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Abstract

In this study,interstitiatHfree steel andcommercial puritymagnesium shegtvere used
to fabricatesteelmagnesiumiaminated metal compositéx roll bondingat 300N . It was

found that the steel anghagnesiumcan achieve reasonable bondimdter a 47% rolling
reduction when the volume fraction of the laminate is10-15% magnesium The
microstructure of théaminated conpositesvasobserved wittscanning electron microscope

It was found that econtinuousinterface between the IF steel and the magnesium was
producedduringthe roll bonding process. There was no evidence of intermetallic formation

at the interface.

A seven layer steemagnesium laminate was fabricated byuscalative roll bonding at
300N with an overall reduction of 77 percent. Throughdth cracks were found in the

surface steel layers after the one cycle accumulative roll bonding process. The longitudinal
crosssectional microstructure of the laminate rdedathat multilocalizations and even

fracture occurred in steel layers inside the laminate.

The mechanical propées, including tensile behaviomicro-hardness and bending
behavior of thelaminated compositesere assessedlhe tensile propertof the laminated
compositeswas compared with those of monolithic steel amdgnesiumwith equivalent
deformation amount deformed under the same conditlomgs found thatthe UTS of the
laminated compositesbeyed the simple rule of mixtures. The fracture sdaces of the
laminated compositesere examinedwith SEM and compared with those tife monolithic

IF steel andmagnesiumrolled under the same condit®nt was found that the fracture



modesof each componentwere different in the laminated compositesngpared to the

monolithic materials.

Threepoint kending testwas conductedand it was observed that no debonding at the
interfaceoccurredfor moderate straing o investigate the fracture behavior of thminatsin
bendng, a series ofU-shape bendingess wereconductedandthe bend tip wereobserved.
Localization of the outer steel layerasiobserved followed by the formation o& major
crackat 45 degree to the maximum tensile stress direction. Shear cracks in the magnesium
corewerealso found insome placeadjacento the major crack, and delamination between

thesteel and magnesium layers occurred.
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Chapter 1: Introduction

The demand for lightweight structures and materials is growing afl thve world for a
wide range of products, includingehicles, body armor, sports and leisure gooldse
application of lightweight structusan transportation industry is gfrimary interestdue to
the environmental issggi.e. fuel consumption and GCemissios. The steelmagnesium
compositematerialis aninterestingcandidate fotightweight materials because it combines
the strength and stiffness of the most used structural material, steel, and the lightweight

property of the lowest density structunaaterial, magnesium.

Steetmagnesiuncomposites have a number of attractadvantagesThe low density
of magnesiun{1.8 g/cni) provides good potential to makghtweightcompositesA simple
calculation for the density of ateelmagnesiumcompositeas a function of the volume
fraction of magnesiunis shown in Fig. 1.1lt can beseenthat for a compositavith 30%
magnesium, the density is 23% lower than stiéés. also important to note th#tte mutual
solubility of iron andmagnesiums extremeljlow and no intermetallic phases appear on the
equilibrium phase diagrafi], sobrittle intermetdic phase which are usually thBhotbeds
of cracks,are not expected to nucleate and gwing thermemechanical treatent of the
composite[2, 3]. On the other hand, the steehgnesiumcomposites may also have some
disadvantages. It ishallengingto fabricate such composibecause the melting temperature
of iron is higherthan eventhe boiling temperature ahagnesiumtheefore, conventional
casting techniques areliminated. In addition, the corrosion ofagnesiumdue to the
electrochemical reactiom the composite could be a major problem for the applicatidn

steetmagnesiuntomposites.
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Fig. 1.1. The potential for making lightweiglsteetmagnesiuntaminated composites

For steelmagnesiuncomposite materials, there are recently published explorations of
composites inlte form of ompositewire obtained byrepeatedto-extrusion[3] and that of
laminated metal composites (LMCs) progesby infiltration [4]. The LMCs are a unique
form of composite material in which alternating metal or metal containing layers are bonded
together with discrete interfacgS]. There are many techniques to fabricate the LMCs,
including deposition techniques, infiltration, adive bonding, hot pressing, roll bonding, etc.
Among these various techniques, the roll bonding technique used in this wopaisicdlar
interestsincethe process isimple efficient, and could be applied for large scale production
Roll bonding isa solid phase operation in whi¢che component metal sheets are roll bonded
together under pressure and/or heat either sequentially or simultan@yuBgcently, Tsuji
et al.[6-8] have developed a novel roll bonding technique, the accumulative rolingond

(ARB), in which the normal rolbonded material is cut into two, stacked and-lboihded



repeatedly. It is therefongossibleto fabricate LMCs with a number of layers by the ARB

technique.

The objective of this work is to fabricate the steelgnesiuniaminated composisby
means of roll bonding and to assess the mechanical properties of the cosnposite
comparison with those of the monolithic component materials. We examine the mechanical
responsg of the composite, including decohesion betweenl steg@ magnesium during
tension and bemadg. This work also teststhe effectiveness of predictionfor the tensile
strength based on the rule of mixturEmally, it is of interest to examine the fracture modes
of steel andnagnesiunwith different layerthicknesses in the composta tension, and to

compare those with the fracture medier monolithicsteel andnagnesium



Chapter 2: Literature review

In this chapterthe concept and advantagesiud hybrid (composite) materials, as well
as the design proces$ these hybridswill first be reviewed. Thenthe room temperature
tensile properties of the laminated metal compositésbe describedNext, the previously
reported results on steglagnesium compositegill be reviewed. Finally, the rolbonding
and accumulative roll bondingprocesseswill be described and th@rocessparameters

affecing bondingwill be summarized.

2.1.Designing hybrid materials

2.1.1.Introduction to hybrid materials

In contrast to the traditional monolithic materials, hybrid materia¢sshow by the
central circle in Fig. 2.19], are combinations of two or more materials assembled in such a
way as to have attributes not offered by either one alésesuchthey combine the
properties of two (or more) monolithic materials, orasfe material and spac&here are a

variety of mature designs and competitive products of the hybrid materiats & yotarket.

There are many types of hybrid materials. According to ldmgth scale of the
component materiglghere are macrocomposite, mesocomposite and microcomgi@jie
There are alsonany different hybrid materialsategorizedby configuration including
particulate and fibrous composites, sandwich structures, lattice structures, segmented
structures, and more. These four typical configurationsthen potential advantages are
shownin Fig. 2.2[9]. Besides those four typical configurations, many more can be obtained

by using advancegrocessing techniques. For exampglayide variety of geometries can be
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produced by surfacdreatment combined with masking or machining operations, as

illustrated inFig. 2.3[11].

Fig. 2.3. An illustration of the various composite geometries that can be obtained by decarbu(izationed

from [12] with permission frondohn Wiley and Sons

2.1.2.What could weachieveby designing a hybrid?

Ashby[9, 13] has summarizedome advantages of hybrid matef@a the four possible
scenariosas shown in Fig 2.[9]. In Fig. 24, the fields occupied by two materiald; and

M,, are schematically shown and plotted on a chart with prop&tiasd P, as the axe&he



properties are assumed to become better along the positive dseafitime axes) With

different shapes and different combination methaase may achieve any one ofthe

scenariodisted in Table 2.1.

Material 1

Property P,

Material 2

Property P

Fig. 2.4. Possibilities of hybridization (reprinted froj@] with permission fronklseviej.

Table 2.1. The details of four pssibilities of hybridization (summarized according to f&g]).

Points| Saenarios Descriptions Examples

A The best of both A hybrid with the bestproperties of both Zinc coated stegl
components Glazed pottery

B The rule of mixtures The best that can bebtained is often th¢ Unidirectional fiber
arithmetic average of theroperties of thg composites
componats, weighted by theirolume fractions.

C The weaker link The hybrid propertieall below those of a rul¢ The stiffness of

dominates of mixtures, lyingcloser to the harmonic than th paticulatecomposites

arithmetic meamwf the properties

D The worst of both | A hybrid with the worst properties of both

components

It can be seen from Table 2.1 tlsaknaridA is themost desirablease while scenario D

is undesirable In practice, howeveriithe best of bothis most conmonly accomplished

7



when a bulk propertgf one material is combined with the surfgeeperties of another.e.
coating, whereas kenbulk properties are combined in a hybrid, astmictural composites,

the best that can lmbtained is ofterithe rule & mixturesd scenario.

2.1.3.Design of hybrid materials

A hybrid material isdefined asa combination of two or more materials in a
predeterminedyeometry and scale, optimally servingsecific engineering purpogé4).
Based on thiglefinition, Ashby[9, 13] proposed théA + B + shape + scatemethod for
designing hybrid materials. The basic idea of this method is iltadtran Fig. 25 and

explained below.

Onf ial Simple
mge‘ig'i” >| solution
Choice of
Analyze configuration:
reqwrements Composite
Functions Sanqwuch
Lattice
Constraints Segment
Function 1 l
One Seek optimal .
material solution Combine n
meets all solutions Hybrid
luti
1/m / Araeen solution
?Sﬁ?{fgﬁs Function? performance
Seek optimal
solution
Interface
engineering
Welding
Adhesives
Fasteners

Fig. 2.5. The steps in designing a hybrid to meet given design requireneptited from{9] with pemission
from Elsevie).



Monolithic materials offera certain portfolio of properties on which much engineering
design is basedand the dsign requirements isolate a sector of matgralperty space. In
many cases the requirements can be met by a gimgkrial solution but if the design
requirements are exceptionally demanding, no single mateaialbe found that can mest
the requirements. In this case, the way forward is to identify and separate the conflicting
requirements, seeking optimal ma#érsolutions for each, and then combthem in ways

that retain the desirable attributes of bi@h

Ashby has established a systematic rmibjiective optimization desigril5] and
materials selection methdd6], in which the most important step is to derive theaided
performance index. A performance index is a property or group pégres which measures
the effectiveness of a material in performing a given funcfiogh20]. For example, the
stiffest beam is that with the highest modulssand heree is the performance index. But it
canusuall be much more complicated. The indices that are often used in mechanical design
have beersummarizedby Ashby[16]. It is expectedthat the performance indesan be
maximized during hybrid desigio produce properties that are better tharse of existing

materials.

The performance indezan often be shown as a line of equal performancendshby
map. One example is illustrated in Fig6 9], which plotsYoungs modulusss. censty for
a wide range of materialg.or examplea series oparallellines with slope equal td% on
log-log chart, (i.e. constantE*%}) provides a series of lines where the performasfcthe
material is equal. Parallel lines which move to the left and up are materials with superior

performance (in this casighter, stiffer beams)
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Fig. 2.6. A schematice-} chart $iowing guidelines for a light, stiff beam (reprinted fr¢@h with permission
from Elsevie).

2.2.Laminated metal composites

Laminated metal composites (LMCs) are a unique form of composite material in which
alternating metal or metal containing layers are bonded together with discrete interfaces.
Those composites can dramatically improve many properties including fracture toyghness
fatigue behavior, impact behavior, wear, corrosion, and damping capacity; or provide
enhanced formability or ductility for otherwise brittle materi@k The idea of laminating
different metals and alloys to form a composite material that exploits the good properties of
the constituent materslican be traced back to thousands of years ago in the ancient spears
and shield§21]. The modern practical application of LMCs was particularly well examined
in the former Soviet Unionwhere bi-material laminates including steel/steel, Alédte
Cu/steel, and Al/Cu have been manufactured by means of explosive bonding and welding
[22], and over 80 combination$ metals have been successfully laminated including some in

which mult-Hlayer laminates have been formed.
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Modern LMCs can be madeyla variety of techniques, e.gonding, deposition, and
spray forming.The onding techniques may be classified into seveudigroups, such as
adhesive bonding23, 24} infiltration [25], diffusion bonding[26], reaction bonding27]
(especially for THAl and NFrAI systems), and deformation bonding such as roll bon|@&p
With these bonding techniques, laminated composites with relatively thick layers (typically
from 50 to 1000 &m) can be itiobtéchniques idvolveOn t h
atomic or molecularscale transport of the component terals such as in sputtering,
evaporation, chemical or physical vapor deposition (CVD or PVD), spray or electroplating,
by means of which the ultrathin layer (from several nrm#wrm) | ami nat ed ¢ ompc
be produced5]. The typical SEM photographs of microstructoé the LMCs produced by

roll-bondingwith different layer thicknesses are shown in Big.[29].

Fig. 2.7. Photomicrographs of LMCs ddHCSFe- 3Si alloyprocessed by roll bondir{g9] (the top and bottom

three are under same magnification, respectively, reprinted[&bhwith permission fronklsevie).
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2.2.1.Tensile behavior at low temperatures

LMCs may be categorized roughly into two groups, ultrathin layer LMCs, wiaeh A
laminate spacing smaller than several micrometers, and thick layer LMCs, which possess
typical layer thicknesses of hundreds of micrometers. The tensile properties of both ultrathin

and thick layer LMCs have been studied.

2.2.1.1.Tensile properties of ultrathin layer LMCs

The tensile properties of ultrathin layer LMBave beestudied, but typically only their
breaking strength is reported. Lesuer eff%l.summarized a graph of tensile strength data
obtained on such materials processed by elelg#pmsition or by sputtering, as shown in Fig.

2.8, in which the data are for copper layered with nickel or M¢BeBO, 31] The figure

shows the brdang strength (essentially equivalent to the ultimate tensile strength) as a
function of the reciprocal square root of the multilayer periodicity width. Lesuer Ei]al.
pointed out that for each set of data, a HPaich type relation was observed, which means a
linear relation was observed owverange of laminate layer spacing, the strength increasing
with a decrease in the modulation width. Thus, it can be seen that the laminate spacing is an
important variable in controlling the strength of the laminate. It shalsldbe noted that a
maximumin strengthwas observed for two of the individual investigations; and beyond this
maximum, the strength decreases with further decreases in modulation width. The reason for
the further decrease of strength is, according to the literg@0Q}ethat the interface can act a

sink for dislocations atifie laminate spacing, thus further decrease of modulation width

reduces the dislocation density and contributes to a decrease in strength.
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Fig. 2.8. Breaking strength of ultrathin layer laminated compos#esfunction of modulated spacind
laminates are based on layers of Cu alternating with either Ni or Monel lgggnented from[5] with

permission frominternational Materials ReviewsManey Publishingwww.maney.co.uk/journals/imand

www.ingentaconnect.com/content/maney/jynr

2.2.1.2.Tensile properties of thicklayer laminated composites

For the thick layer LMCs, the yield strength can be readily predicted by the rule of
averages, which haseenusedfor the laminated systems with two components of equal
volume fraction. The rule of averagieshased on the assumption that batimponentyield

at the same strain, amldescribed ag]:
A K
- ™ ™ — P

where,, is the yield strength of the composites, the yield strength of the strong
component, and, the yield strength of the weak component. Lesuer et[%.also

showed the application of Eq. 2id predicting the normalized strgih of the lamina
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(normalized by the stronger component) as a function of the yield strength ratio of the
component materials, as shown in R2@. It can be seen from Fig.9a that for a number of
UHCS or Al- based LMC432-36] with a wide range in relative strengths, the experimental

results fit well with the line predicted by the rule of averages.
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Fig. 2.9. Experimental yield strengtfa) andtensile elongation to fractu(®) of thick-layer laminated composit
containing 50 vol.% of each component, compangth prediction based othe rule of averages (given by 1
solid line) (reprinted from[22] with permission frominternational Materials ReviewsManey Publishing

www.maney.co.uk/journals/imandwww.ingentaconnect.com/content/maneyjimr

In contrast to theield strength, the tensile ductility cannot be predicted by the rule of
averages as can be seen in Bigb. Thelack of agreement between the rule of averages and
the experimental data is attributed to the fact that the tensile ductility of lamirsates i
dependent on many variables, including the susceptibility of the lower ductility layer to

cracking, the contribution to cracking from the interlayer region, the ease of delamination,
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and the influence of layer thicknefs. It also should be noted that the tensile ductility of
most of laminate@omposites is lower than that predicted from the rule of averages when the

difference between ductility of the two components is |§5¢e

The most important observation in F9b [5] is that the totaklongationto failure
resultsfor the UHCS/brass laminate (solid triangl@sjicatethat the tensile ductility of the
laminate can beither less or greater than the prediction from the rule of averages. These
results have been interpreted terms ofthe effect of layer thickness on the ductility of
laminated composites, i.e.whémé¢ | ayer thickness i 39s13%;0 & m,
when the | ayer thickness i sto21%;@ndsvimntheldyss t en s
thickness i s 50 ereachs 60% g7].tTeimntendliseattriduted toithe i t vy
greater difficulty for delamination as the layer thickness is reduced. Interfacial delamination
is suppressed with decreasing layer thickness due to the decrease in resideal siless
areusually produced by the thermal expansion mismatch between the component materials
that occurs during cooling down from the processing temper@®yr&7]. Inhibition of
delamination prevents neck formation in the less ductile UHCS dayehich would
otherwise create hydrostatensilestresges in the neckonein these layerdeading to crack

initiation andthe finalfailure [5].

2.2.2.Toughening mechanisms

An increase in toughness of the material is another area WW@s possess great
potential Toughening in LMCs can arise fromnany different sources, including both
intrinsic toughening and extrinsic tougheninmgechanismg5, 38]. The former one results

from the inherent resistance of the microstructure to crack gramdtthus is influenced by
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the microstructural characteristics such as grain size, particle spacing, particle size, etc; the
latter is caused by reducing the local stress intensity at the crack tip and thus the local
Adriving forceod fhe distinctdagecskresgnt m WwWCs,toughem dhese
materials by various extrinsic mechanisms, whialkie beesummarized by Lesuer et &b]

in Fig. 2.10. Those toughening mechanisms are also helpful when assessing the tensile

fracture andormability of the LMCs.

Fig. 2.10. Toughing mechanisms of LMCs (reprinted fr@h with permission froninternational Materials

ReviewsManey Publishingwww.maney.co.uk/journals/imandwww.ingentaconect.com/content/mangy
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