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Figure 8-20. The comparison of the fouling for different shear profiles with bentonite 
concentration of 0.5 g/L 
 

 (a, b) 4 Blade, (c, d) 2 blade, (e, f) 1 blade , (a – c) time averaged shear only, (d – f) time averaged shear 
with confidence interval  

(a) (b) 

(e) (f) 

(c) (d) 
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Figure 8-19 and Figure 8-20 show that, with the exception of the low peak shear profiles, all 

transient shear profiles resulted in significantly better fouling control during filtration, compared 

to the single-phase shear profile.  This was expected, and is consistent with the observations of 

others when investigating fouling under single phase and double phase flow conditions [86, 88, 

91, 99, 121, 123].  It is however interesting to note that amongst the different transient shear 

profiles, different extents of fouling were observed.  The high peak shear profiles resulted in the 

least fouling, followed by the sustained peak shear profiles.  The low peak shear profile resulted 

in the worst fouling, compared to the other two transient shear profiles, and was similar to that of 

single phase shear profile. One possible explanation for this observation is that, as discussed in 

Section 8.3.2.2, there may be a minimum (or critical) energy required before particle transport 

away from membrane can occur.  Therefore, the energy supplied by the low peak and single 

phase shear profile may not have been sufficient in inducing the particle transport, compared to 

the block and high peak shear profile.  Additionally, as discussed in Section 8.2, there was no 

visible gap between the impeller blade and the fiber membrane for the high peak shear condition.  

As such, it is possible that physical contact occurred with the fiber membrane.  This contact may 

have resulted in the physical scouring of the membrane surface, which disrupted and removed 

the cake layer formed on the membrane surface.   

 

When comparing the low peak shear conditions to the sustained peak shear profile experiments, 

the sustained peak shear profile resulted in better fouling control.  The greater fouling observed 

for the low peak shear conditions is possibly due to the disruption of  particle back-diffusion due 

to excessive oscillatory flow.  As discussed in Chapter 3, inertial lift, one of the mechanisms that 

possibly contribute to fouling control can be impacted by oscillatory flow conditions.  Under 

oscillatory flow conditions, there exists a critical oscillation frequency, above which the flow 

conditions become detrimental to the lift forces that transport particles away from the membrane 

[110].  Analogously, the same phenomenon may have occurred in the experiments of the present 

study, wherein the oscillatory flows provided by the sustained peak shear conditions were 

beneficial in controlling fouling, compared to the non-oscillatory flows of the single-phase shear 

conditions.  However, at a higher frequency of oscillatory flow, such as that of the low peak 

shear conditions,  fouling control was not as efficient, possibly due to increased secondary flows 

near the membrane surface that were more detrimental to fouling control.   Further research is 
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required to confirm this hypothesis. Additionally, considering that the peak values of the 

transient shear stress in the sustained peak shear profile and the low peak profile were similar 

(around 0.5 V), the results suggest that shear stress peak value does not provide a good indicator 

of the fouling control.  Rather, the profile of transient shear, i.e. sustained peak vs low peak is 

also an important factor that affects the mechanism of fouling.   

 

8.3.4 Relationship Between the Fouling Rate and Different Shear Parameters 

Several researchers have proposed that the permeate flux (and subsequent fouling control) can be 

linked to several statistical shear parameters, as listed in Table 8-2.  For the present study, in 

addition to the statistical shear parameters listed in Table 8-2, other statistical parameters such as 

number of shear events (Ns) and the duration of the peak shear (Tmax) were also considered.  

Several combinations of these statistical parameters were evaluated as potential relationships that 

could be use to link shear measurements to fouling control. These evaluated parameters are listed 

in Table 8-3 for the different shear profiles considered. 

 

Table 8-2. Suggested statistical shear parameters linked to fouling 

Shear Parameter Symbol References which suggest  
relaltionship to fouling 

Time-averaged shear   [92, 93, 143] 

Standard deviation of shear profile 
std  [184] 

Amplitude of shear profile 
amp  [93] 

Peak shear  
max  [144] 

Oscillation frequency  f [93], [47] 
Ratio of two-phase time-averaged 
shear stress to single-phase wall shear  

phase-single

phasetwo



   
[93] 
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Table 8-3. Additional statistical shear parameters considered in the present study as potential 
link to fouling 
Shear Parameter Symbol 
Number of shear events  Ns 
Duration of peak shear (in seconds) Tmax 
Product of number of shear events and 
average shear 

Ns x   

Product of number of shear event and 
peak shear 

Ns x max  

Product of number of shear event, 
peak shear and duration of peak shear 

Ns x max x Tmax 

 

 

The calculated values of these shear parameters for the different shear profiles are shown in 

Table 8-4.  The time-averaged shear and standard deviation of shear were calculated based on 60 

minutes of data from the shear profiles. 

The fouling rates for all experiments were calculated and plotted against the different shear 

parameters in Table 8-4.  Since none of the pressure curves were linear with respect to time, the 

fouling rate was calculated based on the change of pressure vs. time near the end of filtration, at 

which point the pressure increase was approximately linear.  For the 0.2 g/L experiment, the 

fouling rate was calculated between 80 and 120 minutes of the experiment, while for the 0.5 g/L 

experiment, the fouling rate was calculated between 50 and 70 minutes of the experiment.  

Details of the regression analysis to estimate the fouling rates are presented in Appendix P.  The 

estimated fouling rates plotted against the values of the different shear parameters are presented 

in Appendix Q.  Based on Pearson’s correlation analysis, results in Table 8-5 suggest that   does 

not provide a satisfactory description of the relationship between shear and fouling, as initially 

suggested by others  [92, 93, 143].  This observation is consistent with those by Yeo et al. [184] 

who found that  cannot be used as the sole parameter in defining fouling control during 

filtration under two-phase flow conditions.  Frequency of oscillation (f), and number of shear 

events (Ns), two parameters which were speculated to be linked to fouling [131, 183] were also 

found to be not good descriptor of fouling rate.  Similarly, other parameters investigated 

:
phase-single

phasetwo



   , f  , N, Ns x  , Ns x max , and   Ns x max  x Tmax  also cannot be used to define the 

relationship between shear and fouling.   
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The shear parameters that were found to be statistically related to fouling rate were std , max  and 

amp .  The relationship between std  and fouling rate is consistent with the observations by Yeo 

et al [184] who demonstrated a good correlation between standard deviation and the rate of 

transmembrane pressure increase during filtration.  This correlation initially suggests the 

importance of high variability of shear stress in controlling fouling.  However, a closer look at 

the data suggests that std is likely not the sole factor in affecting fouling.  When comparing the 

std value for the sustained peak-4 shear profile ( std  = 0.05) with the std value for the low peak-

4, low peak-2 and low peak-1 shear profiles ( std = 0.04, 0.06 and 0.06, respectively), the std  

values are relatively similar.  However, the fouling rates of all low peak shear experiments were 

significantly higher than those of the sustained peak-4 experiments, as shown in Figure 8-19 and 

Figure 8-20. Therefore, std  alone cannot fully describe the relationship between hydrodynamics 

and fouling. It should also be noted here that although high variability in shear (as described by a 

higher std ) may be important for fouling control, there may be a limit to the beneficial effect of 

shear variability on fouling control.  In fact, excessive variability or oscillation in flow may 

create secondary flow conditions near membrane surfaces that may be detrimental to fouling 

control [110]. 

  

The relationship observed between max  and the fouling rate is consistent with observations by 

Jaffrin [144].  However, similar with the discussion of std above, max alone cannot fully explain 

why the low peak shear profile yielded a higher fouling rate compared to the sustained peak 

shear profile, even though the max  of both types of shear profiles were similar.  This is similar 

for amp  as well, where the amplitudes of shear stress for the low peak and sustained shear 

profiles were similar, however, the low peak shear profile yielded a higher fouling rate compared 

to the sustained peak.  Therefore, the amplitude, and the maximum shear stress of the transient 

shear conditions alone cannot be used to fully describe the relationship between hydrodynamics 

and fouling either. 
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The results fromthe present study suggest that inducing different types of shear events may have 

different physical effects on fouling control at the membrane surface.  For example, the 

mechanism of fouling control in the high peak shear experiment may have been primarily due to 

scouring of the concentration polarization and/or cake layers, while fouling control in low peak 

and sustained shear experiments may have resulted primarily from particle back-transport via 

inertial lift or shear-induced diffusion.  These physical effects cannot be properly described by 

the simple statistical shear parameters proposed in Table 8-2 and Table 8-3.  Further research is 

required to investigate the mechanisms of fouling control induced by the different shear 

conditions, and to develop a better description of the relationship between fouling control and the 

different transient shear conditions. 
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Table 8-4. Shear parameters to different experimental conditions 

Shear Profile – 
number of blades   std  amp  max  f 

phase-single

phasetwo



   Ns Tmax Ns x   Ns x max Ns x max x Tmax 

sustained peak-4 0.46 0.05 0.2 0.5 0.28 0.91 1020 2.5  469 510 1275 
sustained peak -3 0.42 0.09 0.2 0.5 0.22 0.83 780 2.5  328 390 975 
sustained peak -2 0.37 0.1 0.2 0.5 0.15 0.73 540 2.5  200 270 675 
sustained peak -1 0.33 0.1 0.2 0.5 0.08 0.65 300 2.5 99 150 375 

high peak-4 0.48 0.15 0.9 1.2 0.57 0.95 2040 1 979 2448 2448 
high peak -2 0.43 0.13 0.9 1.2 0.28 0.85 1020 1 439 1224 1224 
high peak -1 0.36 0.12 0.9 1.2 0.15 0.71 540 1 194 648 648 
low peak-4 0.41 0.04 0.2 0.5 0.57 0.81 2040 1.5 836 1020 1530 
low peak -2 0.4 0.06 0.2 0.5 0.28 0.79 1020 1.5 408 510 765 
low peak -1 0.33 0.06 0.2 0.5 0.15 0.65 540 1.5 178 270 405 
single-phase  0.51 0.02 - 0.2 - - - - - - - 
 

 

Table 8-5. Pearson correlation coefficient for different shear parameters and pressure increase rate  

Only coefficient (absolute value) greater than 0.602 is considered significant (based on confidence level of 95%)    

Bentonite 

Concentration   std  amp  max  f 
phase-single

phasetwo



 

 

Ns Ns x   Ns x max  Ns x max x Tmax 

0.2 g/L -0.129 -0.800 -0.620 -0.630 -0.213 -0.129 -0.213 -0.291 -0.577 -0.305 

0.5 g/L 0.019 -0.793 -0.709 -0.711 -0.082 0.019 -0.082 -0.147 -0.505 -0.178 
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8.4 Conclusions 

Different types of shear profiles can be observed in a gas-sparged submerged hollow 

fiber membrane module.  The overall objective of the present study was to qualitatively 

identify the types of shear profiles that produce the greatest beneficial effect on 

minimizing reversible surface fouling.  The relationship between the different statistical 

shear parameters that have been used by others to establish a relationship and fouling 

control (e.g. time averaged shear, standard deviation of shear and amplitude of shear) 

were examined as well.  A number of shear profiles of different magnitudes, durations 

and frequencies was chosen to simulate the three bubble scenarios, with respect to the 

distance between the bubbles and the fiber.   Filtration experiments were performed under 

these simulated shear scenarios. This study is the first of its kind in investigating the 

relationship between types of shear conditions and fouling.  Shear events of different 

magnitudes, durations and frequencies were imposed onto a submerged hollow fiber 

membrane, and the resulting increases in trans-membrane pressure were monitored and 

analyzed.  The following are the main conclusions from this study: 

 

 Filtration experiments in which membranes were subjected to transient shear 

conditions resulted in lower fouling rates, compared to constant shear conditions 

(i.e. single-phase shear profile). 

 The magnitude, duration and frequency of the shear conditions have an impact on 

the fouling rate of membranes.   

 Shear conditions with high peak values (i.e. high peak shear profile) resulted in 

the best fouling control compared other shear conditions.   

 For a given maximum peak shear value, shear conditions with peak values of 

relatively long duration (sustained peak shear profile) were more effective at 
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controlling surface fouling than frequent short shear events (low peak shear 

profile).   

 No significant correlations between the fouling rate and the values of shear 

parameters such as  , Ns, Ns   , Ns x max , f, and Ns x max  x Tmax.were observed.  

A possible relationship between std , max  and fouling was observed.  However, 

these parameters alone cannot fully explain why the low peak shear condition 

yielded a higher fouling rate compared to the sustained peak shear condition, even 

though the max of both types of shear conditions were similar. 
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9. Conclusions and Recommendations 
 

9.1 Overall Conclusions 

The investigations undertaken in this thesis provide one of the most comprehensive 

studies of hydrodynamic conditions inside the submerged hollow fiber membrane module 

to date.  To achieve the objectives of the thesis, the first electrochemical double-probe 

manufactured on a non-rigid surface (with the same dimension and flexibility as a hollow 

fiber) was developed.  This allowed for the detailed investigation of the hydrodynamic 

conditions inside a bench-scale hollow fiber membrane module, and the relationship 

between hydrodynamics and fouling.  The following are the main conclusions from this 

study. 

 

Hydrodynamic Conditions 

 The hydrodynamic conditions in confined tubular membrane systems and 

unconfined submerged hollow fiber membranes were observed to be different.  

These results imply that, in contrast to the situation with confined tubular 

membranes, flux enhancement in gas-sparged submerged hollow fiber membrane 

systems is likely not achieved through scouring of the fiber surface by a falling 

film. 

 Different operating conditions yielded bubbles with different geometries (i.e. 

spherical, ellipsoidal or slug-like), and the different bubble geometries yielded 

different shear profiles. 

 In examining the shear profiles at different radial sections of a fiber during gas 

sparging, it was noted that the sections of the fiber closest to the sparged bubble 

experienced shear peaks (i.e events) of the highest magnitude.  These results 

indicate that only a small portion of the fibers benefit from the shear peaks 

induced by rising sparged bubbles. 
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 A significant shielding effect was observed in tightly held fibers- whereby fibers 

inside the bundle experienced substantially lower magnitudes and variabilities in 

surface shear signal. 

 The shielding effects observed in bundles with tightly-held fibers were somewhat 

lower with loosely-held fibers, and with fibers in motion.  For loosely-held fibers, 

the surface shear signals were more homogeneously distributed within the fiber 

bundle. The flow path of bubbles rising in loosely held fibers was not confined to 

a specific region, as was the case for tightly held fibers.  The larger number of 

fibers (i.e. regions) that can benefit from sparged bubbles in systems with loosely 

held fibers likely explains why higher permeate fluxes have been reported in 

loosely held submerged hollow fiber membrane systems compared to those in 

tightly held systems.   

 

Relationship Between Fouling and Shear 

 Filtration experiments in which membranes were subjected to transient shear 

conditions resulted in lower fouling rates, compared to constant shear conditions 

(i.e. single-phase shear profile). 

 The magnitude, duration and frequency of the shear conditions have an impact on 

the fouling rate of membranes, although the degree of impact varies for different 

shear conditions.   

 Shear conditions with high peak values (i.e. high peak shear profile) resulted in 

the best fouling control compared other shear conditions.   

 Shear conditions with peak values of relatively long duration (sustained peak 

shear profile) were more effective at controlling surface fouling than frequent 

short shear events (low peak shear profile).   

 No significant correlations between fouling and the values of shear parameters 

such as  , Ns, Ns   , Ns x max , f, and Ns x max  x Tmax.were observed.  However, 

possible relationship between std , max  and fouling was observed. 
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 By analogy for a gas-sparged membrane system, the distance between a rising 

bubble and the membrane surface may be an important factor in determining the 

fouling, as a smaller distance may result in the physical disruption of the cake 

layer on the membrane surface. 

 

9.2 Recommendation for Future Work 

 

Characterizing Hydrodynamic Conditions Inside Submerged Hollow Fiber Membrane 

Modules 

Fiber movement plays an important role in controlling fouling.  Several possible 

mechanisms of fouling control caused by fiber movement during gas sparging are: (1) 

creation of a more even distribution of flow and shear stresses inside the fiber bundle (as 

discussed in Chapter 7), (2) “shaking” off accumulated particles on the membrane 

surface, and (3) promotion physical contact between fibers which results in the physical 

scouring of the fouling layer formed on membrane surfaces.  In addition to fouling 

control, fiber movement may also reduce the extent of clogging, or sludging.  Like 

fouling, clogging or sludging of membrane channels results in reduced permeability and 

increased operating costs.    

 

How fibers move when subjected to different sparging patterns (i.e. gas sparing intensity, 

intermittence of sparging, gas bubble size) and membrane configurations is not well 

understood.   A potential tool in quantifying fiber movement inside a gas-sparged 

submerged hollow fiber membrane module is the use of a three-segment electrochemical 

shear probe.  This probe allows for the determination of both the axial as well as the 

normal velocity relative to the membrane surface, as described by Sobolik et al. [177].  It 

may be possible to deduce information about fiber movement from the measured normal 

velocity.  Once fiber movement can be quantified, the mechanism of fouling and 

clogging control as a result of this movement, as well as sparging and membrane 

configuration that affect fiber movement can be studied. 
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The impact of gas sparging on bulk fluid movement inside the membrane tank is also 

currently not well understood.  When comparing the external side of the module 

compared to the internal side (i.e. between membrane cassettes), Nguyen et al. [128] 

reported a lower local vertical bubble velocity and local gas hold-up on the external side, 

using a bi-optical probe.  The method of mounting the bi-optical probe inside the tank 

may possibly result in an interference of the flow field.  The use of the electrochemical 

shear probe described in this thesis may be a suitable, non-invasive method in 

determining the bulk flow characteristics inside the membrane tank, and the required 

improvements in membrane configuration designs (i.e. cassette spacing, addition of 

baffles in tank etc.)   

   

The experiments described in this thesis were performed using the electrolytes (Chapters 

4 to 7) as well as bentonite water mixture (chapter 8), both of which are Newtonian in 

nature.   The water matrix inside a membrane bioreactor for wastewater treatment can be 

non-Newtonian [13].  Now that the technique for shear measurements in a Newtonian 

system has been established in this thesis, the next step is to conduct shear measurements 

inside a non-Newtonian system by altering the viscosity of the electrolyte.  This may 

possibly be accomplished by adding a polymeric substance to the ferricyanide and 

ferrocyanide solution, as suggested by Dumon et al. [185].   

 

Relationship between Shear Stress and Fouling 

In this thesis, interesting observations were obtained when investigating the effect of 

different types of transient shear stress on fouling rates, as described in Chapter 8.  To be 

sure that the results obtained were real phenomena, and not as a result of apparatus 

artifact, a  different shear apparatus should be designed and used to check if phenomena 

observed in Chapter 8 were indeed real.   

To investigate the mechanisms of fouling control by the different types of transient shear 

profiles, direct observation methods can be used to confirm that the mechanisms of 

fouling control in high peak shear experiments was physical scouring, and that the 

fouling control mechanism in low peak and sustained peak shear is enhanced particle 

back-transport.  Additionally, a better description of the relationship between transient 
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shear stress and fouling is needed.  As such, one needs to develop a way of properly 

describing the transient shear stress using a quantifiable parameter.   

It will also be interesting to examine different effects of increased liquid flow in 

combination with transient shear stresss on fouling, i.e. sustained high shear stresses in 

combination with smaller variation in transient shear stresses, as shown in Figure 9-1. 

Finally, the effect of permeate suction on shear stress at membrane surface needs to be 

quantified  (using flat sheet membrane). 

 

 
Figure 9-1.  Different types of transient shear profiles for future investigations 

 

 

9.3 Engineering Significance 

The main knowledge gap that leads to the present research study is that the hydrodynamic 

conditions inside a submerged hollow membrane module under gas-sparging are not well 

understood.  As a result – the time-consuming and expensive process of pilot-testing is 

necessary before a full scale unit can be built.  The research study conducted here 

narrows the above knowledge gap.  The research study undertaken presents one of the 

most comprehensive investigations of the hydrodynamic conditions inside the submerged 

hollow fiber membrane module to date. 

 

 
vs 
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Based on these investigations – it is realized that the hydrodynamic conditions inside a 

submerged hollow fiber membrane are different than those of confined tubular membrane 

systems, which was initially hypothesized by some.  These results provided significant 

insights regarding the interaction between bubbles and fibers, which yields knowledge 

regarding the relationship between gas sparing and fouling.  It was also observed that 

different types of shear profiles exist inside the membrane module.  These profiles are 

impacted by the membrane geometry as well as two-phase flow characteristics.  

Moreover, the different types of shear conditions result in different fouling, which 

suggests that different mechanisms are at play in controlling particle transport near the 

membrane surface.  This information opens the opportunity for further investigation in 

terms of optimization of the gas –sparging system, or other shear-generating devices that 

create the shear conditions that offer the greatest benefit minimizing fouling, while 

minimizing the energy demand associated with generating these shear conditions. 
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