(α|B〉+ β|C〉) = α〈A|B〉+ β〈A|C〉, and

2. anti-linear in the bra: 〈C|(α|A〉+ β|B〉) = α∗〈A|C〉+ β∗〈B|C〉.

We say that |A〉 and |B〉 are orthogonal if and only if 〈A|B〉 = 0. We
denote it by |A〉 ⊥ |B〉. Additionally, we say that 〈A|B〉 is the complex
conjugate of 〈B|A〉. Therefore

〈A|B〉 = 〈B|A〉∗. (3.27)

Definition 3.2. The bra-ket operation induces the norm || · || =
√
〈·|·〉.

The space of complex-valued vectors representing the possible states of a
quantum entity, equipped with the bra-ket operation and its induced norm,
is called a Hilbert space, denoted by H. The formalism of quantum theory
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is built upon the mathematics of Hilbert spaces [RS80].

Measurable quantities of a system, known as observables in quantum
theory, are represented by self-adjoint operators on the Hilbert space. We
focus on a special kind of self-adjoint operators, known as orthogonal projec-
tors, used to represent quantum measurements representing questions whose
possible outcomes are ‘yes’ and ‘no.’

Definition 3.3. Let |A〉, and |B〉 ∈ H, and let M : H → H, be an operator
defined by

|A〉 →M|A〉.

M is an orthogonal projector if and only if it is

1. Linear: for α, β ∈ C we have M(α|A〉+ β|B〉) = αM|A〉+ βM|B〉,

2. self-adjoint: 〈A|M|B〉 = 〈B|M|A〉∗, and

3. Idempotent: M ·M = M.

Orthogonal projectors induce a subspace of H representing the states
whose outcome is ‘yes.’ This space is given by

HM = {M|A〉, |A〉 ∈ H}. (3.28)

The probability to obtain an outcome ‘yes’ for a measurement is given by
the extent to which the state |A〉 belongs to HM. This is formalized by the
Born rule of probability [ST85].

Definition 3.4. Let |A〉 be the state of an entity A, and Mx be an orthog-
onal projector associated to a question x. The probability of an answer ‘yes’
to the question x is given by

µx(A) = 〈A|Mx|A〉. (3.29)

For the probabilistic structure to remain valid after a measurement, the
state vector must be renormalized so it is still a unit vector.

Definition 3.5. Let |A〉 be the state of an entityA, and M be an orthogonal
projector. The state vector after measurement is given by

|AM〉 =
M|A〉√
〈A|M|A〉

. (3.30)
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Eq.(3.30), known as the projection postulate4, ensures that when a physi-
cal quantity is measured two consecutive times, the result encountered in the
first measurement is obtained with probability 1 in the second measurement.

The probability of an outcome ‘no’ is measured in quantum theory by
the orthogonal operator M⊥ defined by

M⊥ = 1−M. (3.31)

Hence, the probability to obtain the outcome ‘no’ is given by

µ(Not A) = 〈A|M⊥|A〉 = 1− 〈A|M|A〉. (3.32)

Because M is idempotent and M⊥ = 1−M, we also have

MM⊥ = M(1−M) = M−M2 = 0. (3.33)

When we consider two different measurements, the operator representing
the successive application of these two measurements is not necessarilly a
measurement, since the order in which they are measured might lead to
different results. In terms of operators, this represents non-commutativity.

Definition 3.6. Given two operators M1 and M2. We say that M1 and M2

represent compatible measurements if and only if the commutator operator

[M1,M2] = M1M2 −M2M1 = 0. (3.34)

Otherwise, the operators represent incompatible measurements.

So far, we have not considered the internal structure of states. In quan-
tum theory, the set of states is linearily closed. This means that every linear
combination of two states that corresponds to a unit vector is also a state.
For example, if a quantum system can exist in two different states, |A〉 and
|B〉, then it can also exist in the superposed state

|AB〉 = z1|A〉+ z2|B〉, (3.35)

with z1, z2 ∈ C, and |z1|2 + |z2|2 = 1. When a measurement Mx is applied
to a superposed state, the probability µx(AB) of obtaining an outcome ‘yes’
is given by

4Also known in the literature as the collapse postulate.
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µx(AB) = (z1〈A|+ z2〈B|)Mx(z1|A〉+ z2|B〉),
= |z1|2〈A|Mx|A〉+ |z2|2〈B|Mx|B〉+ 2<(z1z

∗
2)〈A|Mx|B〉,

= |z1|2µx(A) + |z2|2µx(B) + 2<(z1z
∗
2)〈A|Mx|B〉,

(3.36)

where <(z) denotes the real part of z. So, the probability of an outcome
‘yes’ for the measurement represented by Mx is the weighted sum of the
probabilities of the former events, ‘yes’ on state |A〉 and ‘yes’ on state |B〉,
together with an interference term.

To understand why this term is called an “interference,” we rewrite the
last equation using the polar notation of complex numbers: zi = rie

iθi , for
i = 1, 2. Eq. (3.36) becomes

µx(AB) = (r1e
iθ1〈A|+ r2e

iθ2〈B|)Mx(r1e
iθ1 |A〉+ r2e

iθ2 |B〉)
= r2

1e
i(θ1−θ1)µx(A) + r2

2e
i(θ2−θ2)µx(B) + 2r1r2 cos(θ1 − θ2)〈A|Mx|B〉

= r2
1µx(A) + r2

2µx(B) + 2r1r2 cos(θ1 − θ2)〈A|Mx|B〉.
(3.37)

In this representation, the interference term corresponds to the product of
the weights r1 and r2, the cosine of the phase difference θ1− θ2 between the
states, and the inner product of |A〉 and |B〉 restricted to HMx . If only one
state is under consideration, the phase angle plays no role in the probability
of a given measurement. However, when measurements are performed on
superposed states, the interplay between the relative phases induce either
positive or negative interferences. Extreme positive or negative interference
is reached when θ2 − θ1 = 0, or θ2 − θ1 = π respectively.

In quantum cognition, cognitive tasks are modeled by representing se-
mantic estimations as probabilistic events [AGS13]. Thus, a quantum cogni-
tive model considers a concept A, whose state is represented by a unit vector
|A〉, and semantic estimations are modeled by orthogonal projections on a
Hilbert space. Let Mx be a semantic estimation: HMx represents the space
of states of the concept whose measurement outcome is ‘yes.’ Therefore,
the probability of having an answer ‘yes’ to a certain semantic estimation is
obtained by the Born rule of probability:

µx(A) = 〈A|Mx|A〉. (3.38)
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These outcome probabilities are generally called “weights” in the cognitive-
science literature. For example, if Mx represents a membership estimation
for a certain exemplar x, then µx(A) represents the membership weight of
x with respect to the concept A being in the state |A〉 [Aer09].

Philosophers and cognitive scientists have on many occasions proposed
that non-logical processes such as intuitive or unconscious thinking could be
understood in terms of superposition, interference, or incompatibility, but
have not given a formal account on how these notions operate [EF09, Tha97,
Kih87, Smi03]. Quantum cognition is the first approach to incorporate these
ideas into mathematical models. In particular, superposed states can be used
to represent uncertainty [AS11a]; interference is a mechanism for non-logical
cognitive coherence [Aer09]; and incompatible measurements correspond to
two consecutive cognitive actions where the first action serves as a context
for the second action [WB13, BW07].

3.5 Quantum Cognitive Models and Cognitive
Challenges

A quantum model for a cognitive phenomena requires the specification
of the entities at play, their state spaces, and the operators used to repre-
sent measurements. Once this is determined, the mathematical framework
of quantum theory is used to compute the probabilities of the measurement
outcomes. In this section, we show how a quantum cognitive framework is
successful at modeling phenomena that cannot be explained within tradi-
tional approaches. In particular, we outline the quantum models developed
to resolve the challenges presented in Chapter 2.

3.5.1 The Conjunction Fallacy as Incompatibility

To model the conjunction fallacy, we use a Hilbert space H, and a
state vector |A〉 ∈ H that represents the belief state after reading Linda’s
story [Fra09, BPFT11]. Next, the event ‘yes’ to questions a), b), and c) is
represented by the subspace corresponding to the projectors M1, M2, and
the operator M1M2 respectively. The key assumption is that M1 does not
commute with M2.

First, we expand the term representing the probability of event b) so we
can compare it with the probability of event c):
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〈A|M2|A〉 =〈A(M1 + M⊥
1 )|M2|(M1 + M⊥

1 )A〉
=〈AM1|M2|M1A〉+ 〈AM⊥

1 |M2|M1A〉+
〈AM1|M2|M⊥

1 A〉+ 〈AM⊥
1 |M2|M⊥

1 A〉.
(3.39)

If M1 and M2 commute, and since M1M
⊥
1 = 0, we have

〈AM⊥
1 |M2|M1A〉 = 〈AM1|M2|M⊥

1 A〉 = 0. (3.40)

Therefore,

〈A|M2|A〉 = 〈AM1|M2|M1A〉+ 〈AM⊥
1 |M2|M⊥

1 A〉. (3.41)

Otherwise, set

δ = 〈AM1|M2|M⊥
1 A〉+ 〈AM⊥

1 |M2|M1A〉. (3.42)

The incompatibility term5 δ accounts for the conjunction fallacy as follows:
Note that the story does not suggest that Linda is a bank teller; in fact, it
is somewhat likely that she is not a bank teller [BPFT11]. Hence, we can
assume

〈AM⊥
1 |M2|M⊥

1 A〉 ≥ 0. (3.43)

Choose δ to be negative, and such that

δ + 〈AM⊥
1 |M2|M⊥

1 A〉 < 0. (3.44)

Then, Eq. (3.39) becomes

〈A|M2|A〉 = 〈AM1|M2|M1A〉+ δ + 〈AM⊥
1 |M2|M⊥

1 A〉 < 〈AM1|M2|M1A〉.
(3.45)

This shows that by incorporating a non-commutative term, it is possible to
model a situation where the probability for the conjunction of two events
is greater than one of the events. A concrete example for the state |A〉,
and the operators M1 and M2, has been constructed on a complex Hilbert
space of dimension 3 to model empirical data collected on the conjunction

5In [Fra09], this term is called interference but since it is related to non-commutativity
of measurements rather than superposition of states, we refer to it here as an incompati-
bility term.
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fallacy [Fra09].

The same incompatibility term can account for order effects [WB13]. In
particular, the quantum model can be used to derive a property about order
effects that has no counterpart in the classical theories.

Let MF and MH be projectors representing two questions F and H
whose outcomes ‘yes’ and ‘no’ are represented by Fy, Fn, Hy, and Hn re-
spectively. Let µ be a function that measures the probability for the out-
comes of these questions. For example, µ(Fn) is the probability of obtaining
the outcome ‘no’ to question F , and µ(FyHn) is the probability of obtaining
‘yes’ to question F , and then ‘no’ to question H.

For each question, the order effect reflects how having the other question
as a prior influences the statistics of the outcomes. For example, the order
effects for F andH with respect to the answer ‘yes’ are respectively measured
by

IF = µ(HyFy) + µ(HnFy)− µ(Fy),

IH = µ(FyHy) + µ(FnHy)− µ(Hy).
(3.46)

To obtain the probability of consecutive measurements in the quantum
model, we compute the probability of the outcome ‘yes’ for the first question,
renormalize using Eq. (3.30) to obtain the post-measurement state, and
then reapply the Born rule to the post-measurement state to compute the
probability of obtaining the outcome ‘yes’ for the second question. For
example, µ(HyFy) is given by

µ(HyFy) = 〈A|MF |A〉〈AMF
|MH |AMF

〉

= 〈A|MF |A〉
(

1

〈A|MF |A〉
〈AMF |MH |MFA〉

)
= 〈AMF |MH |MFA〉.

(3.47)

Similarly,

µ(HyFn) = 〈AM⊥
F |MH |M⊥

FA〉,
µ(FyHy) = 〈AMH |MF |MHA〉,
µ(FyHn) = 〈AM⊥

H |MF |M⊥
HA〉.

(3.48)
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Substituting these in Eq. (3.46) gives the order effect in term of measurement
operators:

I1 = 〈AMH |MF |MHA〉+ 〈AM⊥
H |MF |M⊥

HA〉 − 〈A|MF |A〉, (3.49)

I2 = 〈AMF |MH |MFA〉+ 〈AM⊥
F |MH |M⊥

FA〉 − 〈A|MH |A〉. (3.50)

Note that the probability of the outcome ‘yes’ to a question is experi-
mentally obtained from the statistics of the experiment when the question
is first asked. Hence

〈A|MF |A〉 = µ(HyFy) + µ(HnFy),

〈A|MH |A〉 = µ(FyHy) + µ(FnHy).
(3.51)

Since M⊥
i = 1 −Mi, for i = 1, 2, we can expand the second term in

Eqs. (3.49) and (3.50), to obtain

〈AM⊥
F |MH |MFA〉 = 〈A|MHMF |A〉 − 〈AMF |MH |MFA〉, (3.52)

〈AMF |MH |M⊥
FA〉 = 〈A|MFMH |A〉 − 〈AMF |MH |MFA〉. (3.53)

We add Eqs. (3.52) and (3.53), and use the facts that MFMH = (M∗
HM∗

F )∗,
and MF and MH are self-adjoint, to write

〈AM⊥
F |MH |MFA〉+〈AMF |MH |M⊥

FA〉 = 2<(〈A|MHMF |A〉)−2〈AMF |MH |MFA〉.
(3.54)

A similar procedure yields

〈AM⊥
H |MF |MHA〉+〈AMH |MF |M⊥

HA〉 = 2<(〈A|MHMF |A〉)−2〈AMH |MF |MHA〉.
(3.55)

Since Eqs. (3.54) and Eq. (3.55) share the term 2<(〈A|MHMF |A〉), their
combination yields

〈AM⊥
F |MH |MFA〉+ 〈AMF |MH |M⊥

FA〉+ 2〈AMF |MH |MFA〉
= 〈AM⊥

H |MF |MHA〉+ 〈AMH |MF |M⊥
HA〉+ 2〈AMH |MF |MHA〉.

(3.56)

From the properties of the quantum model, Eq. (3.56) can be used to
derive the following identity:
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µ(FyHn) + µ(FnHy) = µ(HyFn) + µ(HnFy). (3.57)

Eq. (3.57) is known as the Quantum Question equality (QQ-equality). This
probabilistic identity cannot be obtained from a classical probability theory
because it requires the manipulation of the incompatibility terms 〈AMF |MH |M⊥

FA〉
and 〈AMH |MF |M⊥

H〉. Notably, the QQ-equality has been confirmed in a
statistical analysis containing more than seventy surveys, each survey having
between three hundred and two thousands participants [WSSB14]. There-
fore, the QQ-equality presents evidence that quantum models are necessary
to accurately represent non-classical aspects of cognitive phenomena.

3.5.2 Overextension and Underextension as Interference

Collected data on concept conjunction and disjunction that is not clas-
sical (Defs. 2.1–2.3) can often be explained in terms of state superposition
and interference. Consider the concepts A, B, and a concept combination
AB, which can be either the conjunction A and B or the disjunction A or
B. These are represented by states |A〉, |B〉, and |AB〉 respectively. Let x
be an exemplar, and let M represent the semantic estimation that measures
the membership of x with respect to the concepts A, B, and their combi-
nation AB. Now, assume |A〉 ⊥ |B〉, and choose the following state for the
combined concept:

|AB〉 =
1√
2

(|A〉+ |B〉). (3.58)

With this choice, the membership weight of exemplar x with respect to the
conjunction or disjunction of concepts A and B is given by

µ(AB) =
1

2
〈A+B|M|A+B〉 =

(µ(A) + µ(B))

2
+ <〈A|M|B〉. (3.59)

The membership weight µ(AB) corresponds to the sum of the average of
µ(A) and µ(B), and an interference term that depends on the way vectors
|A〉 and |B〉 project onto HM.

The quantum probability formula in Eq. (3.59) has been applied to model
overextension and underextension of semantic estimations for concept con-
junction and disjunction reported in [Ham88b, Ham96, Ham88a, Ham97b].
It is interesting to note that deviations from classical models found for both
connectives can be explained in terms of the same model. Indeed, in the
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absence of interference, that is when 〈A|M|B〉 = 0, the probability formula
is reduced to the average of the former probabilities. Therefore, if the mem-
bership weights are not equal, Eq. (3.59) is singly overextended and singly
underextended even in the absence of interference [ABGV12]. However, dif-
ferent phase angles have to be chosen for each connective in order to give a
precise account of the experimental data. In general, positive interference is
needed to account for overextension, and negative interference is needed to
account for underextension [Aer09].

3.5.3 Ellsberg and Machina Paradoxes

Both Ellsberg and Machina paradoxes can be modeled using similar
methods [AS11b, AS11a, AST12]. The idea is to model the subject’s uncer-
tainty about the number of balls of each type in the urn by a superposition
of possible urn states. For the Ellsberg paradox, let |r〉, |y〉, and |b〉 be three
orthogonal vectors representing the existence of red, yellow, and black balls
respectively, and let the projectors Mr,My, and Mb represent the event of
extracting a red, yellow, or black ball from the urn. Consider a pure Ells-
berg state reflecting certain belief about the numbers of balls in the urn,
represented by

|p〉 =
1√
3
eiα|r〉+ ρye

iβ|y〉+ ρbe
iγ |r〉, (3.60)

where ρ2
y + ρ2

b = 2
3 . Note that the probability that a red ball is extracted

given this pure Ellsberg state is

〈p|Mr|p〉 =
1

3
. (3.61)

Similarly, the probability of extracting either a yellow or black ball is 2
3 .

To represent the uncertainty about the number of yellow and black balls,
we introduce an ambiguous Ellsberg state modeled by the superposition of
pure states as follows:

|s〉 =
n∑
i=1

aie
iθi |pi〉, (3.62)

where
∑n

i=1 a
2
i = 1. This superposition of state produces an interfer-

ence term in the probability formula that accounts for the Ellsberg para-
dox [AST12]. In particular, the simplest superposition choice, involving the
superposition of only yellow versus only black balls, is sufficient. Set
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|s〉 = a1e
iθ1 |p1〉+ a2e

iθ2 |p2〉, where (3.63)

a2
1 + a2

2 = 1, (3.64)

with |p1〉 and |p2〉 given by

|p1〉 =
1√
3

(eiα1 |r〉+
√

2eiβ1 |y〉),

|p2〉 =
1√
3

(eiα2 |r〉+
√

2eiβ2 |b〉),
(3.65)

for

cos(α1 − α2 + θ1 − θ2) = 0. (3.66)

Eq. (3.64) is set to ensure |s〉 is a unit vector, and Eq. (3.66) ensures that
the probability to extract a red ball is 1

3 . Indeed,

〈s|Mr|s〉 = a1e
iθ1〈p1|+ a2e

iθ2〈p2|Mr|a1e
iθ1 |p1〉+ a2e

iθ2 |p2〉

=
1

3
(a2

1 + a2
2) +

2

3
a1a2 cos(α1 − α2 + θ1 − θ2)

=
1

3
(a2

1 + a2
2) =

1

3
.

(3.67)

Different choices of a1, a2, and the phase angles θi, αi, and βi, for i = 1, 2,
lead to different kinds of reasoning about the Ellsberg paradox. Therefore,
interference effects induced by the superposed state explain the deviations
from Savage’s sure thing principle [AST12].

To model the Machina paradox we introduce orthogonal states |i〉, for
i = 1, ..., 4, representing the existence of balls of each kind, and orthogonal
projectors on each dimension Mi, i = 1, ..., 4, representing the bet on a
certain kind of ball. Next, we introduce a pure Machina state

|p〉 =
4∑
i=1

ρie
iαi |i〉 (3.68)

to represent a distribution of balls, and impose the following consistency
constraints:
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ρ2
1 + ρ2

2 = 50, and ρ2
3 + ρ2

4 = 51. (3.69)

Finally, the Machina state

|s〉 =
n∑
k=1

aie
iθi |pk〉 (3.70)

represents the ambiguity in terms of state superposition. The interference
produced in the probability formula from a simple superposition that consid-
ers only extreme distributions, accounts for the results of Machina paradox.
Thus, the quantum model is the only approach that provides a unified view
of the Ellsberg and Machina paradoxes [AST12].

3.6 Entanglement of Conceptual Combinations

We have shown in § 3.5 that the basic structures of the quantum frame-
work can successfully be applied to cognition. The interesting question is
the extent to which the tools developed for quantum theory can be applied
to cognition. In particular, can we identify other characteristics of quantum
theory in the field of cognition? In this section, we provide evidence for a
positive answer. Namely, we show that the phenomenon of entanglement
arises in the modeling of concept combinations.

3.6.1 Quantum Entanglement

Quantum formalism assumes that quantum systems may exist in su-
perposed states. If a quantum system is formed by the composition of
sub-systems, then each sub-system exists in its own superposed state, but
the behavior for the emerging system may correspond to that of a non-
decomposable entity. In particular, when we perform measurements on the
sub-systems of a composite quantum system, the results reveal that the
sub-systems may not behave independently, even if the sub-systems are sep-
arated by a large distance. In fact, when the system is analyzed, it is possible
to encounter states that exhibit non-trivial correlations in the outcomes of
their measurements. These states, called entangled states, have inspired
some of the most important applications of quantum theory [HHHH09].

Consider for example a composite quantum systems C obtained by com-
posing two separate quantum systems C1 and C2. Formally, the composition
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of quantum entities corresponds to an element in the tensor product space6

H⊗H.

Definition 3.7. Let {|Ai〉} form a basis for H. Then, a composite vector
|C〉 ∈ H ⊗H is given by

|C〉 =
n∑
i,j

cij |Ai〉 ⊗ |Aj〉. (3.71)

Definition 3.8. Let |C〉 ∈ H ⊗ H. If |C〉 can be factorized as |C〉 =
|C1〉 ⊗ |C2〉, where |C1〉 ∈ H, and |C2〉 ∈ H, we say that |C〉 is a separable
tensor, also known as product vector. Otherwise, |C〉 is a non-separable
tensor, representing an entangled state.

Because separable tensors can be represented as ordered pairs, when a
measurement is performed on one of the sub-systems, the collapse of the
wave function induced by the measurement occurs only at the measured
sub-system. The other sub-system remains in its original state. When a
measurement is performed on a non-separable tensor, the collapse of the
wave function induced by the measurement will affect both sub-systems.

An example of an entangled state is given by the famous Einstein-
Podolsky-Rosen state [EPR35]. Let A be an entity whose possible states
are |A1〉 and |A2〉, and let B be another entity whose possible states are
|B1〉 and |B2〉, where |A1〉 ⊥ |A2〉 and |B1〉 ⊥ |B2〉. Consider the composite
entity C represented by

|C〉 =
1√
2

(|A1〉 ⊗ |B1〉+ |A2〉 ⊗ |B2〉) . (3.72)

The state |C〉 is non-separable because it cannot be decomposed as the prod-
uct of two state vectors |C1〉, |C2〉 ∈ H.

From a probabilistic perspective, the correlations obtained when mea-
suring entangled states are incompatible with classical probabilistic models
that assume independent measurements. We can test whether a statistical
situation can be described by a classical probabilistic model using Bell-like
inequalities [B+64]. These inequalities are analogous to the conditions of
possible experience presented in § 3.2, except that they are based on aggre-
gate probabilistic indicators such as correlations and expected values rather

6We assume here a particular form of joint quantum system that is useful for our
purposes.
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than joint probabilities.

It has been proposed that the quantum description of joint entities
is a suitable framework to describe concept combinations. In particular,
entangled states can be used to model non-trivial semantic correlations
between the concepts that form the combination in the combination it-
self [AS11c, DCGL+10, HS09, VAZ11, WBAP13, SMR13]. We now present
an experimental verification of these non-trivial semantic correlations in con-
cept combinations [AGS13].

3.6.2 Psychological Evidence of Conceptual Entanglement

An abstract formulation to test quantum entanglement in concept com-
binations was presented in [AABG00]. Consider two entities A and B with
two measurement; each measurement having two possible outcomes. We de-
note these measurements and their outcomes by MA = {A1, A2} and MA′ =
{A′1, A′2} for entityA, and MB = {B1, B2} and MB′ = {B′1, B′2} for entity B.
Next, we define the composed operator XY ∈ {MAB,MA′B,MAB′ ,MA′B′}
and associate the value 1 to the outcomes X1Y1 and X2Y2, and the value
−1 to the outcomes X1Y2 and X2Y1.

If we perform the experiment XY a large number of times, we can esti-
mate the expected value E(MXY ) of each composed experiment. A Bell-like
inequality, named the Clauser-Horn-Shimony-Holt (CHSH) inequality, can
be used to test the statistics. The CHSH inequality states that if

− 2 ≤ E(MA′B′) + E(MA′B) + E(MAB′)− E(MAB) ≤ 2 (3.73)

is violated, then no classical probability model exists for the considered
joint experiments [AF82]. Additionally, if the marginal law of probability is
satisfied (see Appendix A.3), then the entities are entangled [DK14].

A cognitive experiment in [AS11c, AS14] confirmed that semantic de-
pendencies of concept combinations can violate the CHSH inequality. For
example, let the entities A and B refer to the concepts Animal and Acts,
respectively. Let MA, and MA′ be two measurements for concept A, and
MB and MB′ be two measurements for concept B. The outcomes of these
measurements are given by:
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MA = {A1 =‘horse’, A2=‘bear’},
MA′ = {A′1 =‘tiger’, A′2 =‘cat’},
MB = {B1 =‘growls’, B2 =‘whinnies’},
MB′ = {B′1 =‘snorts’, B′2 =‘meows’}.

(3.74)

A psychological experiment where 81 participants were asked to choose
the combination that best represents the concepts A, B, and the conceptual
combination ‘The Animal Acts,’ with respect to outcomes of measurements
MAB, MAB′ , MA′B, and MA′B′ was performed, and the expected values
of these joint measurements were calculated (see Table 3.2). From the data
we have

E(MAB) = P (A1, B1) + P (A2, B2)− P (A1, B2)− P (A2, B1) = −0.778,

E(MAB′) = P (A1, B
′
1) + P (A2, B

′
2)− P (A1, B

′
2)− P (A2, B

′
1) = 0.3580,

E(MA′B) = P (A′1, B1) + P (A′2, B2)− P (A′1, B2)− P (A′2, B1) = 0.6543,

E(MA′B′) = P (A′1, B
′
1) + P (A′2, B

′
2)− P (A′1, B

′
2)− P (A′2, B

′
1) = 0.6296.

(3.75)

Since

E(A′B′) + E(A′B) + E(AB′)− E(AB) = 2.4197, (3.76)

inequality (3.73) is violated, and so no classical probability model exists for
the considered joint experiments on A and B. Quantum models assuming

Table 3.2: Data table of conceptual entanglement experiment in [AS14].

‘Animal’ A1 =‘horse’ A2 =‘bear’ A′1 =‘tiger’ A′2 =‘cat’
MX , X = A,A′ P (A1)=0.5309 P (A2)=0.4691 P (A′1)=0.7284 P (A′2)=0.2716

‘Acts’ B1 =‘growls’ B2=‘whinnies’ B′1 =‘snorts’ B′2 =‘meows’
MY , Y = B,B′ P (B1)=0.4815 P (B2)=0.5815 P (B′1)=0.321 P (B′2)=0.679

‘Animal Acts’ ‘horse growls’ ‘horse whinnies’ ‘bear growls’ ‘bear whinnies’
MAB P (A1, B1) = 0.049 P (A1, B2) = 0.630 P (A2, B1) = 0.259 P (A2, B2) = 0.062

‘Animal Acts’ ‘horse snorts’ ‘horse meows’ ‘bear snorts’ ‘bear meows’
MA,B′ P (A1, B

′
1) = 0.593 P (A1, B

′
2) = 0.025 P (A2, B

′
1) = 0.296 P (A2, B

′
1) = 0.086

‘Animal Acts’ ‘tiger growls’ ‘tiger whinnies’ ‘cat growls’ ‘cat whinnies’
MA′,B P (A′1, B1) = 0.778 P (A′1, B2) = 0.086 P (A′2, B1) = 0.086 P (A′2, B1) = 0.049

‘Animal Acts’ ‘tiger snorts’ ‘tiger meows’ ‘cat snorts’ ‘cat meows’
MA′,B′ P (A′1, B

′
1) = 0.148 P (A′1, B

′
2) = 0.086 P (A′2, B

′
1) = 0.099 P (A′2, B

′
2) = 0.667
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that A and B are entangled concepts can represent this data [AS11c, AS14]
even though the marginal law is not satisfied.

Other tests have been carried in psychological experiments confirming
entanglement in conceptual combinations [BKR+12, BKRS13, KRBS10,
AG05b]. The conclusion is that concept combinations entail semantic cor-
relations that might not be obtained in a classical probabilistic framework.
Since quantum entanglement can handle these semantic correlations, the
quantum description of joint entities becomes a suitable mathematical frame-
work to represent concept combinations.
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Chapter 4

Two Quantum Models for
the Conjunction and
Disjunction of Concepts

Most prominent authors in the study of concept combinations believe
that the problem of non-compositionality of concepts (§2.2.3) is the con-
sequence of non-trivial semantic interactions between the combined con-
cepts [Ham88a]. This interaction can be explained in terms of salient con-
cept’s properties [SO81, SO82, Rip95], specialized [CM84, Mur88] or con-
strained schematas [CK00, CK01], composite prototypes [Ham88b, Ham07],
or some combinations of these [WL98, Wis96, Gag00]. Therefore, although
they differ in their mathematical approaches, most models look for a coher-
ence mechanism that explains the meaning of concepts combinations [Tha97].
The experiments carried out by James Hampton [Ham88b, Ham88a] and
others [SO81, SO82, SDBVMR98] show that such coherence mechanism can-
not be accounted for using classical or fuzzy logic.

In §3.5.2, we used a simple quantum model to represents some of the cases
of overextension and underextension found in experiments with conceptual
combinations. This model includes an interference term that depends on the
phase angles used to represent the concepts in combination. Phase angles
can therefore be interpreted as a mathematical realization of the coherence
mechanism sought by cognitive psychologists.

This chapter further explores quantum modeling of concept combina-
tions. In particular, in §4.1 we analyze the Hilbert space model of concept
combinations discussed in §3.5.2, and in §4.2 we introduce another type
of modeling for concept combinations based on tensor products of Hilbert
spaces7. The exploration presented here is theoretical; we focus on the mod-

7Tensor products were introduced in §3.6 to model the concept combination ‘Animal
Acts’ expressed by a noun-verb combination. The model presented in §4.2 is used for

49



4.1. Modeling on a Hilbert Space

eling power of the introduced frameworks.

4.1 Modeling on a Hilbert Space

The Hilbert space model introduced in §3.5.2 is useful to represent most
cases of overextension of conjunctions and underextension of disjunctions
found in experimental data. However, some cases of extreme overextension
and underextension, as well as some combinations that correspond to clas-
sical probabilistic data (see Defs. 2.1 and 2.3) cannot be modeled by the
Hilbert space model. In this section, we will determine what conditions are
required to find a representation for concept combinations in the Hilbert
space model. Rather than focus on a particular combination of concepts, we
assume the existence of two concepts A and B, and of a combined concept
AB that can represent either conjunction or disjunction.

4.1.1 Scope and Dimensionality of a Hilbert Space Model

To explore the type of conceptual combinations that can be represented
in the Hilbert space model, we focus on the dimension n of the Hilbert space
Cn equipped with the standard inner product. First, recall that the Hilbert
space model of concept combinations requires vectors |A〉, |B〉 ∈ H, and an
orthogonal projector M : H → H, such that the following conditions are
satisfied8:

〈A|A〉 = 〈B|B〉 = 1, (4.1)

〈A|B〉 = 0, (4.2)

〈A|M|A〉 = µ(A), 〈B|M|B〉 = µ(B), (4.3)

µ(AB) =
1

2
(µ(A) + µ(B)) + <(〈A|M|B〉). (4.4)

Next, we determine the type of membership data that is compatible with
conditions (4.1)–(4.4). We look at the particular cases H = C2 and C3

separately, then show that the general case, Cn for n > 3, is equivalent to
the case C3.

conjunctions and disjunctions of concepts referred by nouns, so it is different.
8In this chapter we are concerned with the representation of exemplars individually.

For this reason, we will simplify the notation denoting the operator Mx by M and the
membership weights µx(·) by µ(·).
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4.1. Modeling on a Hilbert Space

Theorem 4.1. Let µ(A), µ(B), and µ(AB) denote the membership weights
of an exemplar with respect to concepts A, B, and a combination of these
concepts denoted by AB. The membership weights are compatible with a
complex Hilbert space model H = C2 if and only if one of the following cases
is satisfied

1. µ(A) = µ(B) = µ(AB) = 0,

2. µ(A) = µ(B) = µ(AB) = 1,

3. µ(A)+µ(B) = 1, and µ(AB) ∈ [1
2−
√
µ(A)(1− µ(A)), 1

2+
√
µ(A)(1− µ(A))].

Proof. We use conditions (4.1)–(4.4) to derive the cases stated in the theo-
rem.

⇐: Note that 1 and 2 are trivially satisfied by choosing M to be a zero-
and two-dimensional projector respectively. Then, conditions (4.1)–(4.4) are
satisfied by choosing |A〉 and |B〉 to be any two unit vectors that are or-
thogonal.

⇒: Let M be a one-dimensional projector. Without loss of generality,
we set M(x, y)→ (x, 0), and

|A〉 = (eiα1a1, e
iα2a2),

|B〉 = (eiβ1b1, e
iβ2b2).

(4.5)

Applying condition (4.3), we obtain

a1 =
√
µ(A), and b1 =

√
µ(B). (4.6)

Next, we use condition (4.1) to obtain

a2 =
√

1− µ(A), and b2 =
√

1− µ(B). (4.7)

Hence, condition (4.4) becomes

µ(AB) =
1

2

(
µ(A) + ei(α1−β1)

√
µ(A)µ(B) + ei(β1−α1)

√
µ(A)µ(B) + µ(B)

)
=

1

2
(µ(A) + µ(B)) +

√
µ(A)µ(B) cos(β1 − α1).

(4.8)
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4.1. Modeling on a Hilbert Space

Since | cos(β1 − α1)| ≤ 1,

µ(AB) ∈
[

1

2
(µ(A) + µ(B))−

√
µ(A)µ(B),

1

2
(µ(A) + µ(B)) +

√
µ(A)µ(B)

]
.

(4.9)
We have considered the conditions given by Eqs. (4.1), (4.3), and (4.4).

Next, we apply condition (4.2) to obtain√
µ(A)µ(B) cos(β1 − α1) =

√
1− µ(A)

√
1− µ(B) cos(β2 − α2), (4.10)√

µ(A)µ(B) sin(β1 − α1) =
√

1− µ(A)
√

1− µ(B) sin(β2 − α2). (4.11)

We square both sides and add Eqs. (4.10) and (4.11) to obtain

µ(A)µ(B) = (1− µ(A))(1− µ(B)), (4.12)

which is equivalent to

µ(A) + µ(B) = 1. (4.13)

Sustituting Eq. (4.13) in Eq. (4.8) yields

µ(AB) =
1

2
+
√
µ(A)(1− µ(A)) cos(β1 − α1). (4.14)

Therefore, if |A〉, |B〉, and M satisfy conditions (4.1)–(4.4), then

µ(A) + µ(B) = 1, and

µ(AB) ∈ [
1

2
−
√
µ(A)(1− µ(A)),

1

2
+
√
µ(A)(1− µ(A))].

(4.15)

We obtain the other side of the implication by choosing |A〉 and |B〉 to satisfy
Eqs. (4.6) and (4.7), and α1 and β1 such that condition (4.4) is satisfied.

Because Theorem 4.1 requires that µ(A) + µ(B) = 1, the Hilbert space
model with H = C2 is strongly constrained. Nonetheless, this simple model
can be used to demonstrate how a Hilbert space model with interference
extends classical models of concept combinations.

Consider the case µ(A) + µ(B) = 1. From a classical perspective, this is
equivalent to

A = Not B. (4.16)
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Therefore, in a classical probabilistic model

µ(A and B) = µ(Not B and B) = 0, (4.17)

µ(A or B) = µ(Not B or B) = 1. (4.18)

The Hilbert space model is more flexible because µ(AB) can be either overex-
tended or underextended. For example, if µ(A) = µ(B) = 1

2 , then for all
x ∈ [0, 1] there are angles α1 and β1 such that µ(A and B) = x.

We use Fig. 4.1 to describe the modeling scope of the C2 model. The
membership weight, µ(A), is given on the x-axis, and can also be represented
by the identity function plotted on the diagonal red line. The membership
weight, µ(B) = 1 − µ(A), is represented by the antidiagonal red line. The
blue curve surrounding the shaded area corresponds to the maximal and
minimal membership weight, µ(AB), that the concept combination AB can
assume in the C2 model. Therefore, the shaded area corresponds to the
region of overextension and underextension that this model can represent.
In particular, 1 denotes the single underextended/overextended region, 2
denotes the double underextended region, and 3 denotes the double overex-
tended region.

Note that not all underextended, or overextended, cases admit a repre-
sentation in this model. Also, since the shaded area does not contain the two

Figure 4.1: Hilbert space model in C2 for concept combination with µ(A) +
µ(B) = 1.
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4.1. Modeling on a Hilbert Space

red curves entirely, this model cannot represent all possible classical cases.
For example, when µ(A) = 0.9, µ(B) = 0.1, and µ(AB) = 0.1 there is no
representation in the C2 model.

We now analyze the Hilbert space model in C3. We introduce the fol-
lowing notation to facilitate the presentation of the mathematical results:

ave(AB) = µ(A)+µ(B)
2 , (4.19)

dev(AB) =
√

min(µ(A)µ(B), (1− µ(A))(1− µ(B))). (4.20)

Theorem 4.2. Let µ(A), µ(B), and µ(AB) denote the membership weights
of an exemplar with respect to concepts A, B, and a combination of these
concepts denoted by AB. The membership weights are compatible with a
complex Hilbert space model H = C3 if and only if

µ(AB) ∈ [ave(AB)− dev(AB), ave(AB) + dev(AB)]. (4.21)

Proof. We will show how conditions (4.1)–(4.4) are used to derive Eq. (4.21).

First, if M is a zero- or three-dimensional projector, then

µ(A) = µ(B) = µ(AB) = 0, and

µ(A) = µ(B) = µ(AB) = 1,
(4.22)

respectively. Thus Eq. (4.21) is trivially satisfied. Therefore, conditions (4.1)–
(4.4) are satisfied by choosing |A〉 and |B〉 to be any two unit orthogonal
vectors.

The remaining cases are M is a one- or a two-dimensional projector.
We apply conditions (4.1)–(4.4) to vectors |A〉 and |B〉 in these two cases
separately, and then combine the two analyses to derive Eq. (4.21).

If M is a one-dimensional projector, then, without loss of generality, set
M(x, y, z)→ (x, 0, 0), and

|A〉 = (eiα1a1, e
iα2a2, e

iα3a3),

|B〉 = (eiβ1b1, e
iβ2b2, e

iβ3b3).
(4.23)

Note that conditions (4.1) and (4.3) are satisfied by choosing the coeffi-
cients in |A〉 and |B〉 as follows:
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a1 =
√
µ(A), a2 =

√
λ
√

1− µ(A) , a3 =
√

1− λ
√

1− µ(A),

b1 =
√
µ(B), b2 =

√
κ
√

1− µ(B) , b3 =
√

1− κ
√

1− µ(B),
(4.24)

with 0 ≤ λ ≤ 1, and 0 ≤ κ ≤ 1. Moreover, condition (4.4) implies that
µ(AB) is given by

µ(AB) =
1

2
(µ(A) + µ(B)) +

√
µ(A)µ(B) cos(α1 − β1). (4.25)

We apply condition (4.2) to obtain

−
√
µ(A)µ(B) cos(γ1) =

√
(1− µ(A))(1− µ(B))F (λ, κ, cos(γ2), cos(γ3)), (4.26)

−
√
µ(A)µ(B) sin(γ1) =

√
(1− µ(A))(1− µ(B))F (λ, κ, sin(γ2), sin(γ3)), (4.27)

where

F (λ, κ, f(x), f(y)) =
(√

λκf(x) +
√

(1− λ)(1− κ)f(y)
)
. (4.28)

Note that F (λ, κ, cos(γ2), cos(γ3)), and F (λ, κ, sin(γ2), sin(γ3)) are convex
combinations of

√
λκ and

√
(1− λ)(1− κ). Therefore,

|F (λ, κ, cos(γ2), cos(γ3))| ≤ |
√
λκ|+ |

√
(1− λ)(1− κ)|,

|F (λ, κ, sin(γ2), sin(γ3))| ≤ |
√
λκ|+ |

√
(1− λ)(1− κ)|.

(4.29)

Set

√
λ = cos(θ1),

√
κ = cos(θ2), (4.30)

for θ1, θ2 in [0, π2 ]. Then

√
1− λ = sin(θ1),
√

1− κ = sin(θ2).
(4.31)

Substituting Eqs. (4.30) and (4.31) in Eq. (4.29) we obtain

|F (λ, κ, cos(γ2), cos(γ3))| ≤ | cos(θ1 − θ2)| ≤ 1,

|F (λ, κ, sin(γ2), sin(γ3))| ≤ | sin(θ1 − θ2)| ≤ 1.
(4.32)
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Since |F (λ, κ, cos(γ2), cos(γ3))| ≤ 1, Eq. (4.26) implies that

|
√
µ(A)µ(B) cos(γ1)| ≤

√
(1− µ(A))(1− µ(B)). (4.33)

Therefore, the interference term is bounded as follows

|
√
µ(A)µ(B) cos(γ1)| ≤ min

(√
µ(A)µ(B),

√
(1− µ(A))(1− µ(B))

)
= dev(AB).

(4.34)

Next, combining Eqs. (4.26) and (4.27). We obtain

µ(A)µ(B) = (1− µ(A))(1− µ(B))F̂ (λ, κ, γ2, γ3), (4.35)

where

F̂ (λ, κ, γ2, γ3) = F (λ, κ, cos(γ2), cos(γ3))2 + F (λ, κ, sin(γ2), sin(γ3))2.
(4.36)

Thus,

µ(A) + µ(B) = 1 + µ(A)µ(B)

(
1− 1

F̂ (λ, κ, γ2, γ3)

)
. (4.37)

Using the parametrization for λ and κ given by Eq. (4.30), and applying
Eq. (4.32) to Eq. (4.36), we obtain

0 ≤ F̂ (λ, κ, γ2, γ3) ≤ cos(θ1 − θ2)2 + sin(θ1 − θ2)2 = 1. (4.38)

Next, applying Eq. (4.38) to Eq. (4.37) yields

µ(A) + µ(B) ≤ 1. (4.39)

Therefore, when M is a one-dimensional projector, conditions (4.1)–(4.4)
imply

µ(AB) ∈ [ave(AB)− dev(AB), ave(AB) + dev(AB)], and

µ(A) + µ(B) ≤ 1.
(4.40)

Next, consider the case M is a two-dimensional projector. Without loss
of generality we can assume M(x, y, z) → (x, y, 0). In this case, we satisfy
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conditions (4.1) and (4.3) by choosing the coefficients in |A〉 and |B〉 as
follows

a1 =
√
λ
√
µ(A), a2 =

√
1− λ

√
µ(A) , a3 =

√
1− µ(A),

b1 =
√
κ
√
µ(B), b2 =

√
1− κ

√
µ(B) , b3 =

√
1− µ(B),

(4.41)

with 0 ≤ λ ≤ 1, and 0 ≤ κ ≤ 1. Moreover, Eq. (4.4) implies that µ(AB) is
given by

µ(AB) =
1

2
(µ(A) + µ(B)) +

√
µ(A)µ(B)F (λ, κ, cos(γ1), cos(γ2)). (4.42)

We apply condition (4.2) to obtain

√
µ(A)µ(B)F (λ, κ, cos(γ1), cos(γ2)) = −

√
(1− µ(A))(1− µ(B)) cos(γ3).

(4.43)
Since |F (λ, κ, cos(γ1), cos(γ2))| ≤ 1, Eq. (4.43) implies that

|
√
µ(A)µ(B)F (λ, κ, cos(γ1), cos(γ2))| ≤ min(

√
µ(A)µ(B),

√
(1− µ(A))(1− µ(B)))

= dev(AB).

(4.44)

We repeat the procedure used in the one-dimensional case to deduce

µ(A)µ(B)F̂ (λ, κ, γ1, γ2) = (1− µ(A))(1− µ(B)). (4.45)

Since 0 ≤ F̂ (λ, κ, γ1, γ2) ≤ 1, Eq. (4.45) yields

1 ≤ µ(A) + µ(B). (4.46)

Therefore, when M is a two-dimensional projector, conditions (4.1)–(4.4)
imply

µ(AB) ∈ [ave(AB)− dev(AB), ave(AB) + dev(AB)], and

1 ≤ µ(A) + µ(B).
(4.47)

Thus, merging conditions (4.40) and (4.47) completes the proof.
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Theorem 4.2 shows that some of the restrictions of the model in C2 are
removed in the C3 model. Moreover, the cases with µ(A)+µ(B) ≤ 1 are rep-
resented by a one-dimensional projector, and the cases with 1 ≤ µ(A)+µ(B)
are represented by a two-dimensional projector.

Because extending the Hilbert space model from dimension two to di-
mension three leads to a reduction of constraints in the model, we might
suspect that adding dimensions would lead to further reductions. However,
we now show that the constraints of the C3 model cannot be relaxed in Cn

with n > 3. To do so, we will prove that the case Cn, for n > 3, yields the
same constraints on µ(AB).

Theorem 4.3. Let µ(A), µ(B), and µ(AB) denote the membership weights
of an exemplar with respect to concepts A, B, and a combination of these
concepts denoted by AB. If the membership weights are compatible with a
complex Hilbert space model in Cn, for n > 3, then

µ(AB) ∈ [ave(AB)− dev(AB), ave(AB) + dev(AB)]. (4.48)

Proof. We show how conditions (4.1)–(4.4) can be used to derive Eq. (4.48).
First note that Eq. (4.48) is trivially satisfied when M is a zero- or n-
dimensional projector. Therefore, conditions (4.1)–(4.4) are satisfied when
we choose |A〉 and |B〉 to be any two unit orthogonal vectors.

Let M be a k-dimensional projector. Without loss of generality, we set
M(x1, ..., xn)→ (x1, ..., xk, 0, ..., 0) with 0 < k < n, and

|A〉 = (eiα1a1, e
iα2a2, ..., e

iαnan),

|B〉 = (eiβ1b1, e
iβ2b2, ..., e

iβnbn).
(4.49)

Conditions (4.1) and (4.3) are satisfied by defining the coefficients in |A〉
and |B〉 as follows:

ai = λi
√
µ(A), and bi = κi

√
µ(B), for i = 1, ..., k, (4.50)

ai = λi
√

1− µ(A), and bi = κi
√

1− µ(B), for i = k + 1, ..., n. (4.51)

Then,
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|A〉 = (eiα1λ1

√
µ(A), ..., eiαkλk

√
µ(A), eiαk+1λk+1

√
1− µ(A), ..., eiαnλn

√
1− µ(A)),

|B〉 = (eiβ1κ1

√
µ(B), ..., eiβkκk

√
µ(B), eiβk+1κk+1

√
1− µ(B), ..., eiβnκn

√
1− µ(B)),

(4.52)

and condition (4.1) implies

k∑
i=1

λ2
i =

n∑
i=k+1

λ2
i =

k∑
i=1

κ2
i =

n∑
i=k+1

κ2
i = 1. (4.53)

Therefore, condition (4.4) becomes

〈A|M |B〉 =
√
µ(A)µ(B)

(
k∑
i=1

λiκi cos(γi)

)
, (4.54)

where γi = βi − αi. Note that Eq. (4.53) allow us to apply the Cauchy-
Schwarz inequality in Eq. (4.54) to obtain

− 1 ≤
k∑
i=1

λiκi cos(γi) ≤ 1. (4.55)

Hence, condition (4.4) gives

µ(AB) ∈ [ave(AB)−
√
µ(A)µ(B), ave(AB) +

√
µ(A)µ(B)]. (4.56)

Next, condition (4.2) implies that

√
µ(A)µ(B)

(
k∑
i=1

λiκi cos(γi)

)

= −
√

(1− µ(A))(1− µ(B))

(
n∑

i=k+1

λiκi cos(γi)

)
,

(4.57)

and

√
µ(A)µ(B)

(
k∑
i=1

λiκi sin(γi)

)

= −
√

(1− µ(A))(1− µ(B))

(
n∑

i=k+1

λiκi sin(γi)

)
.

(4.58)
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Applying condition (4.4) in Eq. (4.57), yields

µ(AB)− ave(AB) +
√

(1− µ(A))(1− µ(B))

(
n∑

i=k+1

λiκi cos(γi)

)
= 0.

(4.59)
We apply Cauchy-Schwarz inequality to Eq. (4.59) to obtain

− 1 ≤
n∑

i=k+1

λiκi cos(βi − αi) ≤ 1. (4.60)

Therefore, Eqs. (4.59) and (4.60) yield

µ(AB) ∈ [ave(AB)−
√

(1− µ(A))(1− µ(B)), ave(AB)+
√

(1− µ(A))(1− µ(B))].
(4.61)

Combining the constraints in Eqs. (4.56) and (4.61) completes the proof.

Theorem 4.2 establishes a limit to the Hilbert space modeling approach
by limiting the values µ(A), µ(B), and µ(AB) can assume. Moreover, The-
orem 4.3 confirms that a complex Hilbert space of dimension 3 is sufficient
to reach the full modeling power of this model.

4.2 Modeling in the Tensor Product of Hilbert
Spaces

The idea of applying the tensor product to model concept conjunctions
and disjunctions was first proposed in [AG05b], and has since been applied
to other types of combinations (see §3.6). In order to introduce the notation
and probabilistic structure of the tensor product model, we present a sim-
plified version of this model in §4.2.1, and then introduce the general model
in §4.2.2.

4.2.1 A Simple Tensor Product Model

We can build a simple tensor product model for the membership weight
of an exemplar with respect to concepts A, B, and their combination AB
by using the tensor product model introduced in §4.1. Namely, we use
unit vectors |A〉 and |B〉 to represent the state of concepts A and B, and a
projector M : H → H to measure the membership weights. Hence,
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µ(A) = 〈A|M|A〉,
µ(B) = 〈B|M|B〉.

(4.62)

The state |C〉, representing the state of the combined concept AB, is given
by the tensor product of |A〉 and |B〉:

|C〉 = |A〉 ⊗ |B〉. (4.63)

Note that the membership operator M can be extended to the tensor
product H⊗H by the operators MA = M⊗1 and MB = 1⊗M respectively.
Indeed,

〈C|MA|C〉 = (〈A| ⊗ 〈B|)M⊗ 1(|A〉 ⊗ |B〉) = 〈A|M|A〉 ⊗ 〈B|1|B〉 = µ(A),

〈C|MB|C〉 = (〈A| ⊗ 〈B|)1⊗M(|A〉 ⊗ |B〉) = 〈A|1|A〉 ⊗ 〈B|M|B〉 = µ(B).

(4.64)

If we want to measure the membership weight of an exemplar with respect
to the conjunction of concepts A and B, we must determine whether the
exemplar is a member of both concepts simultaneously. In this case, the
membership operator for the conjunction of two concepts is given by

M∧ = M⊗M. (4.65)

The membership weight of an exemplar with respect to the conjunction
of concepts A and B is given by

µ(A and B) = 〈C|M∧|C〉 = (〈A| ⊗ 〈B|)M⊗M(|A〉 ⊗ |B〉)
= 〈A|M|A〉 ⊗ 〈B|M|B〉 = µ(A)µ(B).

(4.66)

Similarly, if we want to measure the membership weight of the exemplar with
respect to the disjunction of concepts A or B, we introduce the operator

M∨ = M⊗M + M⊗ (1−M) + (1−M)⊗M

= 1⊗ 1− (1−M)⊗ (1−M).
(4.67)

Hence, the membership weight of the exemplar with respect to the disjunc-
tion of the concepts A or B is given by
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µ(A or B) = 〈C|M∨|C〉
= (〈A| ⊗ 〈B|)M⊗M + M⊗ (1−M) + (1−M)⊗M(|A〉 ⊗ |B〉)
= 〈A|M|A〉〈B|M|B〉+ 〈A|M|A〉〈B|1−M|B〉+ 〈A|1−M|A〉〈B|M|B〉
= µ(A)µ(B) + µ(A)(1− µ(B)) + (1− µ(A))µ(B)

= µ(A) + µ(B)− µ(A)µ(B).

(4.68)

Note that the formulas for the membership weight of the conjunction
and disjunction of two concepts, given by Eqs. (4.66) and (4.68) respectively,
are equivalent to the classical probability formulas where the membership
estimation for concepts A and B are independent events.

4.2.2 Generalizing the States in the Tensor Product Model

The probabilistic independence of the model presented in §4.2.1 is a con-
sequence of the choice of the state vector representing the concept combina-
tion and of the membership operator. Specifically, the state of the combined
concept |AB〉 is given by the tensor product |C〉 = |A〉 ⊗ |B〉 of the states
of the two former concepts |A〉 and |B〉, and the operators MA, MB, M∧,
and M∨ are built from an operator M that acts on the two sides of the
tensor product space separately. This choice for the state and operators
is a simplified application of the tensor product model because the state
and the operators are separable (see Appendix 6.3.2); it means that we can
identify the first part of the tensor space with the concept A, and the sec-
ond part with the concept B. We now assume a general state |C〉 that is
not necessarily separable. This means that we do not know what part of
|C〉 is inherited from the state of the concept A or the state of the concept B.

To obtain the membership weights for the single concepts A and B from
the state |C〉, we require two projection operators MA,MB : H⊗H → H⊗H
that recover the membership weights µ(A) and µ(B) when applied to the
vector |C〉. Therefore

〈C|MA|C〉 = µ(A),

〈C|MB|C〉 = µ(B).
(4.69)

We also require two membership operators M∧,M∨ : H ⊗ H → H ⊗ H
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representing the measurement with respect to concept conjunction and dis-
junction:

〈C|M∧|C〉 = µ(A and B), (4.70)

〈C|M∨|C〉 = µ(A or B). (4.71)

Therefore, the general tensor product model for concept combinations
is given by a four-tuple (|C〉,MA,MB,M∧) satisfying conditions (4.69)
and (4.70) for conjunction, and by a four-tuple (|C〉,MA,MB,M∨) satisfy-
ing conditions (4.69) and (4.71) for disjunction. For simplicity, we will as-
sume that the membership operators MA,MB,M∧, and M∨ are built from
a measurement operator M : H → H as in Eqs. (4.62), (4.65), and (4.67).

We now build a concrete representation of this model in a complex tensor
space. Let |C〉 ∈ Cn⊗Cn and {|i〉}ni=1 be the canonical basis of Cn. Without
loss of generality, let M be the orthogonal projector on the subspace of Cn
spanned by the basis elements |1〉, ..., |r〉, for r < n:

M(x1, ..., xn)→ (x1, ..., xr, 0, ..., 0).

Next, let |C〉 be a unit vector in Cn ⊗ Cn. That is,

|C〉 =
n∑
i=1

n∑
j=1

cije
iγij |i〉 ⊗ |j〉, (4.72)

and

〈C|C〉 =

n∑
i,j=1

cije
iγij 〈i| ⊗ 〈j|

n∑
k,l=1

ckle
iγkl |k〉 ⊗ |l〉

=
n∑

i,j,k,l=1

cijckle
i(−γij+γkl)〈i|k〉〈j|l〉

=
n∑

i,j=1

c2
ij = 1.

(4.73)

We can now apply condition (4.69) to the vector |C〉:
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〈C|MA|C〉 = 〈C|M⊗ 1|C〉 =
n∑
i=1

n∑
j=1

cije
−iγij 〈i| ⊗ 〈j|M⊗ 1|

n∑
k=1

n∑
l=1

ckle
iγkl |k〉 ⊗ |l〉

=

n∑
i=1

n∑
j=1

cije
−iγij 〈i| ⊗ 〈j|

r∑
k=1

n∑
l=1

ckle
iγkl |k〉 ⊗ |l〉

=

r∑
i,j=1

n∑
k,l=1

cijckle
i(−γij+γkl)〈i|k〉〈j|l〉

=

r∑
i=1

n∑
j=1

c2
ij = µ(A),

(4.74)

and

〈C|MB|C〉 = 〈C|1⊗M|C〉 =

n∑
i=1

n∑
j=1

cije
−iγij 〈i| ⊗ 〈j|1⊗M|

n∑
k=1

n∑
l=1

ckle
iγkl |k〉 ⊗ |l〉

=
n∑
i=1

n∑
j=1

cije
−iγij 〈i| ⊗ 〈j|

n∑
k=1

r∑
l=1

ckle
iγkl |k〉 ⊗ |l〉

=
n∑

i,k=1

r∑
j,l=1

cijckle
i(−γij+γkl)〈i|k〉〈j|l〉

=

n∑
i=1

r∑
j=1

c2
ij = µ(B).

(4.75)

For the case of conjunction, we apply condition (4.70):

〈C|M∧|C〉 = 〈C|M⊗M|C〉

=

n∑
i=1

n∑
j=1

cije
−iγij 〈i| ⊗ 〈j|M⊗M|

n∑
k=1

n∑
l=1

ckle
iγkl |k〉 ⊗ |l〉

=
r∑
i=1

r∑
j=1

c2
ij = µ(A and B).

(4.76)
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Finally, we apply condition (4.71) for the case of disjunction:

〈C|M∨|C〉 = 〈C|MA + MB −M∧|C〉
= 〈C|(M⊗M + M⊗ (1−M) + (1−M)⊗M|C〉,

=

r∑
i=1

n∑
j=1

c2
ij +

n∑
i=1

r∑
j=1

c2
ij −

r∑
i=1

r∑
j=1

c2
ij

=
n∑
i=1

n∑
j=1

c2
ij −

n∑
i=r+1

n∑
j=r+1

c2
ij

= 1−
n∑

i=r+1

n∑
j=r+1

c2
ij = µ(A or B).

(4.77)

With these results, we can prove that the constraints of the tensor product
model are exactly those of the classical probabilistic model.

Definition 4.4. Let µ = {µ(A), µ(B), µ(A and B)} be a triplet denoting
the membership weights of concepts A, B, and their conjunction A and B.
We say that the triplet µ admits a representation in the tensor product
space Cn ⊗ Cn if there exists a unit vector |C〉 ∈ Cn ⊗ Cn, and an operator
M : Cn → Cn, such that conditions (4.73)–(4.76) are satisfied.

Theorem 4.5. Let µ = {µ(A), µ(B), µ(A and B)} be a triplet denoting the
membership weights of concepts A, B, and their conjunction A and B. The
triplet µ is classical conjunction data if and only if it admits a representation
in a tensor product space Cn ⊗ Cn with n = 2.

Proof. If µ admits a representation in the tensor product space C2 ⊗ C2,
there exists |C〉 ∈ C2 ⊗ C2 and an operator M such that (4.73)–(4.76) are
satisfied. If µ(A) = µ(B) = µ(A and B) = 0 or 1, we can choose |C〉 to be
any unit vector in C2⊗C2 and M to be a zero- or two-dimensional projector
respectively. Otherwise, let {|1〉, |2〉} be the canonical base of C2. Without
loss of generality, we set |C〉 to be

|C〉 = c11e
iγ11 |1〉⊗ |1〉+ c12e

iγ12 |1〉⊗ |2〉+ c21e
iγ21 |2〉⊗ |1〉+ c22e

iγ22 |2〉⊗ |2〉,
(4.78)

and let M be a one-dimensional projector into the subspace determined by
|1〉. With this choice,
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µ(A) = 〈C|M⊗ 1|C〉 = c2
11 + c2

12,

µ(B) = 〈C|1⊗M|C〉 = c2
11 + c2

21,

µ(A and B) = 〈C|M⊗M|C〉 = c2
11.

(4.79)

Then, clearly

µ(A and B) ≤ µ(A), (4.80)

µ(A and B) ≤ µ(B), and (4.81)

µ(A) + µ(B)− µ(A and B) = c2
11 + c2

12 + c2
21 ≤ 1. (4.82)

Thus, µ is classical conjunction data. The other implication is proven
by taking M to be the same one-dimensional projector, |C〉 such that

c11 =
√
µ(A and B),

c12 =
√
µ(A)− µ(A and B),

c21 =
√
µ(B)− µ(A and B),

c22 =
√

1− µ(A)− µ(B) + µ(A and B),

(4.83)

and γij = 0 for i, j = 1, 2.

Definition 4.6. Let µ = {µ(A), µ(B), µ(A or B)} be a triplet denoting the
membership weights of concepts A, B, and their disjunction A or B. We
say that the triplet µ admits a representation in the tensor product space
Cn⊗Cn if there exists a unit vector |C〉 ∈ Cn and an operator M : Cn → Cn
such that conditions (4.73)–(4.75) and (4.77) are satisfied.

Theorem 4.7. Let µ = {µ(A), µ(B), µ(A or B)} be a triplet denoting the
membership weights of concepts A, B, and their disjunction A or B. The
triplet µ is classical disjunction data if and only if it admits a representation
in a tensor product space Cn ⊗ Cn with n = 2.

Proof. If µ admits a representation in the tensor product space C2 ⊗ C2,
there exists |C〉 ∈ C2 ⊗ C2 and an operator M such that conditions (4.73)–
(4.75) and (4.77) are satisfied. If µ(A) = µ(B) = µ(A or B) = 0 or 1,
we can choose |C〉 to be any unit vector in C2 ⊗ C2 and M to be a zero-
or two-dimensional projector respectively. Otherwise, let {|1〉, |2〉} be the
canonical basis of C2. Without loss of generality set |C〉 to be

66



4.3. Examples and Comparisons

|C〉 = c11e
iγ11 |1〉⊗ |1〉+ c12e

iγ12 |1〉⊗ |2〉+ c21e
iγ21 |2〉⊗ |1〉+ c22e

iγ22 |2〉⊗ |2〉,
(4.84)

and let M be a one-dimensional projector into the subspace determined by
|1〉. With this choice,

µ(A) = 〈C|M⊗ 1|C〉 = c2
11 + c2

12,

µ(B) = 〈C|1⊗M|C〉 = c2
11 + c2

21,

µ(A or B) = 〈C|M⊗M + M⊗ (1−M) + (1−M)⊗M|C〉 = c2
11 + c2

12 + c2
21.

(4.85)

Then, clearly

µ(A) ≤ µ(A or B),

µ(B) ≤ µ(A or B), and

µ(A) + µ(B)− µ(A or B) = c2
11 ≥ 0.

(4.86)

Hence, µ is classical disjunction data. The other implication is proven by
taking M to be the same one-dimensional projector, |C〉 such that

c11 =
√
µ(A) + µ(B)− µ(A or B),

c12 =
√
µ(A or B)− µ(B),

c21 =
√
µ(A or B)− µ(A),

c22 =
√

1− µ(A or B),

(4.87)

and γij = 0 for i, j = 1, 2.

Theorems 4.5 and 4.7 give the strict equivalence between classical con-
junction and disjunction data and the models of conjunctions and disjunc-
tions built in C2 ⊗ C2.

4.3 Examples and Comparisons

In this section, we compare the scope of the two models developed in
§4.1 and §4.2. In particular, we use the experimental data presented in
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Hampton [Ham88b, Ham88a] to show examples of the two types of repre-
sentations, and compute the number of conceptual combinations that each
model can represent.

There are four different cases. The first case applies when estimations
can be represented by both the Hilbert space and tensor product models,
the next two cases when only one of the models can represent the data, and
the last case, when none of the models can represent the data. For simplicity
we show only explicit examples for data on conjunction.

The first example consists of concepts A =‘Machine’ and B =‘Vehicle,’
and the exemplar p5 =‘sailboat.’ In this case, we have

µ5(A) = 0.56, µ5(B) = 0.8, and µ5(A and B) = 0.42,

ave5(AB) = 0.68,

dev5(AB) = 0.297.

(4.88)

By Theorem 4.2, since

ave5(AB)− dev5(AB) ≤ µ5(A and B) ≤ ave5(AB) + dev5(AB), (4.89)

the membership estimations can be modeled in the Hilbert space model.
Because µ5(A)+µ5(B) > 1, M is a two-dimensional projector. We represent
this case by choosing

|A〉 = (−0.43 + 0.3i, 0.02− 0.53i, 0.58 + 0.32i), and

|B〉 = (0.63, 0.63, 0.45).
(4.90)

In addition, since

µ5(A)− µ5(A and B) = 0.14,

µ5(B)− µ5(A and B) = 0.38, and

µ5(A) + µ5(B)− µ5(A and B) = 0.06,

(4.91)

by Theorem 4.5 we can also construct a representation in the tensor space
model. Here we take M to be a one-dimensional projector, and

|C〉 = 0.64|1〉 ⊗ |1〉+ 0.37|1〉 ⊗ |2〉+ 0.62|2〉 ⊗ |1〉+ 0.24|2〉 ⊗ |2〉. (4.92)
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In the second example, the data can be represented only in a Hilbert
space model. Consider the concepts A =‘Machine’ and B =‘Vehicle,’ and
the exemplar p12 =‘skateboard.’ We have

µ12(A) = 0.28, µ12(B) = 0.84, and µ12(A and B) = 0.34,

ave12(AB) = 0.56,

dev12(AB) = 0.339.

(4.93)

By Theorem 4.2, since

ave12(AB)−dev12(AB) ≤ µ12(A and B) ≤ ave12(AB)+dev12(AB), (4.94)

the membership estimations can be modeled in the Hilbert space model:

|A〉 = (0.034− 0.37i,−0.37− 0.026i, 0.55 + 0.65i), and

|B〉 = (0.65, 0.65, 0.4).

However, since µ12(A and B) > µ12(A), this case cannot be modeled in the
tensor product space.

In the third example, the data can only be represented in the tensor
product model. Consider the concepts A =‘Bird’ and B =‘Pet,’ and the
exemplar p14 =‘goldfish.’ We have

µ14(A) = 0, µ14(B) = 1, and µ14(A and B) = 0,

ave14(AB) = 0.5,

dev14(AB) = 0.

(4.95)

In this case, we cannot provide a Hilbert space representation of the data
because

0 = µ14(A and B) < ave14(AB)− dev14(AB) = 0.5. (4.96)

However, the data is compatible with the tensor product model since

µ14(A)− µ14(A and B) = 0,

µ14(B)− µ14(A and B) = 1, and

µ14(A) + µ14(B)− µ14(A and B) = 1.

(4.97)
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We obtain a representation by setting M and |C〉 as follows:

M(x, y)→ (x, 0),

|C〉 = |2〉 ⊗ |1〉.
(4.98)

Finally, for data that cannot be modeled by either of the two models,
consider again the concepts A =‘Bird’ and B =‘Pet,’ and the exemplar
p6 =‘heron.’ We have

µ6(A) = 0.94, µ6(B) = 0.15, and µ6(A and B) = 0.26,

ave6(AB) = 0.545,

dev6(AB) = 0.225.

(4.99)

By Theorem 4.2, since

0.26 = µ(A and B) < ave6(AB)− dev6(AB) = 0.32, (4.100)

we cannot provide a Hilbert space representation. Moreover, since

µ6(A and B) > µ6(A),

we cannot represent the data in the tensor product model.

We now compare the performance of the two models by counting the
number of membership estimations that allow a representation in both a
Hilbert space model and a tensor product model, in only one of the mod-
els, or in neither models, for all the concepts conjunctions and disjunctions
tested by Hampton in [Ham88b, Ham88a]. Fig. 4.2 shows the relative fre-
quency of membership estimations for each of these cases. The histogram
on the left gives the relative frequency for the conjunction data, while the
histogram on the right gives the relative frequencies for the disjunction data.

We observe that for both conjunctions and disjunctions approximately
half of the cases cannot be modeled by either of the two models (52.4% and
42% respectively). Considering the cases that can be modeled for conjunc-
tions, the Hilbert space model performs better since 41.6% of cases can be
modeled by the Hilbert space model, and 19% of cases can be modeled only
by the tensor product. Moreover, 12% of the cases can be modeled by both
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the tensor and Hilbert space models.

For the case of disjunctions, the Hilbert space model provides a repre-
sentation in 42.7% of cases, and the tensor product model can represent 37%
of the cases.

Although in almost half of the cases neither model is capable of provid-
ing a representation of the data, overall the Hilbert space model seems to
perform better than the tensor product model. Moreover, since the equiva-
lence established in Theorems 4.5 and 4.7 establishes the equivalence of the
tensor product models for conjunctions and disjunctions and their classical
probabilistic counterparts, we can conclude that the Hilbert space model is
better suited for this type of data than the classical probabilistic models. It
is important to note however that the tensor product model can represent
some cases that cannot be represented by the Hilbert space model. This
indicates that there is a need for a general model that incorporates both the
tensor product and the Hilbert space models.

Figure 4.2: Relative frequency of experimental data that can be represented
in the Hilbert space or tensor space models.
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Chapter 5

Fock Space Modeling of
Conjunctions and
Disjunctions of Concepts

The Fock space formalism was developed in quantum mechanics to rep-
resent systems composed of a varying or unknown number of entities. In
quantum theory, the state of a quantum entity is represented as a vector
in a Hilbert space H, and the state of a collection of k quantum entities is
represented in the tensor product space ⊗kH. A Fock space F∗ consists of
a direct sum of these tensor products for all possible values of k:

F∗ = ⊕∞k=1 ⊗k H. (5.1)

We use the Fock space structure to develop a model that brings together
the two models of Chapter 4 from both a mathematical and a cognitive
perspective.

5.1 The Two-sector Fock Space Model

In quantum cognition, the Fock space is used to represent different modes
of reasoning in the modeling of concepts combinations. We will show a two-
sector Fock space model that is a generalization of the Hilbert space and
tensor product models developed in Chapter 4. In fact, both models are
obtained as two extreme cases of the two-sector Fock space model, each
representing a specific mode of reasoning. But before presenting the mathe-
matical formulation of the two-sector Fock space model of concepts, we first
take a closer look at the cognitive interpretation of the two models developed
in Chapter 4.
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5.1.1 Concept Combination in the Hilbert and Tensor
Product Models: One or Two Instances in Mind?

Consider the experimental situation of a participant estimating the mem-
bership weight of an exemplar with respect to two concepts and their com-
bination. For example, take the concepts ‘Fruit,’ and ‘Vegetable,’ and their
conjunction ‘Fruit and Vegetable,’ and suppose we would like to estimate the
membership weight of the exemplar ‘apple’ with respect to the conjunction.
When participants estimate the membership weight of ‘apple’ with respect
to the concept conjunction ‘Fruit and Vegetable’ two kinds of reasoning can
be identified:

1. ‘apple’ being an exemplar of the concept ‘Fruit and Vegetable,’

2. ‘apple’ being an exemplar of the concept ‘Fruit,’ and the concept ‘Veg-
etable,’ separately.

In the first case, the membership weight of ‘apple’ is estimated with re-
spect to the meaning of a single concept ‘Fruit and Vegetable.’ Thus, a
single instance of ‘apple’ is taken into consideration. In the second case,
two instances of ‘apple’ are taken into consideration, one for each estima-
tion. Namely, the first instance is estimated with respect to the meaning
of ‘Fruit,’ and the second instance with respect to the meaning of ‘Vegetable.’

To clarify the conceptual distinction between these two kinds of reason-
ing, note that the first case considers a concept that cannot be decomposed
as a combination of ‘Fruit’ and ‘Vegetable,’ but is a single emergent concept.
In the second case, the combined concept is decomposed into two concepts,
and the membership weights for the two concepts are analyzed separately.
Therefore, the second case corresponds to the traditional compositional un-
derstanding of the conjunction where logical rules of concept combinations
operate.

Likewise, if we consider ‘apple’ with respect to ‘Fruit,’ Vegetable,’ and
their disjunction ‘Fruit or Vegetable,’ the same kinds of reasoning can be
used to estimate membership weights. Therefore, we can identify two fun-
damentally different manners of reasoning about the membership of concept
combinations: the first considers a concept combination as an emergent en-
tity that cannot be logically decomposed, and the second considers a concept
combination as a logically decomposable entity.
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It is interesting that the Hilbert space and the tensor product models
presented in Chapter 4 can be identified with these two kinds of reasoning.
The first type of reasoning, modeled by the Hilbert space model, creates a
concept combination state from the states of the former concepts, and the
membership weight of the combined concept is related to the average of the
membership weights of the two concepts plus an interference term. This
model can represent non-logical effects such as overextension of conjunction
and underextension of disjunction. Although it is sometimes compatible
with classical data, there are multiple cases of classical data that cannot
be represented for by this model. The second type of reasoning, modeled
by the tensor product model, is of a logical nature. In fact, Theorems 4.5
and 4.7 show that the classical probabilistic model and the tensor product
model are equivalent.

5.1.2 Introduction to Fock Space Modeling

Definition 5.1. Let H be a Hilbert space, and k be an integer. We define
the kth sector, Fk, of a Fock space by

Fk = ⊗ki=1H. (5.2)

Since we have identified two modes of reasoning, we use the first two
sectors of the Fock space to model concept combinations. Namely, the first
sector, F1 = H, represents the emergent mode of reasoning previously mod-
eled by the Hilbert space model, and the second sector, F2 = H⊗H, repre-
sents the logical mode of reasoning previously modeled by the tensor product
model. Hence, our model represents the concept combination in the space

F = F1 ⊕F2 = H⊕ (H⊗H). (5.3)

Let |A〉, and |B〉 be the states of the concepts A and B in F1, and let
|C〉 be the state of the combination of concepts A and B in F2. Also, let
M : H → H be the membership operator associated with an exemplar x,
and let MA,MB,M∧, and M∨ be given by Eqs. (4.64)–(4.67). We have

µ(A) = 〈A|M|A〉 = 〈C|MA|C〉
µ(B) = 〈B|M|B〉 = 〈C|MB|C〉.

(5.4)

The state |ψAB〉 representing the concept combination is obtained as a
superposition of modes of thought:
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5.1. The Two-sector Fock Space Model

|ψAB〉 =
nAB√

2
(|A〉+ |B〉)⊕

√
1− n2

AB|C〉. (5.5)

The first term of |ψAB〉 represents the probabilistic structure of the con-
cept combination in the emergent mode of reasoning, which is the contri-
bution from the first sector, F1 = H. The second term of |ψAB〉 represents
the probabilistic structure of the concept combination in the logical mode
of reasoning, which is the contribution from the second sector, F2 = H⊗H.

To estimate the membership weight of a concept combination, we con-
struct membership operators in the two-sector Fock space:

MF∧ = M⊕M∧,

MF∨ = M⊕M∨.
(5.6)

The membership weights for conjunctions and disjunctions of concepts in
the two-sector Fock space model must satisfy the following conditions:

µ(A and B) = 〈ψAB|MF∧ |ψAB〉, (5.7)

µ(A or B) = 〈ψAB|MF∨ |ψAB〉. (5.8)

Therefore, the formula for the membership weight of an exemplar with re-
spect to the concept conjunction is obtained by applying conditions (4.4)
and (4.76) to (5.7) as follows:

µ(A and B) = 〈ψAB|MF∧ |ψAB〉
= 〈ψAB|M⊕M⊗M|ψAB〉

=
nAB

2
((〈A+ 〈B)|M(|A〉+ |B〉)) + (1− n2

AB)(〈C|)M⊗M(|C〉)

= nABµ̃(A and B) + (1− n2
AB)µ̆(A and B).

(5.9)

Similarly, we can measure the disjunction of the two concepts as follows:

µ(A or B) = 〈ψAB|MF∨ |ψAB〉

=
n2
AB

2
((〈A+ 〈B)|M(|A〉+ |B〉)) + (1− n2

AB)(〈C|)MA + MB −M∧(|C〉)

= n2
ABµ̃(A or B) + (1− n2

AB)µ̆(A or B).

(5.10)
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Eqs. (5.9) and (5.10) show that µ(A and B) and µ(A or B) are given by
a convex combination of the membership weight formulas for concept com-
bination corresponding to each mode of reasoning. Since each sector must
respect the constraints of its mode of reasoning, the contribution from the
first sector is constrained as in Theorem 4.2:

µ̃(A and B) ∈ [ave(AB)− dev(AB), ave(AB) + dev(AB)],

µ̃(A or B) ∈ [ave(AB)− dev(AB), ave(AB) + dev(AB)].
(5.11)

The membership weight contribution from the second sector is con-
strained by Theorems (4.5) and (4.7) as follows:

µ̆(A and B) ∈ [max(0, 1− µ(A)− µ(B)),min(µ(A), µ(B))], (5.12)

µ̆(A or B) ∈ [max(µ(A), µ(B)),min(1, µ(A) + µ(B))]. (5.13)

The membership formulas in the two-sector Fock space model are convex
combinations of membership formulas for two modes of thought. Thus, the
two-sector Fock space model not only generalizes the Hilbert space and ten-
sor product models, but can also represent cases that cannot be represented
by either model.

For example, consider the concepts A =‘Pet,’ B =‘Bird,’ and the exem-
plar p6 =‘heron.’ Recall that this case was given in § 4.3 as an example
that could not be represented by either of the two models. In this case, we
have µ(A) = 0.94, µ(B) = 0.15, and µ(A and B) = 0.26. For simplicity,
suppose that conditions (4.3) and (4.69) are satisfied. Then, by applying
Theorems 4.2 and 4.5, the possible values µ̃(A and B) and µ̆(A and B) are
bounded by the intervals I1 and I2 respectively:

I1 = [ave(AB)− dev(AB), ave(AB) + dev(AB)] = [0.32, 0.77],

I2 = [max(0, 1− µ(A)− µ(B)),min(µ(A), µ(B))] = [0.09, 0.15].
(5.14)

Therefore, neither sector can represent this exemplar. However, this ex-
emplar can be represented in the two-sector Fock space model because
µ(A and B) belongs to the convex combination of I1 and I2:

[min(I1 ∪ I2),max(I1 ∪ I2)]. (5.15)
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In particular, Eq. (5.9) with the choices <(〈A|M|B〉) = 0 and nAB =
0.294554 recovers the membership weight µ(A and B).

The two-sector Fock space model provides the extra parameter nAB.
We will show that this parameter becomes crucial in the construction of
representations of multiple exemplars in concrete two-sector Fock spaces.

5.2 Data Representation of Multiple Exemplars

The two-sector Fock space model developed in § 5.1.2 provides an ab-
stract model to represent concept combinations. This model outperforms the
modeling scope of the Hilbert space and tensor product models. In the cur-
rent literature, the concrete instantiations of this abstract model have always
provided representations that are exemplar-dependent. This means that a
different state is given for each exemplar, and a single membership operator
represent the semantic estimations of all exemplars [Aer07a, Aer07b, Aer09].
Such concrete representations are useful to explain the way that state vec-
tors, operators, and modes of reasoning operate in the two-sector Fock space
model. However, they do not model concepts in accordance with the cogni-
tive principles that have inspired the abstract model.

From a cognitive perspective, a concept is an entity in a state that is
independent of the exemplar to be measured. In addition, since semantic
estimations are used to compare concepts and exemplars, these estimations
should depend on the exemplar being measured. Therefore, a concrete rep-
resentation in the two-sector Fock space model must satisfy the following
two modeling principles of quantum cognition:

1. Concepts are represented by a state that is independent of the exem-
plar to be measured,

2. Semantic estimations are represented by a measurement operator that
depends on the exemplar to be measured.

The following examples show that the concrete representations provided
in the literature disagree with these modeling principles. Consider the
exemplars ‘filing cabinet’ and ‘heated waterbed’ with respect to the con-
cepts A =‘Furniture,’ B =‘Household Appliances,’ and their conjunction
AB =‘Furniture and Household Appliances’ [Ham88b]. For the first exem-
plar, we have µ(A) = 0.97, µ(B) = 0.31, and µ(A and B) = 0.53. Applying
Theorem 4.2, we represent this case in the space C3 by the vectors
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|A〉 = (−0.57 + 0.40i, 0.29− 0.63i, 0.13 + 0.11i), and

|B〉 = (0.39, 0.39, 0.83).
(5.16)

For the second exemplar, we have µ(A) = 1, µ(B) = 0.49, and µ(A and B) =
0.78. Applying Theorem 4.2 yields

|A〉 = (0.71, 0.71, 0), and

|B〉 = (0.49, 0.49, 0.71).
(5.17)

Because the vector states |A〉 and |B〉 are different for each exemplar, this
concrete representation is exemplar-dependent. Moreover, because µ(A) +
µ(B) > 1 for both cases, M is the operator that projects onto the first two
dimensions of these vectors, so the same operator is used for two different
exemplars.

The same situation occurs for the the tensor product model. For exam-
ple, consider the exemplars ‘sailboat’ and ‘roadroller’ with respect to the
concepts A =‘Machine,’ B =‘Vehicle,’ and their conjunction AB =‘Machine
and Vehicle.’ For the first exemplar, we have µ(A) = 0.56, µ(B) = 0.8, and
µ(A and B) = 0.42. Applying Theorem 4.5, we represent this case in the
space C2 ⊗ C2 by the tensor

|C〉 = 0.64|1〉 ⊗ |1〉+ 0.37|1〉 ⊗ |2〉+ 0.62|2〉 ⊗ |1〉+ 0.24|2〉 ⊗ |2〉. (5.18)

For the second exemplar, we have µ(A) = 0.94, µ(B) = 0.91, and µ(A and B) =
0.91. Applying Theorem 4.5 yields

|C〉 = 0.95|1〉 ⊗ |1〉+ 0.17|1〉 ⊗ |2〉+ 0.24|2〉 ⊗ |2〉. (5.19)

Moreover, M is a one-dimensional projector in both cases. Thus, the con-
struction of concrete representations for concepts in the tensor product
model is also exemplar-dependent. It is, however, possible to develop con-
crete representations for multiple exemplars that are consistent with the
quantum modeling principles. To do so, we will exploit the linear structure
of the Hilbert space and tensor space models and use special linear operators
known as unitary transformations.
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Unitary transformations embody the notion of isometry. This means
that they do not affect the value of the inner product. Formally, given a
unitary operator U and two vectors |x〉 and |y〉, we have

〈Ux|Uy〉 = 〈x|y〉. (5.20)

An important consequence of Eq. (5.20) is that, when a unitary operator is
applied to transform the state of a concept and a membership operator, the
membership weight is preserved.

Unitary operators in a Hilbert space are a generalization of rotation ma-
trices in linear algebra; they correspond to a change of basis for the vector
states and for the operators in a Hilbert space. We will apply unitary trans-
formations to the representations obtained from Theorems 4.2, 4.5, and 4.7
to obtain new representations where all the exemplars are represented in the
same basis. Next, we will combine these representations to provide a repre-
sentation in the two-sector Fock space model where the concept is identified
with one single state, and the measurement operators are different for each
exemplar.

Since the representational problems of conjunctions and disjunctions are
similar, we focus on the case of conjunctions of concepts. In what follows,
we denote the set of data {µi(A), µi(B), µi(A and B)}ki=1 by µki=1. A par-
ticular triplet (µi(A), µi(B), µi(A and B)) will be denoted by µi, and the
conjunction µi(A and B) will be denoted by µi(AB).

5.2.1 Hilbert Space Representation

We now show how to concretely represent multiple exemplars in the
Hilbert space model using the space C3.

Definition 5.2.

Theorem 5.3. The set of data µki=1 has a representation in C3 if and only
if for all i = 1, ..., k,

µi(AB) ∈ [avei(AB)− devi(AB), avei(AB) + devi(AB)]. (5.21)

Proof. Let |A〉 = |1〉, |B〉 = |2〉, and |C〉 = |3〉 form the canonical basis of
C3. We prove that if (5.21) is satisfied for each i = 1, ..., k then there exists
an orthogonal projector Mi such that conditions (4.1)–(4.4) are satisfied for
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|A〉, |B〉, and Mi.

Let i ∈ {1, ..., k}. Since µi(A), µi(B), and µi(AB) satisfy (5.21), by
Theorem 4.2 there exist two vectors

|Ai〉 = (eiα1a1, e
iα2a2, e

iα3a3), and

|Bi〉 = (eiβ1b1, e
iβ2b2, e

iβ3b3),
(5.22)

and an orthogonal projector M̃i such that (4.1)–(4.4) are satisfied.

Let

|Ci〉 =|Ai〉 × |Bi〉
=(a2b3e

−i(β3+α2) − a3b2e
−i(β2+α3),

a1b3e
−i(β3+α1) − a3b1e

−i(β1+α3),

a1b2e
−i(β2+α1) − a2b1e

−i(β1+α2)).

(5.23)

The vector |Ci〉 is chosen to complete an orthonormal basis for C3 from |Ai〉
and |Bi〉. This ensures that |Ci〉 ⊥ |Ai〉, |Ci〉 ⊥ |Bi〉, and ‖|Ci〉‖ = 1. Now
we define the operator Ui by

Ui =

〈Ai|A〉 〈Ai|B〉 〈Ai|C〉〈Bi|A〉 〈Bi|B〉 〈Bi|C〉
〈Ci|A〉 〈Ci|B〉 〈Ci|C〉

 . (5.24)

Ui is a unitary operator whose action induces a change from the basis
(|Ai〉, |Bi〉, |Ci〉) to the basis (|A〉, |B〉, |C〉). In fact,

Ui|Ai〉 = |A〉, Ui|Bi〉 = |B〉, and Ui|Ci〉 = |C〉.

We apply the operator Ui to represent M̃i in the orthogonal basis {|Ai〉, |Bi〉, |Ci〉}.
Set

Mi = UiM̃iU
−1
i . (5.25)

Mi is the operator M̃i represented in the basis (|A〉, |B〉, |C〉). Since

1 = U−1
i Ui = UiU

−1
i , (5.26)

we obtain
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µi(A) = 〈Ai|M̃i|Ai〉 = 〈AiU−1
i |UiM̃iU

−1
i |UiAi〉 = 〈A|Mi|A〉,

µi(B) = 〈Bi|M̃i|Bi〉 = 〈BiU−1
i |UiM̃iU

−1
i |UiBi〉 = 〈B|Mi|B〉,

(5.27)

and

µi(AB) =
1

2
(µi(A) + µi(B)) + <(〈Ai|M̃i|Bi〉)

=
1

2
(µi(A) + µi(B)) + <(〈AiU−1

i |UiM̃iU
−1
i |UiAi〉)

=
1

2
(µi(A) + µi(B)) + <(〈A|Mi|B〉).

(5.28)

The other side of the implication is a direct consequence of Definition 5.2.

Theorem 5.3 provides a data representation in terms of a single pair of
vectors |A〉 and |B〉, and a set of projectors Mi, i = 1, ..., k, corresponding
to the membership operator for each exemplar.

Recall that the exemplars p =‘filing cabinet,’ and q =‘heated waterbed’
were represented by different state vectors and the same measurement op-
erator in § 5.1.2. We can now apply Theorem 5.3 to obtain a representation
consistent with the modeling principles of quantum cognition using the state
vectors

|A〉 = (1, 0, 0) = |1〉,
|B〉 = (0, 1, 0) = |2〉,

(5.29)

and two measurement operators corresponding to the exemplars p and q:

Mp =

 0.97 −0.11 + 0.09i 0.09 + 0.01i
−0.11− 0.09i 0.31 0.28 + 0.34i
0.09− 0.01i 0.28− 0.34i 0.72

 ,

Mq =

1 0 0
0 0.49 0.499
0 0.499 0.51

 .

(5.30)

The construction introduced in the proof of Theorem 5.3 is independent of
the choice of the vectors |A〉 and |B〉.
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Corollary 5.4. Let (|A〉, |B〉, {Mi)}ki=1) be a representation of µki=1 in C3,
and let |A′〉, |B′〉 ∈ C3 be two orthogonal unit vectors. Then, there exists a
unitary transformation U such that (|A′〉, |B′〉, {U−1MiU)}ki=1) is a repre-
sentation of µki=1.

Corollary 5.4 shows that all representations in C3 are equivalent up to a
unitary transformation.

5.2.2 Tensor Product Model Representation

We now apply unitary transformations in the concrete representations
of the tensor product model in Cn ⊗ Cn. We first define different types of
representations for multiple exemplars, and then provide explicit represen-
tation theorems for the cases n = 2 and 3. These will be useful to study the
performance of the two-sector Fock space model.

Definition 5.5. A zero-type representation of µki=1 on the tensor product
space Cn ⊗ Cn is a unit vector |C〉 ∈ Cn ⊗ Cn, and a collection of orthog-
onal projectors {MA

i ,M
B
i }ki=1 from Cn ⊗ Cn to Cn ⊗ Cn, such that condi-

tions (4.73)–(4.76) are satisfied with M∧
i = MA

i MB
i , for i = 1, ..., k. We say

(|C〉, {MA
i ,M

B
i }ki=1) is a zero-type representation of µki=1 in Cn ⊗ Cn.

The zero-type representation is, mathematically speaking, the most gen-
eral representation in the tensor product model that is consistent with the
modeling principles of quantum cognition because it assumes a single con-
cept state |C〉, and a collection of measurements that represent the mem-
bership weight estimations. However, this representation cannot be appro-
priately interpreted because MA and MB can be entangled measurements9.

A more reasonable representation of data assumes that the measure-
ments MA and MB act on different sides of Cn⊗Cn so they are not entan-
gled.

Definition 5.6. A first-type representation of µki=1 on the tensor product
space Cn⊗Cn is a unit vector |C〉 ∈ Cn⊗Cn, and a collection of orthogonal
projectors Mi from Cn to Cn, for i = 1, ..., k, such that (|C〉, {Mi ⊗ 1,1 ⊗
Mi}ki=1) is a zero-type representation of µki=1 in Cn ⊗ Cn.

The first-type representation is a direct extension of the representation
of individual exemplars in Definition 4.4, and thus it is interpreted accord-
ing to such representation: The state |C〉 describes the situation having two

9Entangled measurements appear in non-trivial analysis of entanglement in physics. A
possible interpretation of entangled measurements in this model is left for future work.
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concepts and their combination, and Mi represents the semantic estimation
of exemplar pi, i = 1, ..., k.

We now introduce another representation that is mathematically simpler,
and thus will facilitate the data analysis.

Definition 5.7. A second-type representation of µki=1 on the tensor product
space Cn⊗Cn is a pair of unit vectors |A〉, and B〉 ∈ Cn, and a collection of
orthogonal projectors Mi from Cn to Cn, for i = 1, ..., k, such that (|A〉 ⊗
|B〉, {Mi ⊗ 1,1⊗Mi}ki=1) is a zero-type representation of µki=1 in Cn ⊗Cn.

The zero-, first-, and second-type representations require different con-
ditions to represent a collection of exemplars for a pair of concepts and their
conjunction. While the first-type corresponds to the natural way to rep-
resent a pair of systems in quantum physics, and thus is the natural way
to define a representation in the tensor product model for concepts, the
zero-type provides a general way to build concrete representations because
it does not impose a product structure on the concept state or the mem-
bership operators for the exemplars. The second-type is a mathematical
simplification of the first-type representation that assumes |C〉 to be a prod-
uct state. In fact, it is trivial to deduce that a second-type representation
is also a first-type representation, and a first-type representation is also a
zero-type representation from Definitions 5.5–5.7 .

The following theorem characterizes the cases when a set of data has a
zero-type representation in C2 ⊗ C2.

Theorem 5.8. The set of data µki=1 has a zero-type representation in C2⊗C2

if and only if µi is classical conjunction data for i = 1, ..., k.

Proof. For each i = 1, ..., k, we use the construction in the proof of The-
orem 4.5 to obtain a tensor |C̃i〉 and a one-dimensional projector M̃ such
that M̃A

i = M̃ ⊗ 1, M̃B
i = 1 ⊗ M̃, and M̃∧

i = M̃ ⊗ M̃. This gives the
tensor product representation for µi. Next, we use unitary transformations
to change this representation so that |C̃i〉 is a vector in the canonical basis
of C2 ⊗C2. To facilitate the notation, we will make use of the isomorphism
I between C2 ⊗ C2 and C4. Let

(1, 0, 0, 0) = |e1〉,
(0, 1, 0, 0) = |e2〉,
(0, 0, 1, 0) = |e3〉,
(0, 0, 0, 1) = |e4〉.

(5.31)
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We define

I(|1〉 ⊗ |1〉) = |e1〉,
I(|1〉 ⊗ |2〉) = |e2〉,
I(|2〉 ⊗ |1〉) = |e3〉,
I(|2〉 ⊗ |2〉) = |e4〉.

(5.32)

The isomorphism I allows us to represent |C̃i〉 by a vector |Ci〉 in C4.

We can prove the theorem by building a unitary transformation that
takes |Ci〉 to one of the canonical basis vectors of C4, and use this trans-
formation to represent the operators M̃A

i , M̃B
i , and M̃∧

i by the operators
MA

i , MB
i , and M∧

i in C4. Next, we apply the the inverse isomorphism I−1

to map these new representations to C2 ⊗ C2.
Let |Di〉, |Ei〉, |Fi〉 be three vectors in C4 such that

〈Di|Di〉 = 〈Ei|Ei〉 = 〈Fi|Fi〉 = 1,

〈Ci|Di〉 = 〈Ci|Ei〉 = 〈Ci|Fi〉 = 0,

〈Di|Ei〉 = 〈Di|Fi〉 = 〈Ei|Fi〉 = 0.

(5.33)

The vectors |Ci〉, |Di〉, |Ei〉, and |Fi〉 form an orthonormal basis for C4. Set

Ui =


〈Ci|e1〉 〈Ci|e2〉 〈Ci|e3〉 〈Ci|e4〉
〈Di|e1〉 〈Di|e2〉 〈Di|e3〉 〈Di|e4〉
〈Ei|e1〉 〈Ei|e2〉 〈Ei|e3〉 〈Ei|e4〉
〈Fi|e1〉 〈Fi|e2〉 〈Fi|e3〉 〈Fi|e4〉

 . (5.34)

Note that Ui is a unitary matrix whose action induces a change from the
basis {|Ci〉, |Di〉, |Ei〉, |Fi〉} to the basis {|ej〉}4j=1. In fact,

Ui|Ci〉 = |e1〉, Ui|Di〉 = |e2〉 Ui|Ei〉 = |e3〉, and Ui|Fi〉 = |e4〉.

The operator Ui can now be used to change the basis in which MA
i , MB

i ,
and M∧

i are represented to the basis {|ej〉}4j=1:

M̄A
i = UiM

A
i U−1

i ,

M̄B
i = UiM

B
i U−1

i ,

M̄∧
i = UiM

∧
i U−1

i .

(5.35)
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Since 1 = U−1
i Ui = UiU

−1
i , we obtain

µi(A) = 〈Ci|MA
i |Ci〉 = 〈CiU−1

i |UiM
A
i U−1

i |UiCi〉 = 〈e1|M̄A
i |e1〉,

µi(B) = 〈Ci|MB
i |Ci〉 = 〈CiU−1

i |UiM
B
i U−1

i |UiCi〉 = 〈e1|M̄B
i |e1〉,

µi(AB) = 〈Ci|M∧
i |Ci〉 = 〈CiU−1

i |UiM
∧
i U−1

i |UiCi〉 = 〈e1|M̄∧
i |e1〉.

(5.36)

We then use the inverse isomorphism I−1 to obtain a zero-type representa-
tion in C2 ⊗ C2:

|C〉 = I−1(|e1〉) = |1〉 ⊗ |1〉,
M̃A

i = I−1M̄A
i I,

M̃B
i = I−1M̄B

i I,
M̃∧

i = I−1M̄∧
i I.

(5.37)

We have constructed a zero-type representation (|1〉⊗|1〉, {MA
i ,M

B
i }ki=1)

from a collection of representations (|Ci〉,M) for the exemplars pi with
M(x, y)→ (x, 0) obtained from Theorem 4.5.

In the construction of Theorem 5.8, note that when Eq. (5.37) entails op-
erators MA

i and MB
i that are of the form Mi

A = M̌i⊗1 and Mi
B = 1⊗M̌i,

then the representation is also of the first-type. Stating the necessary and
sufficient conditions required for a set of data to have first-type representa-
tion is out of the scope of this thesis. However, since second-type are also
first-type representations, we can obtain sufficient conditions for the exis-
tence of a first-type representation by characterizing the conditions required
for the data to have a second-type representation:

Lemma 5.9. The set of data µki=1 has a second-type representation in C2⊗
C2 if and only if for each i = 1, ..., k, there exist |Ai〉, |Bi〉, M̌i

A, and M̌i
B

such that Eqs. (4.62)–(4.66) are satisfied.

Proof. Let Ui(A) and Ui(B) be the unitary transformations that map |Ai〉
to |1〉 and |Bi〉 to |1〉 for i = 1, ..., k. Then (|1〉⊗ |1〉, {MA

i ⊗1,1⊗MB
i }ki=1)

is a tensor space zero-type representation of µki=1 with

MA
i = Ui(A)−1M̌A

i Ui(A),

MB
i = Ui(B)−1M̌B

i Ui(B).
(5.38)
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Note that Theorem 5.8 and Lemma 5.9 characterize the sets of data that
have a zero- and second-type representations. Since the first-type represen-
tation is less general than the zero-type representation, but more general
than the second-type representation, Theorem 5.8 and Lemma 5.9 can be
applied to obtain an upper and lower bound on the number of exemplars
that have a first-type representation.

We need to extend Theorem 5.8 to C3⊗C3 so the zero-, first-, and second-
type representations become compatible with the representation developed
in § 5.2.1 for a Hilbert space model in C3. The next corollary extends the
proof of Theorem 5.8 to the space C3 ⊗ C3.

Corollary 5.10. If the set of data µki=1 has a zero-type representation in
C2 ⊗ C2, then µki=1 has a zero-type representation in C3 ⊗ C3.

Proof. Let (|C〉, {MA
i ,M

B
i }ki=1) be a zero-type representation of µki=1 in C2⊗

C2. We can create a vector

|C∗〉 =

3∑
i,j=1

c∗ij |i〉 ⊗ |j〉 (5.39)

such that it is the trivial embedding of

|C〉 =
2∑

i,j=1

cij |i〉 ⊗ |j〉 (5.40)

in C3 ⊗ C3 by choosing

c∗ij =

{
cij i, j ∈ {1, 2},
0 else.

(5.41)

Similarly, we can also create operators MA∗
i and MB∗

i by using the trivial
embedding so that the actions of the operators MA

i and MB
i on C2⊗C2 are

preserved. This completes the proof.

Since second-type representations are also first- and zero-type represen-
tations, we can apply Corollary 5.10 to obtain a first- and second-type rep-
resentation in C3 ⊗ C3.
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5.2.3 Two-sector Fock Space Representation

We now combine the representations of multiple exemplars developed in
§ 5.2.1 and § 5.2.2 to represent sets of data in the two-sector Fock space
model in a way that is consistent with the modeling principles of quantum
cognition in the concrete space C3 ⊕ C3 ⊗ C3.

Definition 5.11. A zero-type representation of µki=1 in C3⊕C3⊗C3 consists
of the vectors |A〉, |B〉 ∈ C3 and |C〉 ∈ C3 ⊗ C3, a collection of operators
{Mi,M

A
i ,M

B
i }ki=1 from C3 ⊗ C3 to C3 ⊗ C3, and a coefficient nAB ∈ [0, 1]

such that for all i = 1, .., , k, condition (5.4) is satisfied, and the vector
|ψAB〉, defined in Eq. (5.5), and the operator MF∧

i , defined in Eq. (5.6),
satisfy condition (5.7). We say that (nAB, |A〉, |B〉, |C〉, {Mi,M

A
i ,M

B
i }ki=1)

is a zero-type representation of µki=1 in C3 ⊕ C3 ⊗ C3.

Definition 5.12. A first-type representation of µki=1 in C3⊕C3⊗C3 consists
of a tensor |C〉 ∈ C3⊗C3, a collection of operators {Mi}ki=1 from C3 to C3,
and a coefficient nAB ∈ [0, 1] such that (nAB, |A〉, |B〉, |C〉, {Mi,Mi⊗1,1⊗
Mi}ki=1) is a zero-type representation of µki=1 in C3 ⊕C3 ⊗C3. We say that
(nAB, |A〉, |B〉, {Mi}ki=1) is a first-type representation of µki=1 in C3⊕C3⊗C3.

Definition 5.13. A second-type representation of µki=1 in C3 ⊕ C3 ⊗ C3

consists of the vectors |A〉, |B〉 ∈ C3, a collection of operators {Mi}ki=1

from C3 to C3, and a coefficient nAB ∈ [0, 1] such that (nAB, |A〉, |B〉, |A〉 ⊗
|B〉, {Mi,Mi ⊗ 1,1⊗Mi}ki=1) is a zero-type representation of µki=1 in C3 ⊕
C3 ⊗ C3. We say that (nAB, |A〉, |B〉, {Mi}ki=1) is a second-type representa-
tion of µki=1 in C3 ⊕ C3 ⊗ C3.

We now identify the conditions for a zero- and second-type representation
of a set of data in C3 ⊕ C3 ⊗ C3.

Theorem 5.14. The set of data µki=1 admits a zero-type representation in
C3⊕C3⊗C3 if and only if there exists nAB ∈ [0, 1] such that for all i = 1, ..., k

µi(AB) = nABµ̃i(AB) +
√

1− n2
ABµ̆i(AB), (5.42)

with µ̃ki=1 satisfying conditions (4.1)–(4.4), and µ̆ki=1 is classical conjunction
data.

Proof. Since µi satisfies conditions (4.1)–(4.4) for i = 1, ..., k, we apply The-
orem 5.3, and Corollary 5.4 to obtain the representation (|A〉, |B〉, {Mi}ki=1)
of µ̃ki=1 in C3 with |A〉 = |1〉 and |B〉 = |2〉. Similarly, since µi is classical
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data for i = 1, ..., k, we apply Theorem 5.8 and Corollary 5.10 to obtain a
zero-type representation (|C〉, {MA

i ,M
B
i }ki=1) of µ̆ki=1 in C3 ⊗ C3.

Next, let i = 1, ..., k. We apply Eq. (5.44), to show that the state |ψAB〉
satisfies

〈ψAB|MF∧
i |ψAB〉 =

n2
AB

2
(〈A|+ 〈B|)Mi(|A〉+ |B〉) + (1− n2

AB)〈C|M∧
i |C〉

= n2
ABµ̃i(AB) + (1− n2

AB)µ̆i(AB) = µ(AB).

(5.43)

This completes the proof.

This result can be similarly obtained for the second-type representation.

Corollary 5.15. The set of data µki=1 admits a second-type representation
in C3 ⊕ C3 ⊗ C3 if and only if there exists nAB ∈ [0, 1] such that for all
i = 1, ..., k

µi(AB) = nABµ̃i(AB) +
√

1− n2
ABµ̆i(AB), (5.44)

with µ̃i satisfying conditions (4.1)–(4.4), and µ̆i(AB) = µi(A)µi(B).

Proof. The result follows from the proof of Theorem 5.14 replacing µ̆i(AB)
by µi(A)µi(B).

Theorem 5.14 shows that a zero-type representation of a set of data that
respects the modeling principles of quantum cognition requires the existence
of a value for nAB such that the convex combination of the membership
weights µ̃(AB), representing the contribution given by C3, and µ̆(AB), rep-
resenting the contribution given by C3 ⊗ C3, are equal to the membership
weight µi(AB), for i = 1, ..., k.

The second-type representation additionally imposes the conditions that
the membership weight operators for concepts A and B act separately on
the two sides of C3 ⊗ C3, and that |C〉 = |A〉 ⊗ |B〉.

As an example of how to identify whether or not a collection of exem-
plars can be represented, consider the exemplars p1 =‘filing cabinet’ and
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p11 =‘painting’ for the concepts A =‘Furniture,’ B =‘Household Appli-
ances,’ and their conjunction A and B =‘Furniture and Household Appli-
ances’ [Ham88b]. The membership values are

µ1(A) = 0.97, µ1(B) = 0.31, µ1(AB) = 0.53, and

µ2(A) = 0.62, µ2(B) = 0.05, µ2(AB) = 0.11.
(5.45)

A simple calculation shows that we can obtain a separate zero-type represen-
tation of µ1 and µ2 by choosing nAB ∈ [0.3215, 1], and nAB ∈ [0.119, 0.692],
respectively. Therefore, a zero-type representation of µ2

i=1 requires nAB ∈
[0.3215, 0.692].

5.3 Data Representation Analysis

In this section, we provide an analysis of Hampton’s data on conjunction
to compare the two-sector Fock space model to both the Hilbert space and
tensor product models presented in Chapter 4. We identify how many ex-
emplars can be represented by the zero- and second-type of representations
in the Fock space using Theorem 5.14 and Corollary 5.15 respectively. This
give us a upper and lower bound on the number of exemplars that can be
simultaneously represented by the first-type representation.

For the representation of individual exemplars, the zero- and second-type
of representations in the two-sector Fock space can model 78.1% and 77%
of the exemplars in the data set respectively. This is an improvement over
the performance of the Hilbert space model (41%) and of the tensor product
model (20%).

For the representation of multiple exemplars, Figure 5.1 shows the frac-
tion of exemplars that can be simultaneously represented for each value of
nAB for the set of concept conjunctions tested by Hampton.

We now elaborate on six general statements, inferred from these graphs,
that explain how the two-sector Fock space model developed in § 5.1.2 is an
improvement of the Hilbert space and tensor product models.

The first statement is that at the extreme values, nAB = 0 or 1, corre-
sponding to the tensor product and Hilbert space models respectively, the
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model recovers the previous performances, 19% for the tensor product model
and 41.6% for the Hilbert space model, obtained in the analysis of Chapter 4.

The second statement is that, as we expected, the zero-type represen-
tation performs better than the second-type representation. However, the
difference is small. Since we know that the first-type representation is more
constrained than the zero-type representation, but less constrained than the
second-type representation, we conclude that the performance of the first-
type representation should be similar to the performance of the second-type
representation.

The third statement is that there is a small decrease in performance for
nAB between 0 and 0.3. This implies that the logical-based representation
performs better than the superposition of logic and emergent thought, when
logical thought is dominant.

The fourth statement is that there a is steady improvement for nAB be-

Figure 5.1: Fraction of Hampton’s experimental data that can be simul-
taneously modeled in the two-sector Fock space model for different values
of nAB. The blue and red curves correspond to the fraction of exemplars
that can be simultaneously modeled using the zero-type and second-type
representations respectively.
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tween 0.3 and 0.8. This implies that in this range, the stronger the influence
of the emergent mode of thought, the better the performance.

The fifth statement is that there is a slight decrease in the performance
for nAB between 0.8 and 0.9, and that the performance remain stable for
nAB > 0.9. This implies that the maximal performance of the two-sector
Fock space model is reached at a value of nAB close to 0.8.

The sixth statement is the two-sector Fock space model outperforms the
tensor product model for 0.3 ≤ nAB ≤ 1, and outperforms the Hilbert space
model for 0.7 ≤ nAB ≤ 0.9.

We conclude that the two-sector Fock space model gives a better perfor-
mance for the representation of individual exemplar and multiple exemplars
simultaneously, and that the model reaches its best performance when the
first sector is dominant at nAB ∼ 0.8.
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Chapter 6

Fock Space Modeling of
Negations and Conjunctions
of Concepts

The Fock space model, introduced in Chapter 5, uses the idea of a super-
position of modes of thought to model conjunctions and disjunctions. Since
conjunction, disjunction, and negation are the primary operations in logic,
we now consider how the negations of concepts are represented in the Fock
space model. We restrict our analysis to conjunctions and negations because
this is the only experimental data available to contrast theory with data.

The notation for this chapter is as follows: Let A and B be two concepts
and let pi be an exemplar. We denote the negation of concept A by Ā =
Not A, and the conjunctions ‘A and B,’ ‘Ā and B,’ ‘A and B̄,’ and ‘Ā and B̄,’
by AB, ĀB, AB̄, and ĀB̄, respectively. We denote the set of data for the
membership weights of A, B, Ā, B̄, and their conjunctions by

µi = {µi(A), µi(B), µi(Ā), µi(B̄), µi(AB), µ(ĀB), µi(AB̄), µi(ĀB̄)}, (6.1)

and the set of data for the exemplars pi, for i = 1, ..., k by µki=1.

First, we develop a theoretical analysis that characterizes classical data
for the case of conjunctions and negations. Next, we introduce experimental
data showing that concept combinations involving negations of concepts do
not satisfy the conditions of classical data. Finally, we develop an extension
of the model presented in Chapter 5 to represent conjunctions and negations
of concepts, and we give some examples of data representation.
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6.1 Conditions for a Classical Model

We now introduce the conditions for data representation within a classi-
cal Kolmogorovian probability model, and use this information to character-
ize classical data for the case of concept combinations involving conjunctions
and negations.

Definition 6.1. The set of data µi is a classical data set, or classical data,
if and only if there exists a Kolmogorovian probability space (Ω, σ(Ω), P )
and events EA, EB ∈ σ(Ω) such that

P (EA) = µi(A), (6.2)

P (EB) = µi(B), (6.3)

P (Ω \ EA) = µi(Ā), (6.4)

P (Ω \ EB) = µi(B̄), (6.5)

P (EA ∩ EB) = µi(AB), (6.6)

P (EA ∩ (Ω \ EB)) = µi(AB̄), (6.7)

P ((Ω \ EA) ∩ EB) = µi(ĀB), (6.8)

P ((Ω \ EA) ∩ (Ω \ EB)) = µi(ĀB̄). (6.9)

Note that the conditions for classical data for conjunctions and negations
contain the conditions for classical data for conjunctions given by Theo-
rem 2.2. Indeed, because

EA = (EA ∩ EB) ∪ (EA ∩ (Ω/EB)), (6.10)

combining Eqs. (6.6) and (6.7) yields

µi(A) = µi(AB) + µi(AB̄). (6.11)

From this µi(AB) ≤ µi(A). The other two conditions for classical data for
conjunctions can be obtained similarly.

Moreover, note that Eqs. (6.2)–(6.9) imply that a concept and its nega-
tion entail ‘opposite’ membership evaluations. For example, from Eqs. (6.2)
and (6.4), we have

µi(A)+µi(Ā) = P (EA)+P (Ω/EA) = P (EA∪(Ω/EA)) = P (Ω) = 1. (6.12)
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In addition, Eqs. (6.11) and (6.12) provide examples of the marginal prob-
ability law (see Eq. (A.4) in Appendix A.3).

We now identify a set of conditions for µi to be classical data.

Theorem 6.2. The set of data µi is classical data if and only if

µi(A) + µi(Ā) = 1, (6.13)

µi(B) + µi(B̄) = 1, (6.14)

µi(A) = µi(AB) + µi(AB̄), (6.15)

µi(B) = µi(AB) + µi(ĀB), (6.16)

µi(Ā) = µi(ĀB̄) + µi(ĀB), (6.17)

µi(B̄) = µi(ĀB̄) + µi(AB̄). (6.18)

Proof. Since µi is classical data, Eqs. (6.2)–(6.9) are satisfied. Therefore,
the marginal probability formulas, given by conditions (6.15)–(6.18), are
directly satisfied. Moreover, since P (Ω) = 1, we add (6.2) and (6.4) to
obtain condition (6.13), and add conditions (6.3) and (6.5) to obtain con-
dition (6.14).

Now suppose that µi satisfies Eqs. (6.13)–(6.18). We need to prove
that there exists a probability space, (Ω, σ(Ω), P ), that satisfies (6.2)–(6.9).
Consider the set Ω = {1, 2, 3, 4}, and let σ(Ω) = P(Ω) be the set of all
subsets of Ω. Set

P ({1}) = µi(AB), (6.19)

P ({2}) = µi(AB̄), (6.20)

P ({3}) = µi(ĀB), (6.21)

P ({4}) = µi(ĀB̄), (6.22)

and for any arbitrary subset S ⊆ {1, 2, 3, 4}, define

P (S) =
∑
a∈S

P ({a}). (6.23)

From Eqs. (6.15)–(6.18), we obtain

EA = {1, 2},
EB = {1, 3},
EĀ = {3, 4},
EB̄ = {2, 4}.

(6.24)
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It is easy to verify that, given these choices, Eqs. (6.2)–(6.9) are satisfied.
Since a Kolmogorovian probability space additionally requires that P (Ω) =
1, we apply Eq. (6.13) to obtain

P (Ω) = P ({1, 2, 3, 4}) = 1. (6.25)

This completes the proof.

Theorem 6.2 characterizes classical data using the marginal probability
law for estimations of membership weights for individual and combined con-
cepts. We now introduce an alternative form that will be useful to measure
the deviations in the experimental data.

Definition 6.3. Let

ΛA = 1− µi(A)− µi(Ā), (6.26)

ΛB = 1− µi(B)− µi(B̄), (6.27)

IA = µi(A)− µi(AB)− µi(AB̄), (6.28)

IB = µi(B)− µi(AB)− µi(ĀB), (6.29)

IĀ = µi(Ā)− µi(ĀB̄)− µi(ĀB), (6.30)

IB̄ = µi(B̄)− µi(ĀB̄)− µi(AB̄), (6.31)

IABĀB̄ = 1− µi(AB)− µi(AB̄)− µi(ĀB)− µi(ĀB̄). (6.32)

The following result summarizes the conditions for classical data using
the parameters defined in Eqs. (6.28)–(6.32).

Corollary 6.4. The set of data µi is classical conjunction data if and only
if

IABĀB̄ = IA = IB = IĀ = IB̄ = 0. (6.33)

Proof. We obtain Eq. (6.13) by combining IABĀB̄ = 0 with Eqs. (6.28)
and (6.30). Similarly, we obtain Eq. (6.14) by combining IABĀB̄ = 0 with
Eqs. (6.29) and (6.31). Next, IA = 0 implies Eq. (6.15). Similarly, IB =
IĀ = IB̄ = 0 implies Eqs. (6.15)–(6.18).
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6.2 Experiment on Conjunctions and Negations
of Concepts

We use an experimental data set µi obtained for four pairs of concepts10.
In this experiment, participants fill a questionnaire in which they have to
estimate the membership of different exemplars with respect to concepts
and concept combinations involving conjunctions and negations. The pairs
of concepts considered in the experiment are

(A1,B1) = (‘Home Furnishing’,‘Furniture’),

(A2,B2) = (‘Spices’,‘Herbs’),

(A3,B3) = (‘Pets’,‘Farmyard Animals’), and

(A4,B4) = (‘Fruits’,‘Vegetables’).

(6.34)

The membership of 24 exemplars was tested for each pair of concepts.
The data is shown in Appendix B. The choice of exemplars and concepts
was inspired by Hampton’s experiments for concept disjunctions [Ham88b].

The methodology for the experiment is that of the “within-subjects” de-
sign. That is, all participants were exposed to the same conditions. The set
of 24 exemplars was assigned to all participants. In the experiment, partic-
ipants were requested to estimate the membership of the 24 exemplars in
the following order: i) Aj ,Bj , and AjBj , ii) Aj , B̄j , and AjB̄j , iii) Āj ,Bj ,
and ĀjBj , and iv) Āj , B̄j , and ĀjB̄j , for j = 1, ..., 4.

The membership weight of exemplars was estimated using the scale

{−3,−2,−1, 0,+1,+2,+3}, (6.35)

where the extreme values −3 and +3 indicate strong non-membership and
strong membership respectively, and zero, the inability to decide.

The analysis presented in this chapter uses only the data for membership
vs non-membership in the interval [0, 1]. Therefore, we average the member-
ship estimations asssuming a value equal to 0 with each negative response,
0.5 with each response equal to zero, and +1 with each positive response.

10The experiment was tested on 40 participants, and was carried out by a collaborator,
Sandro Sozzo.
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6.2.1 Results

A statistical analysis for the data suggests two strong tendencies:

1. membership estimations satisfy conditions (6.13) and (6.14) for clas-
sical data, and

2. membership estimations violate conditions (6.15)–(6.18), and the value
of the deviation is approximately constant.

To support the first claim, we give the 95% confidence interval for the devi-
ations ΛA and ΛB defined in Eqs. (6.26) and (6.27) respectively for the set
of exemplars of each concept combination. In all cases, the deviations fall
within a narrow band that is very close to zero. In fact, because µi(A) and
µi(Ā) have values between [0, 1], ΛA and ΛB are contained in an interval
of length 2. However, we see in Table 6.1 that the experimental data falls
within an interval that is of length smaller than 0.05 with 95% certainty.
Moreover, the center of the interval is also contained in a narrow region be-
tween the values −0.016 (for ΛB, and i = 2) and −0.105 (for ΛB and i = 1).
This result confirms that participants’ reasoning about the membership of
exemplars with respect to individual concepts and their negations obeys the
rules of classical logic and probability.

To support the second claim, we give the 95% confidence interval for
IA, IB, IĀ, and IB̄ defined in Eqs. (6.28)–(6.31) for the set of exemplars of
each concept combination.

In all cases, the deviations fall within a narrow band of similar values.
In fact, since all the values of the data set µi are contained in the interval
[0, 1], IA, IB, IĀ, and IB̄ must fall in an interval of length 2. However, the
experimental data falls within an interval that is of length smaller than 0.09,
and whose center is between −0.471 (IB, and j = 4), and −0.274 (IB̄, and
j = 4) with 95% certainty. This result confirms that participants’ reasoning
about the membership with respect to concept combinations deviates from

Table 6.1: 95% confidence interval for ΛA and ΛB for the data on conjunc-
tions and negations in Tables B.1–B.4, Appendix B.

95% CI j = 1 j = 2 j = 3 j = 4
ΛA (−0.074,−0.032) (−0.064,−0.037) (−0.034,−0.014) (−0.036, 0.000)
ΛB (−0.125,−0.078) (−0.038, 0.005) (−0.041,−0.012) (−0.047,−0.023)
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the rules of classical logic and probability, and the value of the deviation is
approximately constant.

The pattern of deviations from classicality can be further refined by
looking separately at IX for X = A,B, and IY , for Y = Ā, B̄. If we consider
the average and variance of the extremes of the intervals, we obtain the
interval

(−0.460± 0.0006,−0.395± 0.0001), (6.36)

for IX with X = A,B, and

(−0.371± 0.0029,−0.311± 0.0035), (6.37)

for IY with Y = Ā, B̄.

Note that while the length of both average intervals is approximately
0.06, the center of these intervals is different. In particular, the center for
the case X = A,B is 0.428, and 0.341 for the case Y = Ā, B̄. Moreover,
although the variances are small in both cases, it is one order of magnitude
smaller for X = A,B. This means that the violations of the conditions for
classical data have larger value and are more pronounced in the member-
ship estimations of concepts than in the estimations of the negated concepts.

To visualize these patterns, we show the extreme values of the 95% con-
fidence interval for IA, IĀ, IB, and IB̄ in Fig. 6.1. Blue points denote the
interval for concepts and red points for the negated concepts. For example,
the interval IA for i = 1 is the blue point with coordinates (−0.469,−0.406).

It is easy to observe that the blue points are more concentrated, and
further from the origin than the red points. This visually confirms the anal-

Table 6.2: 95% confidence interval for IA, IB, IĀ, and IB̄, for the data on
conjunctions and negations in Tables B.1–B.4, Appendix B.

95% CI j = 1 j = 2 j = 3 j = 4
IA (−0.469,−0.406) (−0.476,−0.390) (−0.426,−0.349) (−0.463,−0.398)
IB (−0.482,−0.427) (−0.443,−0.376) (−0.429,−0.368) (−0.495,−0.446)
IĀ (−0.458,−0.393) (−0.375,−0.326) (−0.332,−0.259) (−0.359,−0.302)
IB̄ (−0.390,−0.329) (−0.429,−0.387) (−0.323,−0.241) (−0.298,−0.251)
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ysis above: the deviation from classical data is larger for the membership
estimations of concepts than for those of negated concepts.

6.3 Fock Space Modeling of Conjunctions and
Negations

Since the data for concept combinations involving conjunctions and nega-
tions does not satisfy the conditions for classical data, a quantum model is
necessary. We extend the model for concept conjunctions presented in §5.1.2
to the negations of concepts. To construct this model extension, we intro-
duce a set of conditions that relate a concept to its negation in the two
sectors of the Fock space model, and add them to the conditions obtained
for the case of conjunctions.

First, we introduce some notation to facilitate the presentation. Let
X = A or Ā and Y = B or B̄ and set

Figure 6.1: Representation of intervals IA and IB on blue, and of intervals
IĀ and IB̄ on red.
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hmin(XY ) = ave(XY )− dev(XY ),

hmax(XY ) = ave(XY ) + dev(XY ),

tmin(XY ) = max(0, 1− µi(X)− µi(Y )),

tmax(XY ) = min(µi(X), µi(Y )).

(6.38)

6.3.1 First Sector Analysis

Recall that the requirements for a model for the concepts A, B, and their
conjunction AB are

〈A|A〉 = 〈B|B〉 = 1, (6.39)

〈A|B〉 = 0, (6.40)

µi(A) = 〈A|M|A〉, µi(B) = 〈B|M|B〉, (6.41)

µi(AB) =
1

2
(µi(A) + µi(B)) + <(〈A|M|B〉). (6.42)

To extend the model for negations, we represent the state of the conceptual
negations Ā and B̄ by the vectors |Ā〉 and |B̄〉 respectively, and require that
the set {|A〉, |B〉, |Ā〉, |B̄〉} forms an orthonormal set. Moreover, we require
that

µi(Ā) = 〈Ā|M|Ā〉, and µi(B̄) = 〈B̄|M|B̄〉. (6.43)

Next, we build the state for the concept combinations as a superposition of
states

|XY 〉 =
1√
2

(|X〉+ |Y 〉), (6.44)

and extend condition (6.42) to the other concept combinations:

µi(XY ) =
1

2
(µi(X) + µi(Y )) + <〈X|M|Y 〉. (6.45)

To measure negated concepts, we use the standard negated operator M⊥

from quantum theory [BVN75]:

M⊥ = 1−M. (6.46)
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Because we consider four orthogonal vectors |A〉, |Ā〉, |B〉, and |B̄〉, and
two projection operators M and 1−M, the maximal number of subspaces
we can obtain is eight11. Therefore, we set H = C8.

Definition 6.5. The set of data µi has a representation in the Hilbert space
C8 if and only if there exist vectors |A〉, |B〉, |Ā〉, |B̄〉 ∈ C8, and M : C8 → C8

such that Eqs. (6.39)–(6.45) are satisfied.

The following theorem summarizes the type of data that can be repre-
sented by this model.

Theorem 6.6. The set of data µi has a representation in the Hilbert space
C8 if and only if

µi(XY ) ∈ [hmin(XY ), hmax(XY )], (6.47)

for X = A or Ā, Y = B or B̄.

Proof. Let the set {|1〉, |2〉, ..., |8〉} denote the canonical basis of C8, and
define the operators M and 1−M by

M((x1, ..., x8)) = (0, 0, 0, 0, x5, x6, x7, x8), and

1−M((x1, ..., x8)) = (x1, x2, x3, x4, 0, 0, 0, 0).
(6.48)

If we set

|A〉 = eiφA(a1, a2, a3, a4, a5, a6, a7, a8), (6.49)

|Ā〉 = eiφĀ(a′1, a
′
2, a
′
3, a
′
4, a
′
5, a
′
6, a
′
7, a
′
8), (6.50)

|B〉 = eiφB (b1, b2, b3, b4, b5, b6, b7, b8), (6.51)

|B̄〉 = eiφB̄ (b′1, b
′
2, b
′
3, b
′
4, b
′
5, b
′
6, b
′
7, b
′
8), (6.52)

11Since we have shown in § 6.2.1 that µi(A) + µi(Ā) and µi(B) + µi(B̄) are usually
very close to one, a good approximation of µi could be constructed using less than eight
independent subspaces.
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then since these vectors must be orthonormal, we have

〈A|Ā〉 =
∑8

i=1 aia
′
i = 0, (6.53)

〈B|B̄〉 =
∑8

i=1 bib
′
i = 0, (6.54)

〈A|B〉 =
∑8

i=1 aibi = 0, (6.55)

〈A|B̄〉 =
∑8

i=1 aib
′
i = 0, (6.56)

〈Ā|B〉 =
∑8

i=1 a
′
ibi = 0, (6.57)

〈Ā|B̄〉 =
∑8

i=1 a
′
ib
′
i = 0. (6.58)

〈A|A〉 =
∑8

i=1 aiai = 1, (6.59)

〈B|B〉 =
∑8

i=1 bibi = 1, (6.60)

〈Ā|Ā〉 =
∑8

i=1 a
′
ia
′
i = 1, (6.61)

〈B̄|B̄〉 =
∑8

i=1 b
′
ib
′
i = 1. (6.62)

We use Eqs (6.41) and (6.43) to compute the membership weights:

µi(A) = 〈A|M|A〉 = a2
5 + a2

6 + a2
7 + a2

8, (6.63)

1− µi(A) = 〈A|1−M|A〉 = a2
1 + a2

2 + a2
3 + a2

4, (6.64)

µi(Ā) = 〈Ā|M|Ā〉 = a′
2
5 + a′

2
6 + a′

2
7 + a′

2
8, (6.65)

1− µi(Ā) = 〈Ā|1−M|Ā〉 = a′
2
1 + a′

2
2 + a′

2
3 + a′

2
4, (6.66)

µi(B) = 〈B|M|B〉 = b25 + b26 + b27 + b28, (6.67)

1− µi(B) = 〈B|1−M|B〉 = b21 + b22 + b23 + b24, (6.68)

µi(B̄) = 〈B̄|M|B̄〉 = b′
2
5 + b′

2
6 + b′

2
7 + b′

2
8, (6.69)

1− µi(B̄) = 〈B̄|1−M|B̄〉 = b′
2
1 + b′

2
2 + b′

2
3 + b′

2
4. (6.70)

Next, Eqs. (6.42) yields

µi(AB) =
1

2
(µi(A) + µi(B)) + <〈A|M|B〉

= ave(AB) +
8∑
i=5

aibi cos(φB − φA), (6.71)

µi(AB̄) =
1

2
(µi(A) + µi(B̄)) + <〈A|M|B̄〉

= ave(AB̄) +
8∑
i=5

aib
′
i cos(φB̄ − φA), (6.72)

µi(ĀB) =
1

2
(µi(Ā) + µi(B)) + <〈Ā|M|B〉
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= ave(ĀB) +

8∑
i=5

a′ibi cos(φB − φĀ), (6.73)

µi(ĀB̄) =
1

2
(µi(Ā) + µi(B̄)) + <〈Ā|M|B̄〉

= ave(ĀB̄) +
8∑
i=5

a′ib
′
i cos(φB̄ − φĀ). (6.74)

To finish the proof, we need to show that the interference terms for the
combinations XY are bounded by dev(XY ). We apply the Cauchy-Schwarz
lemma to the interference term in Eq. (6.71) to obtain

|<(〈A|M|B〉)| ≤
√
µi(A)µi(B). (6.75)

Eq. (6.56) implies that

0 = 〈A|B〉 = 〈A|M|B〉+ 〈A|1−M|B〉. (6.76)

Since the real and imaginary parts of Eq. (6.76) must be zero, we obtain
from the real part

<(〈A|M|B〉)2 = (a1b1 + a2b2 + a3b3 + a4b4)2 cos2(φB − φA), (6.77)

and apply Cauchy-Scwharz lemma to obtain

<(〈A|M|B〉)2 ≤ (a2
1 + a2

2 + a2
3 + a2

4)(b21 + b22 + b23 + b24) cos(φB −φA)2. (6.78)

Thus,

|<(〈A|M|B〉)| ≤
√

(1− µi(A))(1− µi(B)). (6.79)

Combining Eqs. (6.75) and (6.79) yields

|<(〈A|M|B〉)| ≤
√

min(µi(A)µi(B), (1− µi(A))(1− µi(B)), (6.80)

and thus

µi(AB) ∈ [hmin(AB), hmax(AB)]. (6.81)

We repeat this procedure with Eqs. (6.72)–(6.74) to obtain Eq. (6.47). The
other side of the implication follows directly from the construction.
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Similarly to § 5.2.1, we can obtain a representation in C8 that is com-
patible with the quantum modeling principles by applying unitary transfor-
mations to the representations of individual exemplars.

Definition 6.7. A Hilbert space representation of µki=1 is a four-tuple of
unit vectors |A〉, |B〉, |Ā〉, |B̄〉 ∈ C8, and a collection of orthogonal projectors
Mi : C3 → C3, for i = 1, ..., k, such that conditions (4.1)–(4.4) are satisfied
for i = 1, ..., k. We say (|A〉, |B〉, |Ā〉, |B̄〉, {Mi}ki=1) is a representation of
µki=1 in C8.

The following is a corollary of Theorem 5.3 for the representation in
Definition 6.7.

Corollary 6.8. The set of data µki=1 has a representation in C8 if and only
if for all i = 1, ..., k,

µi(AB) ∈ [hmin(AB), hmax(AB)]. (6.82)

Proof. The proof follows the same construction as in Theorem 5.3 starting
from four vectors in C8 instead of two vectors in C3.

6.3.2 Second Sector Analysis

To ensure that the two sectors of the two-sector Fock space model are
compatible, we use C8 ⊗ C8 for the second sector. In order to represent an
exemplar, the vector |C〉 describes the conceptual situation where concepts
and their combinations are jointly represented, and projection operators
measure the membership weight for each combination. Let |C〉 be a unit
vector in C8 ⊗ C8. That is,

|C〉 =

8∑
i,j=1

cije
iγij |i〉 ⊗ |j〉, (6.83)

and

〈C|C〉 = (
8∑

k,l=1

ckle
−iγkl〈k| ⊗ 〈l|)(

8∑
i,j=1

cije
iγij |i〉 ⊗ |j〉)

=

8∑
k,l=1

8∑
i,j=1

cklcije
i(γij−γkl)〈k|i〉〈l|j〉

=
8∑

i,j=1

cijcije
i(γij−γij) =

8∑
i,j=1

c2
ij = 1.

(6.84)
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We extend the membership operator M, defined in Eq. (6.48), to the tensor
product using MA = M ⊗ 1, MB = 1 ⊗M, and MAB = MAMB. Like-
wise, the operators that measure membership for concepts and conjunctions
involving negated concepts are defined as follows:

MĀ = (1−M)⊗ 1,

MB̄ = 1⊗ (1−M),

MĀB = MĀMB,

MAB̄ = MAMB̄,

MĀB̄ = MĀMB̄.

(6.85)

Therefore, the formulas for the membership weight for the concepts A and
B are

µi(A) = 〈C|MA|C〉 = 〈C|M⊗ 1|C〉

= (
8∑

k,l=1

ckle
−iγkl〈k| ⊗ 〈l|)|M⊗ 1|(

8∑
i,j=1

cije
iγij |i〉 ⊗ |j〉)

=

8∑
k,l=1

8∑
i,j=1

cklcije
i(γij−γkl)〈k|M|i〉〈l|1|j〉

=
8∑

i,j,k=1

ckjcije
i(γij−γkj)〈k|M|i〉

=
8∑
i=5

8∑
j=1

cijcije
i(γij−γij) =

8∑
i=5

8∑
j=1

c2
ij ,

(6.86)

and
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µi(B) = 〈C|MB|C〉 = 〈C|1⊗M|C〉

= (

8∑
k,l=1

ckle
−iγkl〈k| ⊗ 〈l|)1⊗M|(

8∑
i,j=1

cije
iγij |i〉 ⊗ |j〉)

=
8∑

k,l=1

8∑
i,j=1

cklcije
i(γij−γkl)〈k|1|i〉〈l|M|j〉

=
8∑

i,j,l=1

cilcije
i(γij−γil)〈l|M|j〉

=

8∑
i=1

8∑
j=5

cijcije
i(γij−γij) =

8∑
i=1

8∑
j=5

c2
ij .

(6.87)

The membership weight formulas of the negated concepts Ā and B̄ are

µi(Ā) = 1− µi(A) = 〈C|MĀ|C〉 = 〈C|(1−M)⊗ 1|C〉

= (
8∑

k,l=1

ckle
−iγkl〈k| ⊗ 〈l|)(1−M)⊗ 1|(

8∑
i,j=1

cije
iγij |i〉 ⊗ |j〉)

=
8∑

k,l=1

8∑
i,j=1

cklcije
i(γij−γkl)〈k|1−M|i〉〈l|1|j〉

=

8∑
i,j,k=1

ckjcije
i(γij−γkj)〈k|1−M|i〉

=
4∑
i=1

8∑
j=1

cijcije
i(γij−γij) =

4∑
i=1

8∑
j=1

c2
ij , (6.88)

and

µi(B̄) = 1− µi(B) = 〈C|MĀ|C〉 = 〈C|1⊗ (1−M)|C〉

= (

8∑
k,l=1

ckle
−iγkl〈k| ⊗ 〈l|)1⊗ (1−M)|(

8∑
i,j=1

cije
iγij |i〉 ⊗ |j〉)

=
8∑

k,l=1

8∑
i,j=1

cklcije
i(γij−γkl)〈k|1|i〉〈l|1−M|j〉

=
8∑

i,j,l=1

cilcije
i(γij−γil)〈l|1−M|j〉
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=

8∑
i=1

4∑
j=1

cijcije
i(γij−γij) =

8∑
i=1

4∑
j=1

c2
ij . (6.89)

And the membership weight formulas for concept combinations involving
conjunctions and negations are

µi(AB) = 〈C|MAB|C〉 = 〈C|M⊗M|C〉

= (
8∑

k,l=1

ckle
−iγkl〈k| ⊗ 〈l|)M⊗M|(

8∑
i,j=1

cije
iγij |i〉 ⊗ |j〉)

=

8∑
k,l=1

8∑
i,j=1

cklcije
i(γij−γkl)〈k|M|i〉〈l|M|j〉

=
8∑
i=5

8∑
j=5

cijcije
i(γij−γij) =

8∑
i=5

8∑
j=5

c2
ij , (6.90)

µi(AB̄) = 〈C|MAB̄|C〉 = 〈C|M⊗ (1−M)|C〉

=
8∑
i=5

4∑
j=1

c2
ij , (6.91)

µi(ĀB) = 〈C|MĀB|C〉〈C|(1−M)⊗M|C〉

=
4∑
i=1

8∑
j=5

c2
ij , (6.92)

µi(ĀB̄) = 〈C|MĀB̄|C〉 = 〈C|(1−M)⊗ (1−M)|C〉

=
4∑
i=1

4∑
j=1

c2
ij . (6.93)

Definition 6.9. A representation of µi in the second sector of the Fock
space is a pair (|C〉,M), where |C〉 ∈ C8 ⊗ C8 and M : C8 → C8 are such
that Eqs. (6.13)–(6.18) are satisfied.

The following theorem characterizes the cases when data involving con-
junctions and negations can be represented in the second sector.

Theorem 6.10. The set of data µi has a representation in the second sector
of the Fock space if and only µi is classical data.

Proof. Assume that we have |C〉 and M such that Eqs. (6.86)–(6.93) are
satisfied. Then, it is easy to prove that the classicality conditions (6.13)–
(6.18) are satisfied. For example, Eq. (6.17) is proven as follows:
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µi(ĀB) + µi(ĀB̄) = 〈C|(1−M)⊗M|C〉+ 〈C|(1−M)⊗ (1−M)|C〉
= 〈C|(1−M)⊗M + (1−M)|C〉
= 〈C|(1−M)⊗ 1|C〉 = µi(Ā).

(6.94)

We prove the other side of the implication. Suppose that µi is clas-
sical data and thus satisfies conditions (6.15)–(6.18). If we choose |C〉 =∑8

i,j=1 cij such that

cij =



√
1
16µi(AB) for 5 ≤ i ≤ 8 and 5 ≤ j ≤ 8,√
1
16µi(AB̄) for 5 ≤ i ≤ 8 and 1 ≤ j ≤ 4,√
1
16µi(ĀB) for 1 ≤ i ≤ 4 and 5 ≤ j ≤ 8,√
1
16µi(ĀB̄) for 1 ≤ i ≤ 4 and 1 ≤ j ≤ 4,

(6.95)

and M, such that

M(x1, ..., x8) = (0, 0, 0, 0, x5, x6, x7, x8), (6.96)

then, Eqs. (6.86)–(6.93) are easily satisfied. This completes the proof.

Similarly to § 5.2.2, we can obtain representations in C8 ⊗ C8 that are
compatible with the modeling principles of quantum cognition by applying
unitary transformations to the representations of individual exemplars. We
introduce the extensions of the zero-, first-, and second-type representation
for this case.

Definition 6.11. A zero-type representation of µki=1 in C8 ⊗ C8 is a unit
vector |C〉 ∈ C8⊗C8, and a collection of orthogonal projectors {MA

i ,M
B
i }ki=1

from C8⊗C8 to C8⊗C8, such that conditions(6.13)–(6.18) are satisfied with
M∧

i = MA
i MB

i , for i = 1, ..., k. We say (|C〉, {MA
i ,M

B
i }ki=1) is a zero-type

representation of µki=1 in C8 ⊗ C8.

Definition 6.12. A first-type representation of µki=1 in C8 ⊗ C8 is a unit
vector |C〉 ∈ C8⊗C8, and a collection of orthogonal projectors {Mi}ki=1 from
C8 to C8, such that (|C〉, {Mi⊗1,1⊗Mi}ki=1) is a zero-type representation
of µki=1 in C8 ⊗ C8.

Definition 6.13. A second-type representation of µki=1 on the tensor prod-
uct space C8 ⊗ C8 is a pair of unit vectors |A〉, B〉 ∈ C8, and a collec-
tion of orthogonal projectors Mi from C8 to C8, for i = 1, ..., k, such that
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(|A〉 ⊗ |B〉, {Mi ⊗ 1,1 ⊗Mi}ki=1) is a zero-type representation of µki=1 in
C8 ⊗ C8.

As for the case of conjunction, the first-type representation is in accor-
dance with the modeling principles of quantum cognition, the second-type
and zero-type representations are a mathematical simplification and a gen-
eralization respectively. These two representations will facilitate the data
analysis.

Since Definitions 6.11–6.13 are trivial extensions of Definitions 5.5–5.7,
obtaining a zero-, first-, and second-type representation by applying unitary
transformations to a collection of representations for individual exemplars
follows the same procedure presented in Theorem 5.8.

Corollary 6.14. The set of data µki=1 has a zero-type representation in
C8 ⊗ C8 if and only if µi is classical data for i = 1, ..., k.

Corollary 6.15. The set of data µki=1 has a second-type representation in
C8 ⊗ C8 if and only if for all i = 1, ..., k

µi(XY ) = µi(X)µi(Y ) (6.97)

for X = A, Ā, and Y = B, B̄.

6.3.3 Fock Space Representation of Experimental Data

We now combine the representations of multiple exemplars developed in
§ 6.3.1 and § 6.3.2 to represent sets of data in the two-sector Fock space
model in a way that is consistent with the modeling principles of quantum
cognition in the concrete space C8 ⊕ C8 ⊗ C8.

First, we need to introduce the state vectors and the membership formu-
las. The model requires state vectors that represent the state of the concept
combinations. These states correspond to the superposition of the concept
combination represented in the first and second sectors. So the state vectors
for the concept combinations are given by

|ψXY 〉 = nXY
eiρ√

2
(|X〉+ |Y 〉) +

√
1− n2

XY e
iθ|C〉. (6.98)

Hence, the membership weights for the concept combinations are given
by
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µi(XY ) = 〈ψXY |M⊕M⊗M|ψXY 〉

=
n2
XY

2
(〈X|+ 〈Y |)M(|X〉+ |Y 〉) + (1− n2

XY )〈C|M⊗M|C〉

=
n2
XY

2
(〈X|M|X〉+ 〈Y |M|Y 〉+ 〈X|M|Y 〉+ 〈Y |M|X〉) + (1− n2

XY )

8∑
i,j=5

c2
ij

=
n2
XY

2
(µi(X) + µi(X)) + <〈X|M|Y 〉) + (1− n2

XY )
8∑

i,j=5

c2
ij

=n2
XY (

µi(X) + µi(Y )

2
+

(
8∑
i=5

aibi

)
cos(φB − φA)) + (1− n2

XY )µ̌i(XY ).

(6.99)

Eq. (6.99) expresses the membership weights for conjunctions of concepts
A, B, and their negations. We can introduce the representations of multiple
exemplars as in §5.2.3.

Definition 6.16. A zero-type representation of µki=1 in C8⊕C8⊗C8 consists
of an orthonormal set {|A〉, |B〉, |Ā〉, |B̄〉} of vectors in C8, a tensor |C〉 ∈
C8⊗C8, a collection of operators {Mi,M

A
i ,M

B
i }ki=1 from C8⊗C8 to C8⊗C8,

and coefficients 0 ≤ nAB, nĀB, nAB̄, nĀB̄ ≤ 1 such that for all i = 1, ..., k,
Eqs. (6.41), (6.43), (6.84), (6.86)–(6.89), and (6.99) are satisfied. We say
that

(nAB, nĀB, nAB̄, nĀB̄, |A〉, |B〉, |Ā〉, |B̄〉, |C〉, {Mi,M
A
i ,M

B
i }ki=1)

is a zero-type representation of µki=1 in C8 ⊕ C8 ⊗ C8.

Definition 6.17. A first-type representation of µki=1 in C8 ⊕ C8 ⊗ C8 is a
zero-type representation

(nAB, nĀB, nAB̄, nĀB̄, |A〉, |B〉, |Ā〉, |B̄〉, |C〉, {Mi,M
A
i ,M

B
i }ki=1)

of µki=1 in C8 ⊕ C8 ⊗ C8 such that for all i = 1, ..., k, MA
i = Mi ⊗ 1, and

MB
i = 1⊗Mi.

Definition 6.18. A second-type representation of µki=1 in C8 ⊕ C8 ⊗ C8 is
a zero-type representation
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(nAB, nĀB, nAB̄, nĀB̄, |A〉, |B〉, |Ā〉, |B̄〉, |C〉, {Mi,M
A
i ,M

B
i }ki=1)

of µki=1 in C8 ⊕ C8 ⊗ C8 such that |C〉 = |A〉 ⊗ |B〉.

The following result summarizes the cases where the two-sector Fock
space model for conjunctions and negations of concepts can represent the
membership weights for a collection of exemplars:

Theorem 6.19. There exists a zero-type representation of µki=1 in the Fock
space model if and only if there exist parameters 0 ≤ nAB, nĀB, nAB̄, nĀB̄ ≤
1 such that for all i = 1, ..., k

µi(XY ) = n2
XY µ̃i(XY ) +

√
1− n2

XY µ̌i(XY ), (6.100)

with

µ̃i(XY ) ∈ [hmin(XY ), hmax(XY )],

µ̌i(XY ) ∈ [tmin(XY ), tmax(XY )].
(6.101)

Proof. Eq. (6.101) implies we can build a representation (|A〉, |B〉, {Mi})
of µ̃ki=1 in C8, and a zero-type representation (|C, {MA

i ,M
B
i }) of µ̌ki=1 in

C8 ⊗ C8. Next, Eq. (6.100) implies there are parameters nAB, nĀB, nAB̄,
and nĀB̄ such that Eq. (6.99) is satisfied by |A〉, |B〉, |C〉,Mi,M

A
i , and MB

i

for each i = 1, ..., k. Therefore,

(nAB, nĀB, nAB̄, nĀB̄, |A〉, |B〉, |C〉, {Mi,M
A
i ,M

B
i }ki=1)

is a zero-type representation of µki=1 in C8 ⊕ C8 ⊗ C8.

The following corollary characterizes that sets of data that allow for a
second-type representation,

Corollary 6.20. There exists a second-type representation of µki=1 in the
Fock space model if and only if there exist parameters 0 ≤ nAB, nĀB, nAB̄, nĀB̄ ≤
1 such that for all i = 1, ..., k

µi(XY ) = n2
XY µ̃i(XY ) +

√
1− n2

XY µi(X)µi(Y ), (6.102)

with

µ̃i(XY ) ∈ [hmin(XY ), hmax(XY )]. (6.103)
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Proof. Because we impose the extra constraint |C〉 = |A〉⊗|B〉 for the case of
second-type representations, we can apply the proof of Theorem 6.19 using
µ̌i(XY ) = µi(X)µi(Y ).

We can now build representations of the data collected in the experi-
ment described in § 6.2. Before representing the data, we revisit the results
obtained in § 6.2.1 in light of this model. In particular we show that this
model is capable of describing the experimental deviations from the classi-
cality parameters in Definition 6.3.

Since we know from § 6.2.1 that individual concepts behave classically,
we focus our analysis on concept combinations. Therefore, we calculate the
value of the parameters IA, IB, IĀ, and IB̄ in the Fock space model. For
simplicity, we assume

nXY = n, (6.104)

and

<〈A|M|B〉+ <〈A|M|B̄〉 = 0,

<〈A|M|B〉+ <〈Ā|M|B〉 = 0,

<〈Ā|M|B〉+ <〈Ā|M|B̄〉 = 0,

<〈A|M|B̄〉+ <〈Ā|M|B̄〉 = 0.

(6.105)

Then, applying Eq. (6.99) to the definition of IA in Eq. (6.28) yields

IA = µi(A)− µi(AB)− µi(AB̄)

= µi(A)− n2(µi(A)− µi(B) + µi(B̄)

2
)− (1− n2)(µ̌i(AB) + µ̌i(AB̄)).

(6.106)

From our results in § 6.2.1, we can assume that individual concepts satisfy
the classicality conditions:

µi(B) + µi(B̄) = 1. (6.107)

Theorem 6.10 shows that the second sector also satisfies the classical condi-
tions. Therefore

µ̌i(AB) + µ̌i(AB̄) = µi(A). (6.108)

112



6.4. Examples and Data Representation Analysis

Substituting Eqs. (6.107) and (6.108) in Eq. (6.106) yields

IA = µi(A)− n2(µi(A)− 1

2
)− (1− n2)µi(A) = −n

2

2
. (6.109)

Eq. (6.109) shows that the classicality condition IA = 0 is violated by a
factor that is proportional to n2. The same result can be obtained for the
parameters IB, IĀ, and IB̄.

We can compare experimental values of these parameters with the result
of Eq. (6.109). We use the experimental values of the parameters IA, IB,
IĀ, and IB̄ (see Table 6.2) to compute n. The result shows that n fluctuates
between 0.7 and 1. This is consistent with the data analysis of § 5.3. There,
we demonstrated that the best performance for the Fock space model for
conjunctions is obtained when nAB is equal to approximately 0.8 (see Fig-
ure 5.1).

This confirms that the contribution from the first sector of the Fock space
is larger than that of the second sector. And since each sector represent
a different mode of thought, this suggests that the contribution from the
emergent mode of thought is larger than that of the logical mode of thought.

6.4 Examples and Data Representation Analysis

Before analyzing the performance of the model, we give a concrete repre-
sentation for an example from the experimental data. Consider the exemplar
‘olive’ in Table B.4 (Appendix B). The membership weights are

µi(A) = 0.53, µi(B) = 0.63, µi(Ā) = 0.47, µi(B̄) = 0.44,

µi(AB) = 0.65, µi(AB̄) = 0.34, µi(ĀB) = 0.51, µi(ĀB̄) = 0.36.
(6.110)

This exemplar can be represented in the Fock space C8 ⊕ (C8 ⊗ C8) by
making the choices

nAB = nAB̄ = nĀB = nĀB̄ = 1,

|A〉 = eiφA(0.47, 0.48, 0.26, 0.14,−0.61,−0.20,−0.04, 0.23),

|B〉 = eiφB (0.05,−0.44,−0.64, 0.14,−0.33,−0.44,−0.22, 0.15),

|Ā〉 = eiφĀ(0.46,−0.039,−0.42, 0.28,−0.034, 0.62, 0.37,−0.04),

|B′〉 = eiφB̄ (0.43, 0.1, 0.047, 0.49, 0.59,−0.33,−0.27,−0.18),

(6.111)

113



6.4. Examples and Data Representation Analysis

with

φAB = φB − φA = 102.18◦,

φAB̄ = φB̄ − φA = 116.27◦,

φĀB = φB − φĀ = 97.28◦,

φĀB̄ = φB̄ − φĀ = 107.51◦,

(6.112)

and by characterizing the state |C〉 as follows:

8∑
i=5

8∑
i=5

c2
ij = 0.640,

8∑
i=5

4∑
i=1

c2
ij = 0.347,

4∑
i=1

8∑
j=5

c2
ij = 0.469,

4∑
i=1

4∑
i=1

c2
ij = 0.5.

(6.113)

We estimated the number of exemplars that can individually be repre-
sented assuming Eq. (6.104), and have found that both the zero- and second-
type representations can model 95% of exemplars in the data set. We also
calculated the performance achieved for specific values of nAB, nĀB, nAB̄,
and nĀB̄. In Fig. 6.2, we show the number of exemplars for which Eq. (6.99)
is satisfied for 0 ≤ nAB, nĀB, nAB̄, and nĀB̄ ≤ 1 for j = 1, .., 4. The blue,
red, yellow, and green curves in the graphs of the first column correspond
to the combinations AjBj , ĀjBj , AjB̄j , and ĀjB̄j respectively. The first
column assumes that µ̌i(XY ) in Eq. (6.99) must satisfy the constraints for
classical data, and the second column assumes that µ̌i(XY ) = µi(X)µi(Y ).
Therefore, by Theorem (6.19) and Corollary (6.20), the first and second
columns indicate the number of exemplars that have a zero- and a second-
type representation respectively.

We observed a very similar pattern across all the concept combinations.
For the first column, the performance remains low for small values of nXY ,
the number of exemplars increases steadily reaching the highest performance
for nXY between 0.6 and 0.8, and remains stable thereafter. The same pat-
tern appear in the second column, except that the performance remains
low up to nXY equal to approximately 0.5, and the highest performance is
reached for values between 0.7 and 0.9. Therefore, we conclude that the
two-sector Fock space model is able to represent almost all exemplars when
the first sector is dominant. Interestingly, this result is consistent with our
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Figure 6.2: Number of exemplars having a zero- and second-type represen-
tation for different values of nXY .

115



6.4. Examples and Data Representation Analysis

analysis for conjunction in Chapter 5.

To provide a simpler presentation of our results, we present in Fig. 6.3
the second-type representation when the four parameters nXY are equal to
the same n value. In this restricted case, we show the fraction of exemplars
that simultaneously satisfy Eq. 6.99. The blue, red, yellow, and green curves
represent the cases j = 1, 2, 3, and 4 respectively.

Here we can clearly see the representation pattern explained above. In
fact, none of the exemplars can be represented for n < 0.7. In addition, the
fraction of exemplars that can be modeled increases abruptly from 0 to ap-
proximately 0.8 for 0.7 ≤ n ≤ 0.9, and remains stable for n > 0.9. Moreover,
the maximal performance in all cases does not surpass 90%. This implies
that there are some exemplars in the data set that cannot be represented
for a fixed n since, from our previous analysis, we know that 95.8% of the
exemplars can be represented by the model.

From our theoretical and experimental analyses, we conclude that when
concepts are combined using conjunctions and negations, the emergent mode

Figure 6.3: Fraction of experimental data that can be simultaneously rep-
resented in the Fock space models for specific values of n.
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of thought, represented by the first sector of the Fock space, is predominant
over the logical mode of thought, represented by the second sector of the
Fock space. In particular, the emergent mode of thought contributes ap-
proximately 70% or more to the conceptual combination state.
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Chapter 7

Quantum Structures in
Natural Language Processing

The advent of the internet and the consequent technological revolution
have transformed the field of language processing into a major challenge for
science. The area of research that focuses on performing non-trivial infor-
mation tasks such as translating a document to a foreign language, known
as machine translation, or identifying relevant information from a collection
of documents, known as information retrieval, is called natural language
processing (NLP) [JMK+00].

It is well-known in the artificial intelligence community that many infor-
mation tasks are not easily automated [RN95]. The most famous example
of such a task was introduced by one of the founding fathers of the theory of
computation, Alan Turing [SCA03]. He proposed the following intelligence
test for machines: Suppose we have a chat opened for two computers in
different rooms. In one of the rooms there is a human who does not know
who he/she is going to talk to, and in the other room there is a machine that
has no interaction with or feedback from humans, except for the human on
the other side of the chat. The ‘Turing test’ consists of asking the human,
after a few minutes of conversation, whether the conversation he/she had
on the chat corresponds to an interaction with a machine or with a human.
If participants tend to believe they are speaking with a human, we say the
machine has passed the Turing test. When the test was proposed, most
researchers in the field thought that the Turing test would be passed after
10 or 20 years of research. Now, after nearly 70 years, the test remains an
open problem, and there is no theory that sheds light on how it could be
resolved [McC]. The Turing test illustrates the difficulties associated with
automated language processing.
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7.1. Language, Concepts, and Quantum Structures

7.1 Language, Concepts, and Quantum
Structures

A NLP model operates on ‘linguistic units’ that can correspond to words,
sentences, paragraphs, documents, or even collections of documents. The
model usually involves a ‘syntactical’ part that is concerned with the gram-
matical correctness of the linguistic units, and a ‘semantic’ part that focuses
on the meaning of such units.

In NLP, syntactical models are generally built upon one of the many
mathematically well-grounded theories of syntax. Examples of these theories
are generative, dependency, and functionalist grammars [Cho02]. For the
case of semantics however, there are no widely accepted formal theories. In
fact, semantic models in NLP are usually built in an ad-hoc manner [MS99].
For example, semantic approaches based on ontologies are often dependent
on the topic of discourse that is being processed [Sow00]. Since semantics is
a fundamental part of NLP models, most researchers believe that the lack
of a theory for semantics is one of the most important impediments for the
achievement of human-level performance, and that fundamentally new ideas
are required to achieve significant progress [McC].

Although philosophers of language have proposed that the meaning of
words can be represented using a concept-theoretical framework [Sea04], the
dominant research methodology in NLP does not follow this approach. In
fact, most researchers in NLP do not look for representational frameworks
for the meaning of linguistic units, but rather focus on matching the per-
formance of human annotators’ ‘gold-standards’ using ad-hoc models for
particular language tasks [Pel06].

From a methodological perspective, concept modeling and NLP are sim-
ilar because they are generally approached in an ad-hoc manner. Moreover,
because both areas are concerned with the study of meaning, they have sim-
ilar structural problems.

For example, it is a well-known fact in NLP that semantic relations in
language are graded [Zad65, Mur03, Tur01], and that the gradedness struc-
ture of these relations can be better understood using contextual informa-
tion [STZ05, BYBM11, Nav09, LC98]. However, it is not clear whether it is
better to define semantic relations for words [Fel98], sets of words [BFL98],
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7.2. Evidence of Quantum Structure in Natural Language Processing

or grammar structures [Cow98], and whether contexts should be defined
in terms of windows of text12, or grammar structures. As in the case of
concept modeling, several theories have been proposed to define the basic
units of study and their contexts, but there is no general agreement among
researchers [BB05].

There is an open debate in NLP as to whether the meaning of the
combination of lexical units can be represented in terms of the meaning
of the original linguistic units. While several models introduce methods
to combine linguistic units using syntactical structures [Cho02], vector-
based representations [Bar13], or heuristic approaches [BP03], it is not
clear which method has the best performance [ML10]. In fact, various
scholars have proposed that the meaning of word combinations is non-
compositional [BZL10, Sve08], and that the study of such meaning will re-
quire new representational tools [Gra90].

Quantum cognition has been successful in handling similar structural
problems for the modeling of concepts. Note that the meaning of a certain
piece of text in a document can be associated to a concept. And, pieces
of text, such as words or paragraphs, can be thought of as exemplars for a
concept. Therefore, quantum cognition could offer an alternative approach
to represent certain NLP tasks. By studying how words and sentences tend
to appear in a document or a collection of documents, we can identify the
concepts that give meaning to the document, and thus determine whether
or not these concepts exhibit a quantum structure.

In the following section, we present two examples using this methodol-
ogy. In the first case, we study word co-occurrence in a corpus of text to
identify entangled concepts in the corpus and, in the second case, we study
a property of quantum particles, called indistinguishability, using statistical
information obtained from a web search engine.

7.2 Evidence of Quantum Structure in Natural
Language Processing

We present the results of experiments conducted to identify quantum
structures in the statistical analysis of natural language data.

12A window of text is a sequence of words that contain a linguistic unit in a piece of
text and is larger than the linguistic unit.
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7.2.1 Quantum Entanglement in Text Corpora

Recall that to test whether two abstract entities A and B are entangled,
we need two measurements for each entity with each measurement having
two possible outcomes. Then, the concepts are entangled if the Clauser-
Horn-Shimony-Holt (CHSH) inequality, Eq. (3.73), is violated. Since we
can associate the exemplars of a concept with words, and estimate the elic-
itation of concepts in a document by counting the number of times their
exemplars appear in the document, we propose to test entanglement of con-
cepts in a corpus of text by conducting the following experiment:

Consider a corpus of text T and two concepts A and B. Choose eight
words w1, ..., w8, where w1, ..., w4 are exemplars of the concept A, and
w5, ..., w8 are exemplars of the concept B. Since entanglement is measured
using the statistical co-occurrence of the exemplars of a concept, we par-
tition T as a collection of n consecutive windows of text {t1, ...., tn}, and
estimate how the words representing the exemplars of A and B co-occur in
these windows of text.

Let N ∈ N and assume that each ti is a window of N words, for
i = 1, ..., n, and n = n(N). Next, let Mi

A = {w1, w2}, Mi
A′ = {w3, w4},

Mi
B = {w5, w6}, and Mi

B′ = {w7, w8} be the measurements whose outcome
is +1 if the first word is in ti, −1 if the second word is in ti, and 0 if neither
or both words are in ti. Finally, let Mi

XY be the joint measurements whose
outcome is associated with the product of the outcomes of the former ex-
periments, and denote by E(MXY ) the expected value of such measurement
for X = A or A′, and Y = B or B′.

We say that the concepts A and B of the corpus of text cannot be
represented using a classical probabilistic model whenever the inequality

− 2 ≤ E(MAB) + E(MA′B) + E(MAB′)− E(MA′B′) ≤ 2 (7.1)

is violated.
Let the frequency matrix M(A,A′, B,B′, N) be defined by
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M(A,A′, B,B′, N) =


F (A1B1) F (A1B2) F (A1B

′
1) F (A1B

′
2)

F (A2B1) F (A2B2) F (A2B
′
1) F (A2B

′
2)

F (A′1B1) F (A′1B2) F (A′1B
′
1) F (A′1B

′
2)

F (A′2B1) F (A′2B2) F (A′2B
′
1) F (A′2B

′
2)


(7.2)

where

F (XY ) =
n∑
i=1

Mi
XY , (7.3)

with X = Aj or A′j , and Y = Bj or B′j , for j = 1, 2.

Note that each quadrant in the matrix corresponds to the frequency
table of one of the joint experiments. Also, since

E(MAB) =
F (A1B1) + F (A2B2)− F (A1B2)− F (A2B1)

F (A1B1) + F (A2B2) + F (A1B2) + F (A2B1)
, (7.4)

we can estimate Eq. (7.1) from M(A,A′, B,B′, N). Because we are con-
cerned with the statistics of joint experiments, it is also important to verify
whether or not the marginal probability law holds13.

The marginal probability law implies that

p(A1, B) =
F (A1B1) + F (A1B2)∑2

i,j=1 F (AiBj)
=
F (A1B

′
1) + F (A1B

′
2)∑2

i,j=1 F (AiB′j)
= p(A1, B

′),

p(A′1, B) =
F (A′1B1) + F (A′1B2)∑2

i,j=1 F (A′iBj)
=
F (A′1B

′
1) + F (A′1B

′
2)∑2

i,j=1 F (A′iB
′
j)

= p(A′1, B
′),

p(A2, B) =
F (A2B1) + F (A2B2)∑2

i,j=1 F (AiBj)
=
F (A2B

′
1) + F (A2B

′
2)∑2

i,j=1 F (AiB′j)
= p(A2, B

′),

p(A′2, B) =
F (A′2B1) + F (A′2B2)∑2

i,j=1 F (A′iBj)
=
F (A′2B

′
1) + F (A′2B

′
2)∑2

i,j=1 F (A′iB
′
j)

= p(A′2, B
′).

(7.5)

Similarly

13It has recently been proven that the simultaneous verification of CHSH inequalities
and marginal probability law is a sufficient test of entanglement (see [DK14, ASV14a]).
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p(A,B1) = p(A′, B1),

p(A,B2) = p(A′, B2),

p(A,B′1) = p(A′, B′1),

p(A,B′2) = p(A′, B′2).

(7.6)

We define the vector

r =
(
p(A1, B)− p(A1, B

′), p(A′1, B)− p(A′1, B′), p(A2, B)− p(A2, B
′),

p(A′2, B)− p(A′2, B′), p(B1, A)− p(B1, A
′), p(B′1, A)− p(B′1, A′),

p(B2, A)− p(B2, A
′), p(B′2, A)− p(B′2, A′)

)
(7.7)

to record the extent to which the marginal probability law is satisfied by each
joint experiment, and quantify the violation of the marginal probability law
by

δ = sup
i=1,...,8

||ri||∞, (7.8)

where || · ||∞ is the supreme norm.

The first step in the experiment is to identify two sets of four words that
are exemplars of the concepts A and B. Since a concept can be associated
with multiple sets of words, and a set of words can be associated with
multiple concepts [RS10], this is not a trivial procedure. We propose the
following methodology:

1. Select a set of statistically relevant words, W , in the corpus.

2. Determine concepts A and B using all the possible combinations of
four words in W .

3. Compute the CHSH inequality and the value of r for each choice of A
and B.

We applied this methodology on a collection of corpus called ‘TREC col-
lection WSJ8792 Lemur 4.12’ 14. The corpus was pre-processed by removing

14Lemur is an open source project that develops search engines and text analysis tools
for research and development of information retrieval and text mining softwares.
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stop terms and applying the Porter stemmer. 32 topics having 70 or more
documents were selected among TREC topics 151-200. For these topics,
we segmented the documents into windows of words of lenght N = 5, 10,
and 20. For each topic, 2 sets of 10 words were chosen using two popu-
lar relevance criteria. The first, known as tf score, simply rank words by
their frequency in the corpus, and the second, called term frequency-inverse
document frequency or tf-idf score, is a numerical statistic that reflects how
important a word is to a document in a corpus. The tf-idf score is often used
as a weighting factor in information retrieval and text mining [RUUU12].
For each criteria, the first and second sets of 10 words were used to build all
possible measurements MA,MA′ , and MB,MB′ , respectively.

Our statistical analysis indicates that we can identify entangled concepts
from the statistical co-occurrence of words using a corpus of text. Fig. 7.1
shows the proportion, pN (T ), of subsets of words for the 32-topic corpus that
violate Eq. (7.1). The black curve corresponds to N = 20, the gray dotted
curve corresponds to N = 10, and the black dashed curve corresponds to
N = 5. The left plot is based on the word choice using the frequency rel-
evance criteria, and the right plot is based on word choice using the tf-idf
relevance criteria.

We observe that the tf-idf score selects more sets of words violating
Eq. (7.1) than the tf score. This is consistent with the fact that td-idf
is a better word-relevance measure than tf. Although some topics exhibit
more violations than others, we identify a strong tendency for violations of
Eq. (7.1) for most topics. Moreover, the violation decreases when N in-
creases. This is consistent with the fact that word correlations are noisy
for large window sizes [iCS01]. For shorter window sizes, it is more likely
that only meaningful correlations between words will be kept, and hence the
violation of Eq. (7.1) is observed more frequently.

In Fig. 7.2, each point is associated to a set of words. The x-axis cor-
responds to the CHSH inequality value obtained using Eq. (7.1), and the
y-axis corresponds to the δ value. We plot points whose CHSH value is 1.5
or larger to better visualize the behavior near the violation threshold. Since
we are interested in observing sets of words that violate the CHSH inequal-
ity and satisfy the marginal probability law, the left plot shows δ ∈ [0, 1],
the middle plot zooms to δ ∈ [0, 0.4], and the right plot zooms to δ ∈ [0, 0.1].
We can visualize the extent to which the CHSH inequality will be violated
for different values of δ by the density of points in each region of the plots.
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In most cases where the CHSH inequality is violated, the marginal prob-
ability law is not preserved. However, it is possible to identify a region
where the CHSH inequality is violated and the violation of the marginal
probability law is very small. In fact, since δ is a supreme norm, the right
plot shows that there are sets of words that violate the CHSH inequality

Figure 7.1: Frequency of the violation of Eq. (7.1) for the 20 most relevant
terms. The left plot corresponds to the co-occurrence data for relevance
associated to term-frequency score, and the right plot corresponds to the
co-occurrence data for relevance associated to td-idf score. In both plots,
the topics were sorted such that p5(T ) is decreasing so as to avoid that
curves crossed each other.

Figure 7.2: Each point corresponds to the choice of particular measurements
A,A′, B, and B′. The x-axis represents the extent to which equation (7.1) is
violated and the y-axis denote the δ value. We consider three scales for the
δ value, and one single scale for the the middle term of the CHSH inequality.
Points to the right of the red line violate the CHSH inequalty.
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with r < 0.05. This indicates that there could be sets of words that violate
the CHSH inequality and satisfy the marginal probability law.

7.2.2 Indistinguishability of Concepts and Bose-Einstein
Statistics

One of the most profound differences between quantum and classical
physics is how identical particles behave statistically. While classical par-
ticles are distinguishable, and thus governed by the Maxwell-Boltzmann
(MB) distribution, quantum particles are indistinguishable. Quantum par-
ticles are governed by the Bose-Einstein (BE) distribution in the case of
integer-spin particles, and by the Fermi-Dirac (FD) distribution in the case
of half-integer spin particles.

Since the statistics of identical particles illustrate a fundamental dif-
ference between classical and quantum entities, we propose to study the
statistical behaviour of a collection of concepts to determine whether they
behave as classical or quantum entities.

Consider for example the linguistic expression ‘eleven animals.’ This
expression can be viewed as the combination of concepts ‘Eleven’ and ‘An-
imals’ into ‘Eleven Animals.’ The concept ‘Eleven Animals’ corresponds to
an abstract idea of eleven animals. So the linguistic expression ‘eleven an-
imals’ elicits the thought of eleven indistinguishable entities. However, the
same linguistic expression can also elicit the thought of eleven animals as
objects existing in space and time, and thus distinguishable from each other.
This intuitive difference between the reasoning about concepts and objects
is what motivates the development of a methodology to test what type of
elicitation is predominant.

In order to explain the next experiment, we first summarize the statisti-
cal differences in the classical and quantum distributions of physical entities.
These differences are then analyzed with respect to concepts using experi-
mental data from both a psychological and computational studies.

The Statistics of Indistinguishability

In classical mechanics, the state of an individual particle is represented
by a pair (q, p) ∈ Ω, where q denotes the particle’s position and p its mo-
mentum. The set Ω is called the phase space of the particle. The particle’s
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evolution is ruled by specific dynamical laws. As the number of particles
increases, the dynamical description of the system becomes intractable. In
this case, classical statistical mechanics is introduced to describe the prop-
erties of the system [Mar12]. For a classical system, the MB distribution
estimates the likelihood of finding the system in each of its energy states.

A fundamental assumption in the derivation of MB distribution is that
all particles are ‘distinguishable.’ That is, one can always follow the trajec-
tories of each particle and label them differently. Consider a system of N
distinguishable particles, and suppose that each particle can be in one of M
possible states. Then the total number of possible system configurations is
WMB(N,M) = MN . Hence, the probability that a specific configuration s
is realized is

PMB(s) =
TMB(s)

WMB(N,M)
, (7.9)

where TMB(s) is the number of ways in which s can be realized. For exam-
ple, consider a system of N = 2 classical particles that can be distributed in
M = 2 energy states. If one applies MB distribution to this simple situation,
then the number of possible arrangements is WMB(2, 2) = 4, each one with
a probability 1

4 .

The situation is radically different in quantum mechanics where the state
of a system is represented by a probability wave-function in a Hilbert space.
Since the measurement of a system induces a collapse of the wave function
describing the system, we cannot know, post-measurement, which particle
collapsed to which state. Indeed, given two identical quantum particles, it
is not possible to recognize if an exchange has occurred between the two
particles. More concretely, consider a system of two quantum particles q1

and q2, and suppose that it is represented by the unit vector |Ψ(q1, q2)〉 in
a Hilbert space. Then, indistinguishability implies that

|〈Ψ(q1, q2)|Ψ(q1, q2)〉|2 = |〈Ψ(q2, q1)|Ψ(q2, q1)〉|2. (7.10)

Therefore, we have either

|Ψ(q2, q1)〉 = |Ψ(q1, q2)〉, or

|Ψ(q2, q1)〉 = −|Ψ(q1, q2)〉.
(7.11)
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It follows from the spin-statistics Theorem [KB62] that integer-spin par-
ticles, called ‘bosons,’ and half-integer spin particles, called ‘fermions,’ cor-
respond to the first and second cases of Eq. (7.11) respectively. Moreover,
the spin-statistics theorem implies that fermions are subject to the ‘Pauli
exclusion principle,’ which means that only one fermion can occupy a spe-
cific quantum state at a specific time. This follows directly from the anti-
symmetry of the wave function. For bosons there is no restriction in occu-
pying the same state.

The above difference between fermions and bosons has a dramatic influ-
ence in the way both types of particles behave statistically. Let us consider
again the situation of N particles that can be distributed in M single-particle
states, and suppose that the particles are identical. For a system of N iden-
tical bosons, the number of possible configurations is

WBE(N,M) =
(N +M − 1)!

N !(M − 1)!
, (7.12)

where N ! = N(N − 1)(N − 2) . . . 1. There are fewer arrangements available
due to indistinguishability. In the case of fermions, the Pauli exclusion
principle dictates that two fermions cannot be in the same state, which
further reduces the number of possible configurations to

WFD(N,M) =
M !

N !(M −N)!
. (7.13)

By considering again the case N = M = 2, we have that, for a system of 2
identical bosons, WBE(2, 2) = (2+2−1)!/2!(2−1)! = 3, and the probability
for each realization is 1/3. For a system of 2 identical fermions, only one
realization is possible and it occurs with probability 1.

The above differences between distinguishable and indistinguishable par-
ticles are statistically significant and can be used to characterize empirical
evidence for the indistinguishability of concept combinations. Suppose we
consider two states of ‘Animal,’ namely p =‘cat’ and q =‘dog.’ Then, the
concept ‘Eleven Animals,’ gives rise to twelve possible states. We denote
them by p11,0 =‘eleven cats,’ p10,1 =‘ten cats and one dog,’ and so on. For
simplicity, we assume the existence of two probability values µ(p) and µ(q)
that account for possible bias towards one of the states. Thus, µ(p) and
µ(q) are independent probabilities such that µ(p) + µ(q) = 1.
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For the MB statistics, the probability of obtaining a state with n cats
and 11− n dog is given by

PMB(pn,11−n, µ(p), µ(q)) =
11!

n!(11− n)!
µ(p)nµ(q)11−n. (7.14)

For example, if µ(q) = µ(p) = 0.5, the number of possible arrangements
for the state ‘eleven cats’ and for the state ‘eleven dogs’ is 1. Hence, the
corresponding probability for these configurations is PMB(p0,11, 0.5, 0.5) =
0.0005.

Since we consider two states, and the FD distribution is subjected to the
Pauli exclusion principle, we cannot apply the FD statistics in this case. For
the BE statistics, the probability to obtain a state with n cats and 11 − n
dog is given by

PBE(pn,11−n, µ(q), µ(p)) =
nµ(p) + (11− n)µ(q)

12×11
2

. (7.15)

Since µ(p) = 1−µ(q), then PBE(pn,11−n, µ(p), µ(q)) is linear with respect to
n. Moreover, when µ(p) = µ(q) = 0.5, we have that PBE(pn,11−n, 0.5, 0.5) =
1
12 is constant.

The above analysis shows that, if one performs experiments on a col-
lection of concepts to estimate the probability of elicitation for each state,
then it is possible to determine which type of distribution, MB or BE, is
generated.

Psychological Experiment to Test Indistinguishability

The psychological experiment involved 88 participants. We considered a
list of concepts Ai, for i = 1, . . . , 14, of different nature, both physical and
non-physical, and two possible exemplars, pi1 and pi2, for each concept. Next,
we requested participants to choose one exemplar from the combination
N iAi of concepts for N i ∈ N. The exemplars of these combinations of
concepts are the states pi

k,N i−k describing the conceptual combination ‘k

exemplars in state pi and (N i − k) exemplars in state pi’, where k is an
integer such that k = 0, . . . , N i. For example, the first collection of concepts
we considered is N1A1 corresponding to the compound conceptual entity
‘Eleven Animals,’ with p1 and q1 describing the exemplars ‘cat’ and ‘dog’
of the concept ‘Animal,’ and N1 = 11. The exemplars considered are p1

11,0,

p1
10,1, . . . , p1

1,10, and p1
0,11. The collections of concepts used in the experiment
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and their corresponding exemplars are listed in Table 7.1.

For each i = 1, ..., 14, we fitted the experimental data using the distri-
butions PMB(pn,11−n, µ(pi), µ(qi)) and PBE(pn,11−n, µ(pi), µ(qi)) by choos-
ing the values for µ(pi) that minimize the R-squared value of the fit15, for
i = 1, . . . , 14.

Next, we used the ‘Bayesian Information Criterion’ (BIC) [KR95] to esti-
mate which model provides the best fit. Table 7.2 summarizes the statistical
analysis. The first column of this table identifies the collection of concepts,
the second and third columns show the value of the probability parameter
µ(pi) and the R2 value of the best MB statistical fit, the fourth and fifth
columns show the value of the probability parameter µ(pi) and the R2 value
of the best BE statistical fit. The sixth column shows the ∆BIC criterion
to discern between PMB(pin, 11− n, µ(pi)µ(qi) and PBE(pin,11−n, µ(pi)µ(qi),
and the seventh column identifies the distribution that best represent the
data for concept Ai, i = 1, . . . , 14. Negative ∆BIC values imply that the
concept is best fitted by a MB distribution, whereas positive ∆BIC values

15Only one of the two values is sufficient since µ(pi) = 1− µ(qi).

Table 7.1: List of concepts and their respective exemplars for the psycho-
logical experiment on indistinguishability.

i N i Ai pi qi

1 11 ‘Animals’ ‘cat’ ‘dog’

2 9 ‘Humans’ ‘man’ ‘woman’

3 8 ‘Expressions of Emotion’ ‘laugh’ ‘cry’

4 7 ‘Expressions of Affection’ ‘kiss’ ‘hug’

5 11 ‘Moods’ ‘happy’ ‘sad’

6 8 ‘Parts of Face’ ‘nose’ ‘chin’

7 9 ‘Movements’ ‘step’ ‘run’

8 11 ‘Animals’ ‘whale’ ‘condor’

9 9 ‘Humans’ ‘child’ ‘elder’

10 8 ‘Expressions of Emotion’ ‘sigh’ ‘moan’

11 7 ‘Expressions of Affection’ ‘caress’ ‘present’

12 11 ‘Moods’ ‘thoughtful’ ‘bored’

13 8 ‘Parts of Face’ ‘eye’ ‘cheek’

14 9 ‘Movements’ ‘jump’ ‘crawl’
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imply that the concept Ai is best fitted by a BE distribution. However,
these statements are weak for |∆BIC| < 2, moderate for 2 < |∆BIC| < 8, and
strong for 8 < |∆BIC| [KR95].

We see that concepts 2 and 9 show a strong ∆BIC value towards MB
statistics, and that concepts 1, 3, 5, 7, 11, 12, and 14 show a strong ∆BIC

value towards BE statistics. Complementary to the BIC criterion, the R2

value indicates of ∆BIC can be confirmed with a good fit of the data. The
concepts that have a strong indication towards one type of statistics and
an R2 value larger than 0.78 have their R2 value in bold text. These cases
are confirmed by both statistical indicators. Moreover, in all the cases with
strong tendency towards one type of statistics, the R2 value of the other
type of statistics is poor. Interestingly, we can observe that the concepts
that exhibit MB behavior are associated to physical entities, and that all
the concepts associated to non-physical entities exhibit BE behavior.

We conclude that collections of concepts can behave statistically like
quantum entities.

Table 7.2: Results of statistical fit for the psychological experiment. Each
column refers to the 14 collections of concepts introduced in Table 7.1.

i µ(pi) MB R2
MB µ(pi) BE R2

BE ∆BIC Best Model

1 0.55 -0.05 0.16 0.78 19.31 BE strong

2 0.57 0.78 0.42 0.44 -9.54 MB strong

3 0.82 0.29 0.96 0.79 10.81 BE strong

4 0.71 0.81 0.53 0.77 -1.69 MB weak

5 0.25 0.79 0.39 0.93 14.27 BE strong

6 0.62 0.59 0.61 0.57 -0.37 MB weak

7 0.72 0.41 0.64 0.83 12.66 BE strong

8 0.63 0.58 0.47 0.73 5.53 BE positive

9 0.45 0.87 0.26 0.67 -9.69 MB strong

10 0.59 0.50 0.63 0.77 7.17 BE positive

11 0.86 0.46 1.00 0.87 11.4 BE strong

12 0.21 0.77 0.00 0.87 6.68 BE strong

13 0.62 0.54 0.71 0.67 2.97 BE weak

14 0.81 0.20 0.91 0.90 20.68 BE strong
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Indistinguishability in Concepts on the Web

We have adapted the experimental methodology of § 7.2.2 to study the
indistinguishability of concepts on the web. We use a search engine to esti-
mate the number of web pages in which different exemplars of a collection of
concepts appear. In this way, we use the relative frequency of the exemplars
to verify if the indistinguishability of concepts, identified in our psychologi-
cal experiments, can also be manifested on the web.

Let N i ≥ 3 be an integer number, and consider four pairs of states (pj ,
qj), for each j = 1, . . . , 4. Next, for each number 3 ≤ k ≤ N i and pair
(pj , qj) of states, we build a set of sentences rj

k,N i−k that refer to the state

pj
k,N i−k. The states and numbers chosen for this experiment are shown in

Tables 7.3 and 7.4. For example, the states p1 and q1 correspond to ‘cat’
and ‘dog,’ and the state p1

1,3 describing ‘three cats and one dog’ is referred

by the sentences r1
1,3 = {‘three cats and one dog’, ‘one dog and three cats’}.

In this experiment, we counted the total number ni
k,N i−k of web pages

where the sentences of rj
k,N i−k are found using the Bing search API for

web developers16. Since ni
k,N i−k estimates the number of references to the

state pj
k,N i−k in the web, we use their relative frequencies to estimate a

distribution P (pik,N i − k, µ(pj), µ(qj)) of the exemplars on the web. Thus,
we can study if this distributions can be best described using the MB or
BE distributions, for different values of N i. We have built the distribution
P (pik,N i − k, µ(pj), µ(qj)) for k = 3, ..., N i, for using 3 ≤ N i ≤ 15.

16For more information, see http://datamarket.azure.com/dataset/bing/search.

Table 7.3: List of singular/plural reference to states used to perform the
web-based experiment.

j pj1 pj2
1 “cat”/“cats” “dog”/“dogs”

2 “man”/“men” “woman”/“women”

3 “win”/“wins” “loss”/“losses”

4 “son”/“sons” “daughter”/“daughters”
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Because the sample size is small, this study can only be considered pre-
liminary. Moreover, there are certain technical difficulties, well-known in the
field of computational semantics [Pyl84], that affect the result. They include
the fact that a state can potentially be referred to by an infinite number of
linguistic expressions, or be linked to an infinite number of concepts. Also,
due to semantic ambiguities, the linguistic expression might in some cases
not refer to the state we assume it to refer to. Even though these are strong
limitations, we have found interesting evidence for BE statistics in the data.

We summarize our results in Table 7.5. The first column specifies N i,
the other four columns specify the pair of states used in the experiment.
Each entry in the table contains a pair of numbers. The first number is
the BIC criteria, ∆BIC, and the second number is the R2 value of the best
fit. As before, negative ∆BIC values imply that the concept is best fitted by
a MB distribution, whereas positive ∆BIC values imply that the concept is

Table 7.4: List of references to numbers used to perform web-based experi-
ment.

N i List of references

0 “0”,“no”,“zero”

1 “1”,“a”,“one”

2 “2”,“two”,“a couple of”

3 “3”,“three”

4 “4”,“four”

5 “5”,“five”

6 “6”,“six”

7 “7”,“seven”

8 “8”,“eight”

9 “9”,“nine”

10 “10”,“ten”

11 “11”,“eleven”

12 “12”,“twelve”

13 “13”,“thirteen”

14 “14”,“fourteen”

15 “15”,“fifteen”

16 “16”,“sixteen”
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best fitted by a BE distribution. These statements are weak for |∆BIC| < 2,
moderate for 2 < |∆BIC| < 8, and strong for 8 < |∆BIC| [KR95]. If R2 >
0.65, we omit the value to emphasize that we do not have a significant fit.

We can identify three trends:
(i) when 3 ≤ N i ≤ 8, the majority of pairs of states exhibit MB statistics,
(ii) when 9 ≤ N i ≤ 15, the majority of pairs of states exhibit BE statis-

tics, and
(iii) for N i ∈ {11, 13, 14, 15}, at least two pairs of states show a poor R2

fit.
These results indicate that, for N i ≤ 8, the concepts in the combination

behave like distinguishable entities, while for 9 ≤ N i, they become indistin-
guishable. This suggest that, when numbers are large enough, humans tend
to treat collections of concepts as indistinguishable entities. This is consis-
tent with the fact that we cannot generally remember, repeat, or compare
collections of more than seven or eight distinguishable entities [CMC07].
However, by not trying to distinguish the entities when elicited in large col-
lections, we make use of language to properly communicate large collections
of concepts and reason about them. The third trend shows that for some

Table 7.5: Results of statistical fit of web-based experiment. The numbers
in bold correspond to the cases where the BE-distribution provides a best
fit according to the ∆BIC and R2 criteria.

N i j = 1 j = 2 j = 3 j = 4

3 −3.9, 0.79 −4.4, 0.82 −1.5,− −3.9, 0.80

4 −8.9, 0.92 −7.4, 0.91 −4.2, 0.80 −9.2, 0.93

5 −10.5, 0.94 −3.83, 0.81 −8.20, 0.90 −14.7, 0.97

6 −5.0, 0.84 −3.6, 0.82 −2.6, 0.80 −15.5, 0.96

7 −2.0, 0.77 3.1,0.72 −1.5, 0.75 −4.7, 0.85

8 2.0,0.72 −0.1, 0.74 −0.8, 0.77 −1.5, 0.79

9 5.5,0.69 7.3,0.76 6.4,0.78 −7.4, 0.87

10 9.0,0.70 0.5,− 10.5,0.77 −11.4, 0.89

11 2.4,− 10.0,− 9.3,0.73 −5.2, 0.80

12 10.4,0.70 7.0,0.72 11.1,0.72 −6.4, 0.79

13 6.6,− 11.1,− 12.7,0.76 9.4,−
14 13.6,− 17.3,0.71 10.8,0.76 −8.9,−
15 9.1,− 23.0,0.79 2.3,− −17.6, 0.8
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numbers above ten, the data does not fit BE or MB distributions. This is
probably because the data is sparse which leads to strongly irregular distri-
butions.

We conclude that the statistical behavior of collections of concepts can
resemble the statistical behavior of quantum particles in both psychological
and NLP experimental settings. Moreover, since quantum structures can
be observed in different NLP settings, this suggests that quantum cognition
tools should be applied in the context of NLP.
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Chapter 8

Conclusion

8.1 General Conclusion

In this thesis, we performed a systematic review of the quantum-cognitive
approach to concepts (part I), proposed a framework that enhances the range
of applications of concept combination models (part II), and presented evi-
dence of quantum conceptual structures in the context of natural language
processing (part III).

We have elucidated the mathematical structure of the two-sector Fock
space model for concept combinations based on either conjunctions or dis-
junctions and studied how the dimension of the space H = Cn influences the
modeling power on each sector of the model, and concluded that H = C3 is
sufficient for maximal modeling power in both sectors.

Next, we introduced unitary transformations to represent concept combi-
nations for multiple exemplars for each sector separately, and then combined
these representations to obtain a representation in the two-sector Fock space
C3⊕C3⊗C3. This representation is consistent with the cognitive principles
of quantum modeling, it also maximizes the modeling power and permits
the representation of multiple exemplars simultanously. Our data analysis
shows that, when the first sector is approximately 80% dominant with re-
spect to the second sector, the two-sector Fock space model provides the
optimal performance.

We later studied concept combinations built from conjunctions and nega-
tions. We first identified the conditions that characterize classical data, and
found that this data is regularly violated. Moreover, we performed a sta-
tistical analysis to characterize this violation of data, and found that the
violation is precisely characterized by a constant value. Next, we extended
the representations developed for the two-sector Fock space model for con-
junctions to the case of conjunctions and negations. Our data analysis indi-
cates that, when the first sector is approximately 80% dominant with respect
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to the second sector, the pattern we identified for the violation of classical
conditions is duplicated, and moreover, the two-sector Fock space model
provides the optimal performance.

The conclusion for the second part of the thesis is that the two-sector
Fock space model is not only a powerful tool to represent conceptual combi-
nations, but it also provides a sensible explanation for the fact that humans
do not reason logically. In particular, our results indicate that the emergent
mode of reasoning modeled by the first sector is 80% dominant with respect
to its logical counterpart represented in the second sector.

In the third part of the thesis, we considered the application of quantum
cognition in the context of natural language processing. We presented two
studies identifying quantum structures in natural language phenomena. In
the first, we developed a methodology to identify sets of words that statisti-
cally behave as quantum entangled particles in a corpus of text, and showed
that in many cases sets of words can behave as entangled entities. In the
second study, we have demonstrated that references to exemplars of collec-
tions of concepts statistically behave as indistinguishable (quantum) entities
using data from psychological and web-based studies. Moreover, we found
in this study that there is a tendency for non-physical concepts to follow
the statistics of indistinguishable particles, while for physical concepts the
tendency is to follow the statistics of classical particles.

The conclusion of this thesis is that quantum cognition proposes a suit-
able framework for a theory for concepts that can be applied to model cog-
nitive phenomena. In particular, the possibility to model non-classical pro-
cesses by means of superposition, entanglement, and indistinguishability,
entails a fundamental feature that deserves further exploration.

8.2 Future Work

Here, we propose three ideas for future work inspired by our results in
Chapters 5, 6, and 7 respectively:

8.2.1 Incompatible Exemplars

In the concrete representations of concepts and their combinations in-
troduced in Chapter 5, all measurements are expressed in the same basis.
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This enables us to investigate the relation between the exemplars by analyz-
ing the structure of their measurement operators. For example, given two
measurements M1 and M2, we have that M1 and M2 represent compatible
observables if and only the commutator operator

[M1,M2] = M1M2 −M2M1 = 0. (8.1)

Otherwise, the operators represent incompatible observables.

The existence of incompatible measurements is one of the most promi-
nent examples of how quantum mechanics differs from the classical world.
In particular, the famous Heisenberg uncertainty principle is implied by the
existence of incompatible measurements [Hei27]. Therefore, an important
question in quantum cognition is to elucidate if semantic estimations can be
incompatible. Indeed, the existence of incompatible measurements would
imply that the application of consecutive semantic estimations could create
uncontrollable disturbances.

We have performed a preliminary calculation showing that membership
operators in the representations derived in Chapter 5 are, in some cases,
incompatible. Consider the concepts A = ‘Machine,’ B =‘Vehicle,’ and the
exemplars p5 =‘sailboat,’ and p12 =‘skateboard.’ For the case of conceptual
conjunction we have

µ5(A) = 0.56, µ5(B) = 0.8, µ5(AB) = 0.42,

µ12(A) = 0.28, µ12(B) = 0.84, µ12(AB) = 0.34.
(8.2)

Note that exemplars p5 and p12 satisfy the conditions of Theorem 5.3. Thus,
we obtain a concrete representation {|A〉, |B〉, {M5,M12}} of these exem-
plars in C3. In this representation, we have that

〈A|[M5,M12]|A〉 = 0.084i

〈B|M5,M12]|B〉 = 0.097i
(8.3)

Therefore, exemplars p5 and p12 are incompatible with respect to the states
|A〉 and |B〉.

Since the data we analyzed in Chapter 5 was collected presenting the
exemplars in only one specific order [Ham88b], these computations demon-
strate that it may be possible to predict order effects in membership mea-
surements for exemplars that are incompatible. This results is, however,
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speculative since there is no experimental data where membership weight
estimations have been done presenting exemplars in different orders.

One area of reseach would be to generate experimental data to check
whether the predictions are accurate. If order effects are predictable, then
the canonical representation proposed in this thesis could be used to develop
Heisenberg-like uncertainty relations in the context of concept combination
models.

8.2.2 Modeling Concept Combinations for Real-World
Applications

The models for concepts and concept combinations presented in this the-
sis are not general enough for real-world applications. One of the reasons
for this is that we do not have a model for the conjunction, disjunction, and
negation of concepts. In fact, these three connectives are required to build
the simplest concept combination structure used in computational applica-
tions [RN95]. Therefore, it is important to extend the models presented
in thesis to incorporate these three connectives together. In fact, we could
achieve a model for this connective structure by incorporating disjunctions
to the model of Chapter 6. For the case of two concepts, this involves
representations for states and measurements for the case of disjunction of
concepts, and of disjunctions and negations.

Real-world applications generally require combinations of more than two
concepts. In logic and computer science, the study of conjunctions, disjunc-
tions, and negations of three or more concepts, usually called propositions, is
known as the satisfiability problem [AN96]. This is necessary to determine
whether or not there is a possible instantiation of a concept combination
whose truth value is positive17.

It would be interesting to study the satisfiability problem from the point
of view of quantum cognition. That is, we could test the classical logical
satisfiability conditions using psychological experiments and, in those cases
where deviations from classical and fuzzy theoretical rules are found, de-
velop a quantum model to handle these deviations.

17This means ‘true’ in the context of propositional logic, and a value above a certain
threshold in fuzzy logic.
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Because real-world applications usually involve a large number of con-
cepts and a large number of exemplars for each concept, it is necessary to
test our models against larger datasets. When we consider a large number
of exemplars and concepts, it is very likely that some concepts have exem-
plars in common. This imposes a new type of constraint that has not been
studied. The constraints for the representation of exemplars shared across
multiple concepts will probably require representations in spaces of larger
dimension.

8.2.3 Indistinguishability and Modes of Reasoning

The identification of concepts with the Maxwell-Boltzmann (MB) and
Bose-Einstein (BE) statistics in § 7.2.2 assumes that a collection of concepts
can be elicited as an exemplar representing a collection of entities existing
in space and time, or a collection of indistinguishable entities of abstract
nature. In the former case, the entities corresponding to the exemplar are
distinguishable and behave according to the MB statistics, while in the lat-
ter case the entities are indistinguishable and behave according to the BE
statistics.

In cognitive science, it is well-known that natural categories, usually re-
ferred by nouns in language, can be represented in a ‘hierarchy’ according
to their ‘level of abstraction’ [Ros99]. For example, the concepts ‘Puppy,’
‘Dog,’ and ‘Mammal’ are concepts ordered from lower to higher level of ab-
straction. This notion of abstraction is useful to explain that a concept at
a lower level of abstraction can be an exemplar of a concept at a higher
level. In fact, our analysis in § 7.2.2 reveals that concepts at a lower level
of abstraction tend to behave as distinguishable entities, while concepts at
a higher level of abstraction tend to behave as indistinguishable entities.

A possible extension to this thesis is to consider the notion of abstrac-
tion as a mode of reasoning rather than a property of a concept. In fact,
although our results indicate that the more concrete the category is, the
more distinguishable our reasoning about the category is, we can always
consciously induce on ourselves a mode of reasoning that contradicts this
tendency. Therefore, it would be interesting to develop experimental settings
where the kind of reasoning applied to elicit concepts is controlled. Note
that creating such methodology would allow us to compare concepts at dif-
ferent level of abstraction for a fixed kind of reasoning and, therefore, would
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generalize the results of § 7.2.2. Moreover, we could investigate different
kinds of reasoning ranging from personal experiences that are constrained
by our perceptual limitations and the structure of reality, to hypothetical
worlds created by pure imagination where ‘the impossible’ can occur.
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Appendices A

Traditional Modeling Tools

Different mathematical tools have been used to model cognitive phenom-
ena. In what follows, we give a brief overview of the most relevant mathe-
matical structures used in cognitive modelling to date. We refer to [RN95]
for a more comprehensive review.

A.1 Classical logic

Classical logic is the first and most explored mathematical structure
used to represent and process meaning. Indeed, classical logic has been for-
mulated first by ancient greeks, in their search for a notion of truth and
deductive procedures [CM72]. The idea behind logic is that a reasoning
process, starting from certain ‘true’ basic facts, should allow us to deduce
all possible true (or false) facts. The basic elements of any logical approach
are i) a set of basic postulates that forms the starting universe of discourse,
ii) certain connectives and relations to build new postulates from the basic
ones, iii) deductive rules to reason.

Logic can be used, in principle, to formalize any process where some
form of analytic reasoning is present. For example, propositional logic (PL)
is defined as a system L = (P,C,R,A), where P is a set of propositional
variables, C is a set of connectives and relations that include ‘and,’ ‘or,’
‘not,’ and ‘then’ denoted by ∧,∨,¬ and →, R is a set of deduction rules,
and A is the set of axioms. A typical element of P is a basic proposition such
as p1 =Today is Monday, and p2 =John goes to a restaurant. R contains
the modus ponens such as from p and p → q, infer q. And axioms such as
p→ p and ¬¬p→ p are basic truths in the logical system.

A logical system should satisfy at least two basic conditions. The first,
called soundness, requires that deduction rules only prove formulas that
are true. The second feature, called completeness, requires that every true
proposition must be provable within the logical system. Unfortunately,
the latter condition is hard to apply in practice, since it is known that
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the complexity of the satisfiability of a conjunctive proposition requires at
least non-deterministic polynomial time with respect to the proposition’s
lenght [Pyl84].

The set of connectives C is of particular interest since it may limit how
much can be proven in a certain logical system. There are different expres-
sivity levels depending on the types of connectives we use. For example, the
connectives of PL are always finitely evaluated. However, connectives such
as ∀, which means ‘for all,’ require evaluations of formulas in potentially
an infinite number of cases. Consider the simple mathematical inequality
∀x < 1 → x < 2. This proposition is true for infinitely many numbers (all
numbers smaller than 1), so it cannot be stated within a PL system. The use
of connectives and relations with different levels of expressivity leads to an
extremely fine-grained development of ‘modal’ logics that reveal a hierarchy
of logical systems organized according to their degree of expressivity [Cha97].

Logic is also deeply connected with the notion of computation. Indeed,
the basic operations that a computer performs correspond to logical oper-
ations, and thus all procedures that a computer performs can be reduced
to logical formulas. In particular, an interesting connection between logic
and computation is in the area of descriptive complexity [Imm87], where
different classes of computational complexity are mapped to different logi-
cal languages.

Formal Concept Analysis (FCA) is an example of the application of logic
to model concepts. FCA is based on a particular formalization of the notion
of concept, inspired by the view of concepts in traditional logic, which as-
sumes that a concept can be described in terms of a set of attributes, where
each exemplar corresponds to a propositional-logic combination of some of
these attributes [AN96]. In its basic form, FCA analyses input data consist-
ing of objects determined by a set of attributes assumed to be held by the
object.

The primary aim in FCA is to extract from the input data all consis-
tent or formal concepts that form a hierarchy, called the concept lattice,
and a set of particular attribute dependencies known as attribute implica-
tions [GSW05]. A formal concept is defined as a pair consisting of two sets:
a set of objects to which the concept applies, the concepts extent, and a set
of attributes that characterize the concept, the concepts intent. An attribute
implication is an expression A → B. If an object has all the attributes in
A, then it also has all the attributes in B. For example, let A = {drinks-
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alcohol, smokes} and B = {heart-problems}.

The concept lattice is used to derive the minimal set of attribute impli-
cations. This set can be used to find hidden causal relations that are not
evident from the dataset. It has been shown that the attribute implication
has a non-redundant minimal base from which all the dependences can be
obtained applying standard deduction rules [GSW05].

Applications of FCA can be found in many areas, including engineering,
natural and social sciences, and mathematics [Aré03, GSW05]. In cognitive
modelling, FCA has been proposed as a possible structure to study prop-
erty correlations that might foster categorization [Boe97]. However from a
structural perspective, FCA is a non-graded mathematical formalism, so it
cannot account for the membership and typicality functions of a concept
Theory.

A.2 Fuzzy Logic and Fuzzy Set Theory

Fuzzy logic is an extension of classical logic where propositions can have
degrees of truth. Fuzzy set theory is the analogous extension of classical set
theory. It allows elements of a set to have degrees of membership ranging
from null to total membership. The degree of membership is measured on
a [0, 1] scale, where 0 means not a member, and 1 means full member. This
is useful for logical settings where it is impossible to assign binary member-
ship values [Zad65]. Fuzzy set theory and fuzzy logic are mathematically
related. Here, we elaborate on fuzzy set theory because it has been used as
a mathematical framework for the prototype theory of concepts.

Given a set X 6= {∅}, a fuzzy set is a pair (X, f) where f : X →
[0, 1] [Zad65]. The value f(x) is usually interpreted as a degree of mem-
bership of x in X. One of the important notions in fuzzy set theory, is the
threshold dependent set Xα, the set that contains elements having a degree
of membership above α. This emphasizes the elements that have higher
membership, and represents a fingerprint of the structure of the set when
we view Xα as a function of α.

Fuzzy set theory is equipped with algebraic operators that are extensions
of the logical operators of classical set theory, including union, intersection,
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and complement operators. However, these operators can be extended in
many different ways, and there is no formal criteria to decide which exten-
sion is more approriate [BK11]. An interesting class of extensions, called
triangular norms (or t-norms), provide the most reasonable extension for
the binary set theoretical operators ∧ (‘and’), and ∨ (‘or’.) These operators
are built in terms of minimum and maximum membership functions and, in
some cases, include parameters that can be used to tailor the norm to better
fit experimental data [BK11].

Aggregation operators that depend on the membership of all the ele-
ments in the fuzzy set can also be defined. These operators are used to
extract information regarding the membership structure of the set. For ex-
ample, the cardinality of a fuzzy set is defined as the sum of the membership
of all its elements. From here, the average membership of the fuzzy set is
defined as the ratio between the fuzzy and classical cardinality. Aggregation
operators are used to develop fuzzy notions of connectives belonging to high
expressivity formal languages found in Modal logic.

Fuzzy set theory has been applied in a broad spectrum of areas related
to automatization such as control theory and expert systems [Low96]. In
cognitive modelling, fuzzy set theory was first used to frame the prototype
theory of concepts [Ros99]. A concept A is defined by a universal set of
exemplars U , a membership function f , and a membership threshold α. f
can also be interpreted as a measure of typicality, or of similarity to a specific
prototype [Lak73]. The concept is modeled by the fuzzy set (U, f). To
recover truth evaluations, a threshold is imposed for f so the categories can
be treated as sets. This approach extends classical approach to concepts,
but still lacks a formal procedure to combine categories forming complex
categories or sentences.

A.3 Probabilistic Approaches

Probability theory has been applied to almost every possible science-
related endeavour [HPS71]. In cognitive modeling, the degree of member-
ship of an exemplar with respect to a concept can be thought of as an
estimation of the probability of being a member of the category. There are
procedures, developed using standard probability theory, to infer the mem-
bership probability of some exemplars from the membership probability of
others [TKGG11]. Analogously, the notions of typicality, property relevance,
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and similarity can also be framed in a probabilistic manner [Nos88].

Before showing how probability theory has been applied to concepts
research, we consider the foundational aspects of probability as it relates to
concept theories.

A.3.1 Interpretations of Probability

There are three main interpretations of probability. The first assumes
that probabilities are the relative frequencies with which the possible out-
comes of a situation occur [Khr99]. This interpretation is useful when obser-
vations are repeatable. For example, when studying the possible outcomes
of throwing a die, the relative frequencies of each outcome tend to 1

6 as the
number of repetitions of the experiment grows. We may assume, therefore,
that there is an underlying probability that accounts for the relative fre-
quencies of occurrences describing the phenomena.

There are several probability estimations that do not correspond to such
a view [Khr99]. For example, we know from atomic physics that the decay-
ing time of certain radioactive elements corresponds to thousands of years.
Clearly, we cannot afford to repeat many experiments, so the decaying time
is obtained through a formula whose parameters are established by a series
of observations.

A second interpretation assumes that the outcome of a situation is ruled
by an intrinsic propensity that would generate the observed relative frequen-
cies if the experiment was repeated a large number of times [Khr99]. This
interpretation however does not account for situations such as the likelihood
that the current president will be reelected. This kind of subjective proba-
bility estimation cannot be interpreted from a relative frequency nor from
an intrinsic propensity view.

The third interpretation of probability involves a subjective belief in-
terpretation. That is, it is assumed that estimators have a degree of belief
concerning the possible outcomes of a certain situation [Khr99]. Because es-
timations about concepts must be built upon cognitive mechanisms based on
the information available to estimators, this is the interpretation most often
used in theories of concepts. It is interesting to note that while philosophers
are concerned with the relation between foundations of probability and con-
cepts [Wit58], the modeling community has often ignored this issue [Aer02].
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A.3.2 Probability Spaces

Formally, a probabilistic space P is defined by the triple

P = (Ω,F ,P), (A.1)

where Ω is a set of elementary events w ∈ Ω , F is a σ-algebra of the subsets
of Ω, and P is a σ-additive probability measure from F to [0, 1] such that

P(A) ≥ 0, for A ∈ F ,
P(Ω) = 1,

P(∪iAi) =
∑
i

P(Ai), for disjoints sets Ai ∈ F , i ∈ N.
(A.2)

Here we briefly explain how experiments on a system are modeled in a prob-
abilistic setting.

A partition E of Ω is a set of subsets of Ω such that for all E1, E2 ∈ E

E1 ∩ E2 = ∅, and ∪E∈E E = Ω.

Because outcomes of each experiment are exclusive, experiments are parti-
tions of Ω. The events representing the outcomes form disjoint sets. Also,
each possible post-experimental situations of the system corresponds to an
outcome so the set of outcomes of each experiment is complete and thus the
union of the set of outcomes of an experiment is Ω.

Denote the experiments by Ei for i = 1, ..., n, and let Ei = {E1
i , E

2
i , ..., }

be the set of outcomes for Ei. Ei can be either finite or infinite. For example,
let E1 be the experiment of measuring whether a particle is on the positive
or negative side of a referential axis. In this case, we have two outcomes, E+

1

and E−1 , depending on which side the particle is. Let E2 be the experiment
of measuring the exact position of the particle on a referential axis. In this
case the set of outcomes is infinite.

We are interested in the joint probability distribution, P(E1, ..., En),
which gives us the probability of all possible outcome configurations of
our experimental setting. In particular, a specific outcome configuration
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(Ej11 , ..., E
jn
n ) has probability

P(∩ni=1E
ji
i ) = P(Ej11 , ..., E

jn
n ). (A.3)

In many cases, rather than performing all possible experiments in our
system, we focus on a few experiments. For simplicity let n = 2, and assume
we would like to know only the probabilities of the outcomes of experiment
E2. The probability distribution that only considers the outcomes of E2 is
known as the marginal probability distribution, P(E2), computed by

P(E2) =

|E1|∑
j=1

P(Ej1, E2). (A.4)

This formula, known as the marginal probability law, margins out the prob-
ability of outcomes for E2 by summing over all the possible outcomes of E1.
We can also compute the probability of the outcomes for E2 given that the
experiment E1 has already been performed. This is known as the conditional
probability, P(E2|Ek1 ) given by

P(E2|Ek1 ) =
P(Ek1 ∩ E2)

P(Ek1 )
, for P(Ek1 ) > 0 (A.5)
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