Solving Correlation Matrix Completion Problems using
Parallel Differential Evolution

by
Srujan Kumar Enaganti
B. Tech, Indian Institute of Technology Guwahati, 2006
A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
Master of Science
in

THE FACULTY OF GRADUATE STUDIES

(Computer Science)

The University Of British Columbia

(Vancouver)
November 2010

(© Srujan Kumar Enaganti, 2010

Abstract

Matrix Completion problems have been receiving increased attention due to their
varied applicability in different domains. Correlation matrices arise often in study-
ing multiple streams of time series data like technical analyses of stock market
data. Often some of the values in the matrix are unknown and some reasonable
replacements have to be found at the earliest opportunity to avert an unwanted
consequence or keep up the pace in the business. After looking to background re-
search related to solving this problem, we propose a new parallel technique that
can solve general correlation matrix completion problems over a set of computers
connected to a high speed network. We present some of our results where we could

reduce the execution time.

ii

Table of Contents

Abstract i e e e e e e e e e ii
Tableof Contentst ii
Listof Tables ittt ittt it ittt v
Listof Figures ¢ i i i it i it it ittt e e e e e vi
Acknowledgments ittt e e e vii
1 Imtroduction00ttt iiiieeennneennn 1
1.1 Motivation L 1
1.1.1 Finding Missing Correlation Values of Time Series Data . 2

1.1.2 Collaborative Filtering 2

1.1.3 Global Positioning Systems 3

1.2 Terms and Definitions, 4
1.2.1 GraphofaPartial Matrix 5

1.3 TheProblem. 5

14 OurApproach 6

2 Backgroundt et e e 8
2.1 Introduction 8
2.1.1 PSD Completion to Chordality 8

2.2 Correlation Matrix Completion for Special Structures 9
2.2.1 The Simple Cycle Graph 9

222 PSD Completion of C¥ Pattern Matrix 11

iii

2.3 More Generic Correlation Matrix Completion Approaches 12

2.3.1 Generic PSD Completion & Determinant Maximization . 12
2.3.2 Nearest Correlation Matrix 12
2.3.3 Correlation Matrix Completion using Gaussian Elimination 13
2.3.4 Completion of a Correlation Matrix of Limited Size 13

2.3.5 Correlation Matrix Completion using Sequential Differen-
tial Evolution L., 13
3 TheAlgorithmsttt teneenneas 15
3.1 Introduction 15
3.2 Evolution Strategies and Differential Evolution 15
3.3 The Sequential Algorithm for CCOMAT Problem 18
3.4 Basic Parallel Approach for Solving the CCOMAT Problem . .. 22

3.5 Improved Parallel DE Approach for Solving the CCOMAT Problem 25

4 Experimental Results0ttt eunnean 28
4.1 Introduction 28
42 TheSetup 29

42.1 ThePhysical Cluster 29
422 The Libraries/Tools 29
423 TestCases. o oo it 30
424 An Example with Implementation Details 31
4.3 The Experimental Parameters 32
4.4 Results for the Algorithms 33
4.4.1 Evaluation of Basic Parallel DE Algorithm 33
4.4.2 Evaluation of Improved Parallel DE Algorithm 41

5 Conclusionst e e 48
5.1 Introduction 48
52 Conclusions 48
53 FutureWork o 49

Bibliography i i e e e 50

v

List of Tables

4.1
4.2
4.3

4.4

The average execution time (in seconds) of 8 x 8 matrix completions 34
The average execution time(in seconds) of 8 x 8 matrix completions 38
Comparisons of Average Number of Iterations between Basic Par-

allel DE Algorithm and Improved Parallel DE Algorithm 41
Average Execution Time for Different Algorithms 42

List of Figures

1.1

2.1

4.1
4.2

4.3
4.4

4.5

4.6
4.7

4.8

4.9

Graph of the partial matrix A 5
ARingGraph 10

Average Execution Times for Basic DE Algorithm Run over 4 Nodes 35

Average Execution Times for Basic DE Algorithm over 4 Nodes

without Outliers 36
Execution Times for Sequential FORTRAN Program 37
Average Number of Iterations Needed for Basic DE Algorithm

over 16 Nodes without Outliers 39

Average Number of Iterations Needed for Basic DE Algorithm
over 16 Nodes without Outliers 40
Number of Iterations Needed for Improved Algorithm over 16 Nodes 44

Average Execution Times of Improved and Basic Algorithms over

16 Nodes Using Sx Agents 45
Average Execution Times of Improved and Basic Algorithms over
16 Nodes Using 10x Agents 46
Average Execution Times of Improved and Basic Algorithms with
16 Nodes Using 15x Agents 47

vi

Acknowledgments

This thesis would have never taken this shape without the exemplary supervision
of Dr. Alan Wagner throughout my thesis period. He made himself available
whenever needed and was extremely helpful with his suggestions steering me in
the right direction and helping me progress and complete this thesis. I cannot
express my gratitude to Dr. Ed Knorr in any simple terms for all the useful informal
discussions giving me insights and finally for his scrupulous reviews as a second
reader which helped me refine the thesis. Special thanks to Cody Brown for his
awesome technical support in porting the programs on to the Cyclops cluster and
troubleshooting any problems that have arisen. Last but not the least, I would like
to thank all the people in NSS lab and my fellow grad friends for their cordiality

and moral support throughout my stay.

vii

Chapter 1

Introduction

If I have seen farther it is by standing on the shoulders of Giants.
— Sir Isaac Newton

1.1 Motivation

The Matrix Completion problem is the problem of finding unknown entries in
a matrix by using some known properties of the expected completed matrix [1].
Real world applications involve the collection of data from different sources and
processing it to yield valuable information. Often some of the data may be unreli-
able or unavailable for a host of reasons. It becomes imperative that such data be
reclaimed. Sometimes such missing data is needed at the earliest convenience to
either avert an unwanted consequence or to keep up with the competition among
the ones who need similar data. Although it is impossible to extract the exact data,
it is possible to get the lost data which may follow certain properties that can help

to predict the missing values.

Numerical data from the real world is typically represented in a rectangular ar-
rangement such as a matrix. Recovering data entries would amount to recovering
certain unknown entries in the matrix. The Matrix Completion problem arises

precisely when there is a need to recover the data entries in such an incomplete

matrix. The solution to the problem comes from the fact that certain known con-
straints will be valid in a completed matrix. For example, correlation matrices are
formed by noting correlations of each pair of different streams of data. Such ma-
trices are known to have certain properties including being positive semidefinite.
When some of the values are unknown, we exploit the known properties to predict

the unknown entries.

The Matrix Completion problem is receiving increased attention for its applica-

tions in a variety of areas including:
1. Finding Missing Correlation Values of Streaming Time Series Data
2. Collaborative Filtering in Recommender Systems
3. Global Positioning Systems

4. Remote Sensing

1.1.1 Finding Missing Correlation Values of Time Series Data

A useful function is to predict unknown correlation values among real time stream-
ing data like in stock market data where some values may be unreliable or un-
known. Numerous applications that perform technical analysis to compute such
data would need reasonable data to work upon when the real data is either unavail-
able or unknown. Consider the correlation matrix that is formed by taking pairwise
correlations of all possible pairs of observed stock data. There is a need to estimate

the values that are missing in such a way that maximum risk is minimized.

1.1.2 Collaborative Filtering

Recommender systems are applications that can help someone to make an ap-
propriate choice among a set of alternatives. Collaborative filtering is the most

important functional aspect of the same [2].

Typically, major companies host surveys wherein their customers are asked to
rate certain objects based on various criteria. These ratings are used by the com-
panies to understand consumer behavior. But it may happen that most of the users
may not rate all the objects for all the criteria. In this case, it becomes vital to ex-
tract the possible ratings of those objects that are not rated by the users to serve the
business end of the company. This is done based on a ratified hypothesis that there
are only few criteria/factors that drive a user to make her ratings and choices of
objects. This problem can be modeled as a Matrix Completion problem by using
Matrix Factorization technique where, corresponding to users and items, factors
are given which are inferred from item rating patterns [3] [4]. A higher correspon-
dence between a user and an item will lead to the recommendation of the item for
the user. Since not all entries are available at the beginning, it is a matrix comple-

tion problem.

Netflix is a subscription service that streams movies and TV episodes over the
Internet and sends DVDs by mail. They conduct online surveys from their users of
TV series/movies on several criteria, but typical users may not fill in all the survey
entries completely. In order to capture users’ interests in all fields of all possible
movies/serials, they have built an in-house recommender system to predict the un-
known entries. In 2007 they conducted a competition called the NetFlix Challenge
to find a better algorithm than they have that can predict users’ unknown ratings by
using their known historical data. A minimum performance improvement of 10%
over the predictive ability of their existing algorithms was required. Out of a large
number of submissions, an algorithm proposed by Yehuda Koren from AT&T labs
called the BellKor solution [5] won the first prize in the competition. The other

optimal solutions proposed were [6] and [7].

1.1.3 Global Positioning Systems

The global positioning system works by receiving satellite signals from different
points to compute an object’s location on earth. Often the values can be corrupted
due to noise in transmission or reception and this can lead to errors in the calcu-

lation of positions of various nodes that the system is supposed to work upon. An

extensive research article addressed this problem [8].

1.2 Terms and Definitions

Before stating the exact problem that I am solving, I give the definitions that will

be useful in understanding the context of the same.
Definition Matrix

A matrix is a rectangular arrangement of numbers.
Definition Square Matrix

A square matrix is a matrix which has the same number of rows and columns. An

n-by-n matrix is known as a square matrix of order n.
Definition Positive Semidefiniteness

A square n X n matrix A is said to be positive semidefinite (PSD)
iff Vx € R",xTAx > 0. Every PSD matrix will have all its eigenvalues as non-

negative.
Definition Positive Definiteness

A square n X n matrix A is said to be positive definite (PD)

iff Vx € R",xT Ax > 0. Every PD matrix will have all its eigenvalues as positive.
Definition Real Partial Matrix

A real partial matrix A is one in which some entries are specified as real numbers

and the remainder are unspecified, i.e., free variables over the set of real numbers.
Definition Partial Positive Definite Matrix

A partial positive definite matrix is a partial symmetric matrix each of whose spec-

ified principal submatrices is positive definite.
Definition Pattern of a Square Matrix

A pattern for an n X n matrix is a list of positions of {1,2,...,n} x {1,2,...,n}. A
partial matrix specifies the pattern if its specified entries are exactly those listed in

the pattern. A pattern Q is called symmetric if (i, j) € Q implies (j,i) € Q.

4

1.2.1 Graph of a Partial Matrix

A partial symmetric matrix can be represented by an undirected graph as given
below.
Let A be a partial positive definite n X n matrix. The undirected graph G =
(N,E) of A hasnode set N = {1,2,...,n} and an edge {i, j} € E,i # j, iff entry a;;
is specified.

For example, suppose we have the following partial symmetric matrix as our A,

52 72
2 417
71 3 7
2 7 6

The resultant graph G of the above matrix A is shown in figure 1.1.

Figure 1.1: Graph of the partial matrix A

1.3 The Problem

The various real world situations given in the motivation section are examples

where the matrix completion problem has been found to be useful. A type of the

5

matrix completion problem is the correlation matrix completion problem. In this
thesis, we discuss approaches to solve correlation matrix completion problems that
are found particularly in the area of finance where certain streaming values may be
unknown or known to be spurious. A formal definition for the correlation matrix

completion problem can be given as follows:
Definition Complete Correlation Matrix Problem (CCOMAT)

The problem is to find missing entries in a partial symmetric matrix where all the
given entries and the unknown entries fall within -1 and 1 such that the resultant
complete matrix is positive semi-definite. All correlation matrices have all 1’s on
their diagonal and the property that they are positive semi-definite. The problem
here will be referred to as CCOMAT in this thesis.

1.4 Our Approach

The problem is being solved by parallelizing an optimization method called Dif-
ferential Evolution. It is an evolutionary strategy which can be used for solving
optimization problems where the cost function may be non-differentiable or non-
continuous in the domain over which it is optimized. It works by having a randomly
chosen sample of initial potential candidates and then evolving them incrementally
through iterations and improving them at every step. This simple parallel method
has been improved to a version which can dynamically adapt itself by employ-
ing the concept of simultaneous independent evolution on separate islands and the

migration of element(s) between them.

The thesis is organized as follows. Chapter 1 has focussed on the problem that is
being solved and the motivation behind choosing to solve it that way. In Chapter 2
we look at a background survey of various approaches that have been taken to solve
either the CCOMAT problem or similar problems that can lead to solving the same.
Chapter 3 gives insights to the algorithmic approach proposed in this thesis with
the backdrop of the sequential algorithm that has been used as a base. Chapter
4 gives details regarding the different tools used and the experimental results of

executing the algorithms in parallel on a cluster of computers. Chapter 5 gives the

general conclusions of the thesis, as well as future works that could provide a more

robust approach towards solving the CCOMAT problem more efficiently.

Chapter 2

Background

A good short-story writer has an instinct for sketching in just enough
background to ground the specific story. — Lynn Abbey

2.1 Introduction

In order to solve the correlation matrix completion problem in parallel, it was
pertinent to look at the progress that has been made in solving the same problem in
a serial way. Since the correlation matrix completion problem is a special case of
the PSD completion problem with an additional constraint that all unknown entries
are correlation values (and hence between -1 and 1), some results in the latter are

directly applicable.

2.1.1 PSD Completion to Chordality
Definition Chordality of a graph

A graph is said to be chordal if it does not have any simple cycle of length more

than 3 nodes.

A vital result in relating PSD completion to the structure of a graph correspond-

ing to an incomplete graph was obtained by Grone et al. [9]:

Theorem 2.1.1 Every partial positive definite (semidefinite) matrix with graph G
has a positive definite (semidefinite) completion if and only if G is chordal.

Proof This was originally proved by Grone et al. [9] by using complex analytic
techniques. It has also been recently proved by Smith [10] using only matrix/graph
theoretic tools. |}

2.2 Correlation Matrix Completion for Special
Structures

Some theoretical structures were especially treated in the literature probably be-
cause of their simplistic nature and occasional occurrence of such structures in

solving practical problems.

2.2.1 The Simple Cycle Graph

When the graph of a partial matrix is a simple cycle, the correlation matrix com-
pletion problem can be deterministically solved using the following result [11].
Since the known entries of a correlation matrix are within [-1,1], it is possible to

represent them as cosine values of a particular value.

Theorem 2.2.1 Suppose n > 4, let N ={1,2,...,n}, and 0 < 61,6,...,6, < .

Then the matrix

1 cos 0; cos 6,
cos 0y 1 cos 6, ?
cos 6, 1
C=
? . . c0s 6,1
| cos 0B, cos6,_; 1 i

Figure 2.1: A Ring Graph

has a positive semidefinite completion if and only if for each S C N with |S| odd,

Yo <(sl-1)z+Y 6. 2.1)

icS iS¢

Proof The theorem has been proved in [11] |

Definition The C* pattern

Let n/2 > k > 1, then the symmetric pattern
0={(1,k+1),(2,k+2),....,(n—k,n),(n—k+1,1),...,(n,k) } (2.2)

is called a C¥ pattern.

Definition Symmetric Toeplitz Matrix

A symmetric n X n matrix A = (a;;) is called a symmetric Toeplitz matrix if a; ; =
rji—; foralli,j=1,2,...,n. A partial Toeplitz matrix is a partial symmetric matrix
and if an entry in position (i, j) is specified then all entries in positions (i+1, j+1)

(mod n) are also specified and these entries are equal.

Cycle graphs which are generated by a CX pattern are a generalization of ring

graphs. We can see that the C¥ pattern with k = 1 is a ring (See Figure 2.1).

2.2.2 PSD Completion of CX Pattern Matrix

When does a partial matrix specified as a C¥ pattern have a correlation completion?

[1 cos 6, €086, _yi1 ? 1
1 cos 6, ?
cos 6, 1 cos 6,
C= cos 6, ? 1 (2.3)
€086, _j11 ? cos 6, i
i ? cos 6, cos 6, 1]

Theorem 2.2.2 Letn>4,1 <k <n/2,d = gcd(n,k) and t =n/d. Then we have:
1. Ift =3, then the partial PSD matrix (2.3) has a PSD completion.

2. Ift > 4, then the partial PSD matrix (2.3) has a PSD completion if and only
if for each S; C N; = {i,i+k,i+2k,...,i+ (t — 1)k} with |S;| odd,

Z 9]‘ < (’Si‘ — 1)71'—!— Z 9]'

JES; JEN;S;

(2.4)

i=1,2,...4d.

Proof The proof can be seen in [12] |

The theoretical treatments of the above structures discussed so far have all been
very elegant and directly applicable to solving CCOMAT in a deterministic way.
However, the fact that they are applicable to only the structures specified restricts
All these ap-

proaches have made inroads towards coming up with theoretically elegant solu-

their applicability to those that can arise in practical scenarios.

tions to special cases of CCOMAT. The general solution which can be applied to

11

all possible cases that can arise in a CCOMAT problem is apparently not treated in

a theoretical deterministic way so far.

2.3 More Generic Correlation Matrix Completion
Approaches

In this section, we present approaches that have been developed to solve the prob-
lem of CCOMAT in a general way, i.e., there are fewer assumptions on the structure
of unknown entries. Some approaches to solve similar problems to CCOMAT will
be examined here to see if they would provide insight to solving the CCOMAT

problem.

2.3.1 Generic PSD Completion & Determinant Maximization

An iterative method was proposed by Glunt et al. for solving the positive semi-
definite completion of a general matrix [13]. The authors proved that their itera-
tive algorithm does converge after a finite number of iterations and gives a unique
matrix that is positive definite which has the maximum possible value for the de-
terminant. Even though it is generically applicable, the problem of the correlation
matrix completion is not contained within that because the entries filling in the in-
complete entries would not necessarily stay within the absolute value of 1. Hence,
we concluded that this algorithm cannot be directly applied to solving the correla-

tion completion problem.

2.3.2 Nearest Correlation Matrix

A similar problem to CCOMAT is to find the nearest correlation matrix, and
it has been studied by Nicholas Higham [14]. The solution proposed is through
semidefinite programming where a variant of Newton’s method is used. The com-
pletion of the correlation matrix may use concepts from the nearest correlation ma-
trix solution but are not directly applicable as some of the entries have to remain

fixed in the former.

12

2.3.3 Correlation Matrix Completion using Gaussian Elimination

Kahl and Gunther presented an algorithm for correlation matrix completion
when the matrix is a multi-dimensional stochastic volatility model [15]. They
explain the specific structure of the incomplete correlation matrices that they are
working upon. They make use of properties of the resultant graph representation
of the incomplete matrix and use Gaussian elimination to arrive at a completion
having the maximum possible determinant. The correlation completion solution,
although very efficient, is only restricted to a certain type of incomplete correlation

matrix thereby limiting its application in diverse real world situations.

2.3.4 Completion of a Correlation Matrix of Limited Size

Budden et al. introduced a deterministic solution to complete correlation matri-
ces up to order 4 [16]. The algorithm for a correlation matrix of 4 variables assumes
that correlations of one of the variables with three others are given as known en-
tries and then deterministically predicts the possible ranges of each of the missing
correlation values one after the other. That is, it can give the range of the first un-
known correlation value and when that is fixed, it can give the range for the next
one, and so on to finally complete the matrix. They have made an improvement on
prior solutions that could work up to matrices of order 3. The authors showed that
their proposed algorithm runs much more efficiently than an optimization problem.
However, the authors state towards the end that extending it to any n X n for n > 4

would be very difficult.

2.3.5 Correlation Matrix Completion using Sequential Differential
Evolution

An approach to solve the correlation matrix completion problem using the opti-
mization method called Differential Evolution (DE) was proposed by Mishra [17].
The Differential Evolution procedure of global optimization was originally pro-
posed by Storn and Price [18]. As part of using the method, a random population

of elements (consisting of numbers between -1 and 1) that fit the holes in a given in-

13

complete correlation matrix are generated. Every element of the population would
hence correspond to a completion of the matrix. By calculating its eigenvalues, it
is possible to determine if it is indeed a desired completion. The author formulated
a heuristic measure to give the extent of negativity of the negative eigenvalues or
in other words, how far the matrix is from being positive-semidefinite. Using a
heuristic way of mixing, a new generation of elements is generated from the given
population. The child of an element would replace its parent only if it is stronger
than the parent, that is it has a smaller value for the function. The process is re-
peated for a number of iterations (which is specified by the user) until the desired
result is achieved.

I have chosen this method for developing a parallel algorithm for the following

reasons.

1. The method does not assume any kind of specific pattern of the unknown

entries in the matrix.
2. The method has inherent parallelization that can be exploited.

3. The author claims that the Differential Evolution method is perhaps the
fastest evolutionary computational procedure yielding the most accurate so-

lutions to continuous global optimization problems.

14

Chapter 3

The Algorithms

In fact, there was general agreement that minds can exist on
nonbiological substrates and that algorithms are of central
importance to the existence of minds. — Vernor Vinge

3.1 Introduction

This chapter discusses the algorithms involved in the approaches to solve the
correlation matrix completion problem. Firstly, Evolutionary Strategies (ES) which
are part of evolutionary approaches to solve optimization problems are introduced
and then an algorithm which makes use of this approach to solve the CCOMAT
completion problem is given. The later sections introduce the proposed approach
to solve CCOMAT completion in a parallelized way. Finally, an advanced parallel

algorithm is proposed.

3.2 Evolution Strategies and Differential Evolution

A global optimization method is a technique which can give best element(s)
among all possible alternative elements. Mathematically, it could be a problem to
find the point(s) at which the objective value/cost associated with the problem has

its optimal (minimal/maximal) value among all others in the known domain. The

15

minimization problem is a special case of the optimization problem where only the

minimal value is looked for. It may be formally defined as below:
Definition Minimization Problem

For an objective function f : X C RP — R where the feasible set X # ¢, the mini-

mization problem is to

Find x* € X such that f(x*) < f(x) Vx € X where f(x*) # —oo

Evolution Strategies are black-box optimization techniques which are developed
based upon nature-based processes of adaptation and evolution. Here by “black-
box” technique, we mean that no knowledge of the derivative of the function to be
optimized is used and that the evaluations of the objective function that needs to
be optimized at various points in the domain are sufficient for finding the optimal

value.

Differential Evolution is an Evolutionary Strategy method which is used for
global optimization over real continuous spaces. It was first proposed by Stone
and Price [19] to solve Chebyshev polynomial fitting. The method was designed
not only for being able to use non-differentiable nonlinear cost functions but also
having features such as ease of use (with minimal parameters), consistent conver-

gence properties, and parallelizability.
The basic algorithm is given in Algorithm 1.

The algorithm takes the three control parameters as below:
e NP - The total number of agents in the population
e CR - Cross-Over Ratio € [0, 1]

e F - Recombination Constant € [0, 2]

The algorithm also has a function called CostFunc(Agentx) which is a function
value associated with each agent and the final goal of the algorithm is to find

agent(s) whose CostFunc is almost equal to zero.

16

Algorithm 1 BasicDiffEvol

Require: NP, CR, F
1: Initialize NP agents of population
2: for each agent x; in the population do

3: pick three other distinct agents a;, b; and c¢;
4: Generate r; as Normal[0,1] {The mutation and recombination of the algo-
rithm takes place }
5. if r; <CR then
6: Vi = aH—F(bi—ci)
7. end if
8: if CostFunc(Y) < CostFunc(X) then
9: Xi ==Yy
10: end if
11: end for

steps:

A Differential Evolution algorithm then can be broken down to the following

1. Initialization: Step one of the algorithm performs this where all the agents

are initialized to certain random values. Each agent is a value randomly

picked out of the available pool of all values.

. Recombination and Mutation: Steps 3-7 show the recombination and mu-

tation. It starts by picking three other distinct agents randomly from the
population. This automatically puts the lower limit for NP as four. The val-
ues of CR and F come into use here to make a decision for mutation and
the way recombination is done. The child is produced by adding one of the
agents to the differential weight (b; — ¢;) multiplied by the Recombination

constant F.

. Selection: This phase is implemented in Steps 8-10. If the child is fitter

than its corresponding parent, it is retained by the algorithm. Otherwise, the

parent will prevail in the population of the next generation.

The loop defined between Steps 2 and 11 takes care of applying the steps for

all the agents in the population. In a typical practical scenario, these steps may be

17

repeated for a predefined number of iterations, as will be seen in the next section.

In the sections below, the acronym DE is used to refer to Differential Evolution.
3.3 The Sequential Algorithm for CCOMAT Problem

A DE algorithm that can solve the correlation matrix completion problem is
given here. The method works for any general real partial symmetric matrix, that

is. without assuming any particular pattern of unknown entries within the matrix.

The inputs of the algorithm are

o the partial matrix that needs to be completed

o MAX_ITER which is the maximum number of iterations the algorithm will

go through

e EPS ~ 0 used as a cutoff to terminate the algorithm if a sufficiently close

solution is achieved

The algorithm is an application of the DE algorithm in a more extended form in
order to solve the correlation matrix completion problem. A detailed analysis of

the steps of Algorithm 2 are given below.

e Step 1 is the same as the one in BasicDiffEvol where the potential candidates

are filled in.

e The loop enclosed within steps 2 and 17 takes care of the maximum number

of iterations that the algorithm can take.

e In Steps 3-5, values for ReachFunc() are calculated for each of the available

agents in the population at the moment, and are stored in a buffer array FV.
e In Step 6, the minimum among the FV arrays is chosen as FV,;,.

e In Steps 7-9, an early termination criteria is set where if the F'V,,;, is suffi-
ciently close to zero, the corresponding mutant may be taken as a solution

and the loop is terminated.

18

The loop defined within Steps 10 and 16 is the corresponding loop between

Steps 2 and 11 in BasicDiffEvol wherein each agent is separately processed.

In Step 11, IR[1..3] are generated which is analogous to selecting three dis-

tinct agents a;, b;, ¢; different from x;.

Step 12 encompasses the recombination and mutation steps in a go. The

random number generation and normal distribution are all part of it.

In Steps 13-15, the selection of tougher agents is done. At the end of the

step, better agents are selected.

Algorithm 2 Complete Correlation Matrix - Sequential

Require: Partial Matrix M, MAX_ITER, EPS, CR, F
1: Generate N vectors of size m consisting of real numbers in [—1, 1]
2: for MAX_ITER iterations do

33 fori=1toN do

4: FV[i] = ReachFunc(P,;)

5: end for

6: FVpin = Min(FV[1...N))

7. if FV,,;, < EPS then

8: break

9: end if
10. fori=1toN do
11: Generate distinct /R[0],/R[1]&IR|2] where each of them # i
12: Child; = Evolution_Strategy (P, Pig(o) Pir(1]> Pir[2); CR, F)
13: if ReachFunc(Child;) < ReachFunc(F;) then

14: Replace P; with Child;
15: end if

16: end for

17: end for

The algorithm starts with a population of N elements where each element is a

vector of real numbers which is a potentially fillable set of entries into the holes of

the partial matrix. It uses a random sample of umpteen number of starting elements.

Then the idea is to modify them and create children which are at least as good

19

as they are so that one of the elements would reach being the target. Once the

algorithm reaches the target, it terminates.

This algorithm has the function ReachFunc(Matrix) which calculates a numer-
ical real value for any given completed matrix. Its value indicates the degree of
how far the matrix is from being positive semidefinite. For an already PSD matrix,
its value will be zero. At the end of the execution of the algorithm, which is de-
termined by the number of iterations, the program hopefully gives us at least one
element among N which is desirable.

Pseudocode for computing the function ReachFunc is given in Algorithm 3.

Algorithm 3 ReachFunc(Matrix A)

Require: A square symmetric real matrix A

1I: F<0

2: sumW «—0

3: prodW «— 1
4: eig[l..morder] — Eigen_values(A)
5: for i =1 to morder do
6
7
8
9

if eig[i] < 0 then

sumW «— sumW + |eigli]|

F «— F + eigli] x eig[i]

prodW «— prodW x eigli]
10: end if
11: end for
12: if ((prodW < 0)||(prodW > 1)) then
13: F « (F + sumW + prodW % prodW)?
14: end if
15: return F

The algorithm takes a square matrix as its input and calculates its eigenvalues;

and depending upon them, it returns a floating point value F.
o In Steps 1-3, three variables F, sumW and prodW are initialized.
e In Step 4, eigenvalues are calculated by a user provided function.

o In Steps 5-11, sumW, prodW and F are calculated as the sum, product and

sum of squares respectively of all the negative eigenvalues of matrix A.

20

e In Steps 12-14, depending upon the value of prodW, the value of F is ad-
justed.

e In Step 15, F is returned.

The way random mutation of the elements is done and the way the cost function
is defined are such that there is a gravity towards having elements that gives a cost
function of zero. In other words, these elements give a completion which is positive

semidefinite.

21

3.4 Basic Parallel Approach for Solving the CCOMAT
Problem

In this section, a parallelized version of Algorithm 3 is presented. The paral-
lelization is done by distributing the computation of each of the members of the
population in a separate thread of execution. The computationally intensive part of
the sequential algorithm is the multiple executions of ReachFunc(). The parallel
version makes sure that each parallel thread of execution has calls to ReachF unc
about the same number of times. This is the way in which the computation is
fairly divided among all the processes running in parallel. The pseudocode of the
algorithm is as given in Algorithm 4.

The algorithm takes the following inputs:

e Partial matrix M with m unknown entries

The size of the population n
e Maximum number of iterations MAX _ITER

e EPS~O0

The algorithm is an application of the DE algorithm in a more extended form in
order to solve the correlation matrix problem. A detailed analysis of steps of the

algorithm is given below.

e Step 1 initiates a set of n processes where each process takes responsibility

for one agent in the population.

e Step 2 happens simultaneously in all processes where an agent is created

with a random value in [-1,1].

e The loop enclosed within steps 3 and 25 takes care of the maximum number

of iterations the algorithm will execute.

e In Step 4, values for ReachFunc() are calculated for each of the available

agents in the population simultaneously and are stored in FV array.

22

Algorithm 4 Complete Correlation Matrix - Parallel

Require: Partial Matrix M, n, MAX_ITER, EPS, F, CR, MAX_AGE
1: Start n processes which is the same as the size of population :
2: In Parallel Generate a random vector of size m with each entry in [—1, 1]
3: for MAX_ITER iterations do

4: In Parallel Calculate for each process i, FV[i]| = ReachFunc(F;)
5: Broadcast FV[i] to every other process
6: Atroot, calculate F'V,,, — Min(FV[1...N])
7. if FV,,;, then
8: Break the execution of all parallel processes
9: end if
10: In Parallel
11: for each Process i do
12: Generate distinct /R[0],/R[1] and IR[2] each of which € IntO,n—1 # i
13: Child; = Evolutionary Strategy (F,CR, P;, Pigjo), Pir[1]> Pir[2))
14: if ReachF unc(Child;) < ReachF unc(P;) then
15: Replace P; with Child;
16: Age(P) <0
17: else
18: Age(P) «— Age(P)+1
19: if Age(P;) > MAX _AGE then
20: Generate a random agent and replace P; with it
21: end if
22: end if

23: end for
24: Broadcast all of the P;’s to all the processes
25: end for

o All the values of FV array are broadcasted to all the processes in Step 5.

e Step 6 happens only at the root process where the minimum among the FV

arrays is calculated as F'V,;,.

e In Steps 7-9, an early termination criteria is set where if the F'V,,;, is suffi-
ciently close to zero, the corresponding agent would be taken as a solution

and the loop is terminated.

e The loop defined within Steps 11 and 23 is the corresponding loop between
Steps 2 and 11 in BasicDiffEvol wherein each agent is separately processed.

23

e Step 10 specifies that all the indented steps below from Step 11 to 23 happen

simultaneously in parallel in all the processes.

e In Step 14, IR[1..3] are generated which is selecting three distinct agents
a;, b;, c; different from x; from the population.

e Step 12 encompasses the recombination and mutation steps in a go. The

random number generation and normal distribution are all part of it

e In Steps 14-22, the selection of tougher agents is done. At the end of the
step, better agents among parents and their respective children are selected.

e In Step 16, the values of P;’s are broadcasted to all the processes present in

the population.

The algorithm has a potential bottleneck of broadcasting the values after every
iteration which could cause a lot of communication cost. The suitability of this
algorithm for practically reducing the time taken to solve the problem hence be-
comes conspicuous when the nodes are not connected with a very high speed and

reliable network.

Another problem that could arise in this algorithm is the high number of pro-
cesses that may be spawned while running it. Typically the operating system re-

stricts the maximum number of processes it allows a user to spawn.

24

3.5

Improved Parallel DE Approach for Solving the
CCOMAT Problem

Based on the basic parallel algorithm presented in the previous section, we pro-

pose an improved version of the parallel DE algorithm with features that can make

it potentially better. The feature we have added is to pack agents among pro-

cesses rather than have a process for every single agent. This could optimize the

algorithm because interprocess communication is in general way more expensive

than intraprocess communication. This could lead to communication happening in

somewhat bigger bulk but it lessens the number of such communications.
In Algorithm 5:

Step 1 initiates a set of NUM _CORE processes where each process has one
full core to execute upon. Therefore, NUM _CORE should be less than the

total number of physical cores available throughout the cluster.

Step 2 happens simultaneously in all processes where each agent is assigned

a random value in the available domain.

The loop enclosed within Steps 4 and 28 takes care of the maximum number

of iterations the algorithm will execute.

In Step 5, values for ReachFunc() are calculated for each of the available

agents in the population simultaneously and are stored in FV[].
In Step 6, all the values of FV array are broadcasted to all the processes.

Step 7 happens only at the root process where the minimum among the FV

arrays is calculated as F'V,.

In Steps 8-10, an early termination criteria is set where if the FV,,;;, is suffi-
ciently close to zero, the corresponding agent would be taken as a solution

and all the processes are terminated.

The loop defined within Steps 11 and 27 is the corresponding loop between

Steps 2 and 11 in BasicDiffEvol where each agent is separately processed.

25

Algorithm 5 Complete Correlation Matrix - Parallel
Require: M, NUM_PROCS, MAX_ITER, EPS, F, CR, MAX_AGE
1: Start NUM _PROCS processes
2: In Parallel for each process i, Generate N4 /Np number of random vector of
size m with each entry in [—1, 1]

3: In Parallel for each process i, Calculate the range of agents as range(i)
4: for MAX _ITER iterations do
5: In Parallel for each process i, Calculate FV[i| = ReachF unc(P;)
6: Broadcast FV[i] to every other process
7. Atroot: calculate FV,,;, < Min(FV|[l...N])
8: if FV,,;, < EPS then
9: Break the execution of all parallel processes
10: end if
11: In Parallel
12: for each process i do
13: for j € range(i) do
14: Generate distinct /R[0],/R[1] and IR[2] each of which # i
15: Child; = Evolutionary_Strategy(F, CR,PJ‘,PIR[O] 7P1R[1] ,P[Rm)
16: if ReachFunc(Child;) < ReachFunc(Pj) then
17: Replace P; with Child,;
18: Age(P,) —0
19: else
20: Age(P,) «— Age(P)+1
21: if Age(P,) > MAX _AGE then
22: Generate a random agent and replace P; with it
23: end if
24: end if
25: end for
26: Broadcast all of the P;’s to all the processes
27: end for
28: end for

26

Steps 11 and 12 specify that all the indented Steps below from Step 13 to 25
happen in parallel in all the processes.

In Step 14, IR[1..3] are generated which is analogous to selecting three dis-
tinct agents a;, b;, ¢; different from x;.

Step 15 encompasses the recombination and mutation Steps in a go. The

random number generation and normal distribution are all part of it.

In Steps 16-24, the selection of tougher agents is done. An agent may survive
if it is at least as good as its child. Otherwise, the child will replace it. Also,
we implemented aging in these Steps where an agent will be replaced by
a freshly generated one if it does not produce a capable child for as many
iterations as MAX _ITER.

In Step 26, the values of the P;’s are broadcasted to all the processes present

in the population.

27

Chapter 4

Experimental Results

It doesn’t matter how beautiful your theory is, it doesn’t matter how
smart you are. If it doesn’t agree with experiment, it’s wrong.
— Richard Feynman

4.1 Introduction

In this chapter, we discuss the experimental verification of our proposed algo-
rithms. In Sections 4.2.1 and 4.2.2, we give a description of the entire setup for
conducting our experiments. That includes the physical cluster we used, and the
different libraries/tools primarily for Scientific Computing. In Sections 4.2.3 and
4.2.4, we explain how we generated our test cases and give an example of a typical
test case that we used with an incomplete matrix. Then, as a possible solution we
fill up the unknown entries to make it a correlation matrix. In further sections, we
describe the results for the test cases and explain our observations and give our
analysis of the findings.

28

4.2 The Setup
4.2.1 The Physical Cluster

The cluster over which experiments were carried out consisted of a set of nodes
from the Cyclops high performance distributed memory system [20]. It consists of
an IBM iDataPlex dx360 M2 system running Ubuntu Server 10.04. Each node on
the cluster consists of two quad-core Xeon x5550 2.67 GHz Intel processors which
effectively makes 8 cores and has access to 12 GB of memory. All the nodes are

connected to a 10 Gb dual-port Ethernet high-speed network.

4.2.2 The Libraries/Tools

The algorithms are implemented in the C programming language assuming a dis-
tributed memory model where each node has its own memory space and the nodes
communicate with each other through passing messages via the Message Passing
Interface (MPI) model. MPI is a widely used standard for implementing portable
parallel distributed applications [21]. Throughout the algorithm, for generating
newer agents, Mersenne Twister random number generation is used. For evalua-
tion of eigenvalues of matrices which are used in the evaluation of ReachFunc(),
eigen-solvers from SLEPc have been used. SLEPc works over data structures avail-
able in PETSc which is a suite of data structures such as matrices that facilitate the
eigenvalue computations. Brief descriptions of these can be seen in the paragraphs

below.

Mersenne Twister random number generator has been used to generate the
scalar values in the agents generated. Every agent is a vector of scalar values
which are as many as the number of unknown entries in the initial partial matrix.
Mersenne Twister generates random integers with a period of (2!9%37 — 1) [22].
We normalize every integer thus generated to a unique corresponding real value

between -1 and +1 and then used it as a scalar value in an agent.

29

Message Passing Interface (MPI) is a specification for an Application Pro-
gramming Interface that has functions facilitating several processes of a program
which can run independently on multiple computers and can communicate with
each other by passing messages [23]. When the different MPI processes are ex-
ecuted, they all have separate process spaces and run completely independent of
each other except during communications. The user can instantiate as many pro-
cesses as she wants and start all of them simultaneously and independently. An
MPI process has to run within a communicator and different processes within a
communicator are recognized with their respective IDs. The root process will have
the ID ’0’. The rest of the processes will be assigned IDs from 1 to the value of
(total number of processes - 1). We have used MPICH2 which is a widely used

implementation of the Message Passing Interface (MPI).

PETSc stands for Portable Extensible Toolkit for Scientific Computation and
is a suite of data structures and routines that can be used for coding large-scale
scientific applications running on parallel computers [24]. It provides solutions
by modeling problems as partial differential equations. The data structures it pro-
vides includes parallel matrices, i.e. matrices that may be spread across different
nodes. The parallel processes using PETSc communicate with each other using

MPI routines. Details of usage can be found in the user reference manual [25].

SLEPec stands for Scalable Library for Eigenvalue Problem Computations [26].
It is a package developed for solving large sparse eigenvalue problems on parallel
computers and particularly targeted to solving matrix problems having low ranks.
SLEPc works on the top of PETSc and hence it is necessary to install PETSc before
installing SLEPc. In a way it is an extension of PETSc with functionality to do

eigenvalue computations [27].

4.2.3 Test Cases

The generation of test cases is done by extracting historical time series data

from stock market data for some of the known stock indices. We construct a com-

30

pleted correlation matrix by calculating the correlation between every pair of in-
dices. Then we mask some of the values in a random manner and take them as
unknowns. We have masked varied numbers of entries in increments of 10% from

10% of all the non-diagonal entries up to 90% of them.

4.2.4 An Example with Implementation Details

Here given below is a partial matrix M which is one of the typical inputs the

algorithm takes. The symbol 7?7 is used to denote an unknown value.

[1.000 0.454 ? ? ? ? ? ?
0.455 1.000 0.278 ? ? ? 0.728 0.552
? 0.278 1.000 ? 0.634 ? 0.553 0.270
M= ? ? ? 1.000 ? 0.117 0.627 ?
? ? 0.634 ? 1.000 ? 0.259 0.004
? ? ? 0.117 ? 1.000 0.612 0.711
? 0.729 0.553 0.627 0.259 0.612 1.000 0.534
| ? 0.552 0.269 ? 0.004 0.710 0.534 1.000 |

Since the matrix is a symmetric one, we can restrict our attention to one half,
i.e. the upper triangular matrix or the lower triangular one. The final values for
unknown entries in either of the halves will be the same due to symmetry. In the
given example we see 14 unknown entries in the upper triangle. This fixes the
vector size of an agent to 14. Every agent will be a vector of 14 scalars in the
range of [-1,1] corresponding to each unknown location of M. Our algorithm will
generate as many agents as specified. At each step, it applies the DE strategy and
recombination step to improve agents, i.e., obtain agents with as small value of
ReachFunc() as possible. Once it finds an agent/a set of agents it would terminate
and using those agent(s), a completed matrix such as A may be formed. We have
set the maximum number of iterations as 100,000 although in most typical cases

that converge, the convergence happens within few hundred iterations.

31

In the completed matrix A, the new entries have been highlighted in bold so
that they are conspicuous. This is one of the possible completions of the partial
matrix M given that we want to preserve the positive semidefinite property intact.
The number of such possible completions become limited when we induce more

properties to be preserved.

[1.000 0.454 0.531 0.723 0.404 0475 0.583 0.489
0.455 1.000 0.278 0.537 0315 0459 0.729 0.552
0.531 0.278 1.000 0.272 0.634 0.689 0.553 0.270
0.723 0.537 0.272 1.000 0451 0.117 0.627 0.383
0.404 0.315 0.634 0.451 1.000 0.322 0.259 0.004
0.475 0459 0689 0.117 0.322 1.000 0.612 0.711
0.583 0.729 0.553 0.627 0.259 0.612 1.000 0.534

| 0.489 0.552 0.269 0.383 0.004 0.711 0.534 1.000

In the current implementation of the parallel algorithms, the inputs/outputs are
completely handled by the process with rank zero. The root process will input the
partial matrix from a file and broadcasts it to remaining processes in the communi-

cator.

4.3 The Experimental Parameters

The basic DE parameters of NP, F and CR used in the parallel algorithms were
mostly influenced by the original sequential algorithm. NP is taken depending
upon the vector size of agents which in our case is the number of holes in the
original partial matrix. We have tested for values of NP that are multiples of the
number of holes. For example, in the tables below, 5X refers to the fact that the
population size NP is 5 times the corresponding size of number of holes. In the
case of 8 x 8 matrices, the number of non-diagonal entries will be 56. Considering
only the upper triangular matrix, it will be 28. 10% of it is approximately 3. So,

when the number of holes is 3 the size of NP corresponding to 5X is 15 and when

32

corresponding to 10X will be 30 and so on. The value of CR has been set to 0.9
and F has been set to 1. The EPS value of 107! is chosen for testing proximity to
zero. As explained in the previous section, we have used the test cases where the
number of holes varies between 10% of all the non-diagonal entries to 90% of all
non-diagonal entries so that we get to study the performance of our algorithms on
all of them.

4.4 Results for the Algorithms

We have taken 8x8 matrices as our test cases and carried out a set of experiments

on our cluster. We divide the section into following subsections.
e Evaluation of Basic Parallel DE Algorithm

e Evaluation of Improved Parallel DE Algorithm

4.4.1 Evaluation of Basic Parallel DE Algorithm

We have used the sequential algorithm of SK Mishra as our benchmark to eval-
uate our basic parallel algorithm. We have run the sequential FORTRAN program
given by SKMishra [17] on a single node of the cluster. Effectively, the sequential
program runs over a single core of a CPU as it is a single thread of execution.

We have deployed our implementation of the Basic Parallel algorithm on the
cluster and run it on 4 nodes and 16 nodes of the cluster and measured the execution

times.

We report our initial set of results in Table 4.1. We have run the programs for 10
different random test cases and averaged the execution times of all converged cases.
The execution time reported is in the number of seconds taken. Rows represent the
number of holes in the initial partial matrix as a percentage with respect to the total
number of non-diagonal entries. Columns are used for giving the hardware that is

used for execution and the number of agents (per hole) in the population.

33

Table 4.1: The average execution time (in seconds) of 8 X 8 matrix completions

Holes % 5X 10X 15X
Single 4 16 | Single 4 16 | Single 4 16

10 3.116 0.053 0.051 | 6.197 0.057 0.05 | 9.337 0.0676 0.046
20 6.264 0217 0.213 | 12405 0.249 0.15 | 18.734 0.5134 0.157
30 8.184 0249 0.178 | 16.329 0.756 0.225 | 24.344 1.1051 0.229
40 11.075 0.524* 0.308* | 22414 1.721 0.375 | 33.622 23159 0.425
50 14201 34.303° 12.844°| 28.293 2.384 0.503 | 42.551 3.6266 0.661
60 16.995 2.044° 0.632° | 33.933 5.69 1.098 | 51.007 8.4510 1.154
70 20.203 1.170° 0.336° | 40.226 3.657 1.553 | 60.315 8.5990 6.241
80 21.968 68.997¢ 15.3229| 43.904 3.487 0.605 | 65.990 8.5355 2.123
90 24771 0478 0.22 | 47.631 1982 0368 | 71.359 4.5480 1.276

2 An underestimate average time as two out of the ten cases did not converge.

b The bulky average time is due to an outlier and is still an underestimate as one of the ten
cases did not converge.

¢ An underestimate average time as one out of the ten cases did not converge.

4 The bulky average time is due to presence of one outlier.

In order to explain the average behavior more robustly, we present the median
results along with the average results of the algorithm for execution on 16 nodes in
Table 4.2.

We have plotted the average execution times when the algorithm is run over 4
nodes in Figure 4.1. We have removed some outliers to make a more elegant
looking graph which is Figure 4.2. Correspondingly, we have plotted the average
execution times over 16 nodes in Figure 4.4 and Figure 4.5.

Discussion

We make the following observations:

e The time of execution of the sequential program increases steadily with an

increase in the number of agents/holes as seen in Figure 4.3.

e The parallel execution time is minimal when the number of holes is minimal

34

Average
Convergence
Time (in sec)

Number of Holes / Total Non-diagonal Entries(in %)

Figure 4.1: Average Execution Times for Basic DE Algorithm Run over 4
Nodes

and it increases with an increase in the number of holes up to certain point

and then starts decreasing.

o The average times of execution of certain 5X cases is extremely high due to

the presence of certain outliers.

35

Average
convergence
time (in sec)

—&
—&—10K
—B-18

Number of Holes / Total Non-diagonal Entries(in %)

Figure 4.2: Average Execution Times for Basic DE Algorithm over 4 Nodes
without Outliers

We can explain the increase in sequential algorithm execution times by the fact
that the execution time there depends almost exclusively on the number of fitness
tests, i.e., the number of function calls to ReachFunc(). Due to differences in
implementation details such as the way random numbers are generated, the running

time of the sequential program has slightly different characteristics to that of the

36

Average
Convergence
Time(in sec)

—&
—&—10K
—B-18

Total Number of Holes/Total Non-diagonal Entries(in sec)

Figure 4.3: Execution Times for Sequential FORTRAN Program

corresponding parallel implementation. That’s one of the reasons we also do not
see outlier data. When there are more agents in the population, there are more
fitness-tests for each iteration and this increases the execution time. When the
number of holes increases, we have more agents correspondingly (as tabulated)

and this results in a greater number of fitness tests.

37

Table 4.2: The average execution time(in seconds) of 8 x 8 ma-
trix completions

Holes % 5X 10X 15X
Avg Med | Avg Med | Avg Med

10 0.051 0.050 | 0.05 0.076 | 0.046 0.030
20 0.213 0.136 | 0.15 0.118 | 0.157 0.304
30 0.178 0.120 | 0.225 0.174 | 0.229 0.291
40 0.308% 0.307%| 0.375 0.272 | 0425 0.455
50 12.844° 0.166| 0.503 0.282 | 0.661 0.318
60 0.632° 0.561°| 1.098 0.619 | 1.154 1.168
70 0.336° 0.120°| 1.553 0.619 | 6.241 2.161
80 15.322 0211 | 0.605 0.400 | 2.123 1.941
90 022 0.053 | 0.368 0.102 | 1.276 0.919

2 An underestimate average time as two out of the ten cases
did not converge.

b An underestimate average time as one out of the ten cases
did not converge.

In the case of parallel execution, the execution times increase steadily up to a
certain point which can be explained in the same way as the sequential one. But
we see that it decreases beyond a point. This is due to the fact that the execution
time depends so much upon the communication that happens between processes
after every iteration. The number of iterations needed to converge decreases when
the number of unknowns is very high. This eventually decreases the execution
time, although we notice that it is still higher than the execution time when we had

very few holes and few nodes to work with.

In Table 4.1, we have footmarked some cases where we have seen bulky exe-
cution times due to the presence of an outlier. In the case of 50% of non-diagonal
entries being holes, the times of execution when 4 nodes are used are 0.127878,
113.945515, 0.171923, 0.055251, 0.593854, 0.079021, 0.120626, 0.279233, 0.220109
and a case of 399.700662 seconds which did not converge. We see that among the

nine convergent cases, one of them is very high. The corresponding number of

38

Average
Number of
Iterations for
Convergence

—&
—&—10K
—B-18

Total Number of Holes/Total Non-diagonal Entries (in sec)

Figure 4.4: Average Number of Iterations Needed for Basic DE Algorithm
over 16 Nodes without Outliers

iterations for convergence is reported as 27848 which is pretty high compared to
the rest of the converged cases whose highest is 139. This outlying condition can
be best attributed to the randomness of the algorithm. Also we note that the same
problem occurs when we use 10X the number of nodes, and here the problem con-

verges in 131 iterations. This clearly shows that it takes a long while before we

39

—&
—&—10K
—B-18

Average
Convergence

Time (in sec)

Number of Holes/Total Non-diagonal Entries (in %)

Figure 4.5: Average Number of Iterations Needed for Basic DE Algorithm

over 16 Nodes without Outliers
get a desired agent in the case of lesser nodes. This could be attributed to lesser
choices of recombination or lesser randomness in the initial population that makes

it difficult to reach the goal state in certain problems.

40

Figure 4.1 clearly demonstrates that barring the outliers, algorithms converge
quickly when they use a smaller number of agents such as 5x. This shows that
even though on average the running time of 5x is small, it can be very large in

some cases depending upon the particular problem at hand.

4.4.2 Evaluation of Improved Parallel DE Algorithm

In this section, we present the results we have obtained after running the Im-
proved Parallel DE algorithm which is presented in the previous chapter as Al-
gorithm 5. We have used the same 10 cases which we used for testing the Basic
DE algorithm and recorded the total number of iterations needed and the execu-
tion time taken for convergence. In Table 4.3 we tabulate the average number of
iterations required for convergence for the Basic Parallel DE algorithm and the Im-
proved Parallel DE algorithm. We have plotted the average iterations required for

convergence for Improved DE Algorithm in Figure 4.6.

Table 4.3: Comparisons of Average Number of Iterations between Basic
Parallel DE Algorithm and Improved Parallel DE Algorithm

Holes % 5x 10x 15x
Basic Improved | Basic Improved | Basic Improved
10 12.1 12.1 9.5 6.9 5.7 4.8
20 56.1 56.1 34.3 32.1 27.6 25.9
30 48.0 48.0 44 .4 44 .4 36.9 38.4
40 77.38% 77.375* | 64.2 64.2 40.6 41.2
50 3129.9> 3129.9* | 61.4 50.6 41.5 49.3
60 128.7° 128.7° | 102.5 49.3 60.2 49.3
70 58.11° 66.0° 47.3 43.5 44.5 43.5
80 2749.7 2749.6 36.4 37.6 33.7 332
90 14.3 15.7 15.5 13.8 14.0 10.6

2 An underestimate average time as two out of the ten cases did not con-

verge.

b An underestimate average time as one out of the ten cases did not con-

verge.

41

We now tabulate the comparisons of average execution times of Basic and Im-
proved DE algorithms in Table 4.4. We have plotted the comparison of execution
times for each of the algorithms in each case of the number of agents separately.
The plots in Figure 4.7, Figure 4.8 and Figure 4.9 display the comparisons of the

times for the cases of 5x, 10x and 15x respectively.

Table 4.4: Average Execution Time for Different Algorithms

Holes % 5x 10x 15x
Basic Improved | Basic Improved | Basic Improved

10 0.051 0.047 0.05 0.042 0.046 0.042
20 0.213 0.175 0.15 0.148 0.157 0.187
30 0.178 0.171 0.225 0.227 0.229 0.283
40 0.308* 0.295* | 0.375 0.377 0.425 0.476
50 12.844% 12,70 | 0.503 0.335 0.661 0.502
60 0.632° 0.622° | 1.098 0.615 1.154 0.580
70 0.336° 0.358" | 1.553 0.522 6.241 0.518
80 15.322 15.656 | 0.605 0.454 2.123 0.621

90 0.22 0.119 0.368 0.183 1.276 0.205

2 An underestimate average time as two out of the ten cases did not con-
verge.

b

An underestimate average time as one out of the ten cases did not con-
verge.

Some of the observations include the following:

e The average number of iterations needed for convergence for Improved Par-

allel DE is less than or equal to that required for Basic Parallel DE algorithm.

e The graph of average number of iterations required for convergence is similar
to a normal graph with the average around 50-60% of the total number of

holes.

e The average time of execution has improved from Basic Parallel DE as com-

pared to Improved Parallel DE.

o The outliers are very moderate for the Improved Parallel DE algorithm.

42

Discussion

The execution time of the parallel algorithm will involve the computation cost
at each of the nodes and the communication cost which is the cost of sending and
receiving data elements through messages. We can see that the communication
cost of parallel execution time is directly related to the number of iterations. This

is because in every iteration, we broadcast certain data within processes.

In Table 4.3, we see how the number of iterations required for convergence
varies with the number of holes for different cases. We observe that when the
number of holes is neither high nor low, the iterations are at a maximum. Iterations
are at a minimum whenever the number of holes is too high or too low. This clearly
shows that the parallel time is to a great extent affected by the number of iterations
as this will result in the increase in the communication cost. One can see from the
plotted data in Figure 4.4 that the number of iterations is at a maximum in the
middle when the number of known and unknown entries in the matrix is nearly
equal. We have removed a couple of outliers where the number of iterations for 5X

is very high so that we have an elegant look at the general trend.

43

Average o=

Number of
Iterations for
Convergence

Total Number of Holes / Total Non-diagonal Entries (in %)

Figure 4.6: Number of Iterations Needed for Improved Algorithm over 16
Nodes

44

16 #
i
i/\\
iy
no
[
= [/ i
A
il !
/H \\\
i
" i Y
/ i [
12 r I { -
;oY i b
‘o i i
it i '
b § |
gL I 1
/ 1 i |
] 1 i i
10— ' i 1]
¢ i I \
| i i |
! 4 i
i \ i
Average ! \ !
Convergence gL i \ !
Time (in sec) / 4 j
{ ' ///
{ ! i
{ \ I
3 \ i
= / \]
[
i \ I}
! \ I
! 4]
i \ |
f A ¥
! y }
4= 1 4 !
{ \]
! 4 |
! ' !
i \ i
! \ i
! 4 i
2 ! ! !
L / \ ,
! \ |
! \ !
{ \ J
! v !
/ B
T ittt & S 1 | | { |
1] i} an 40 L) 60 7 &
Number of Holes / Total Non-diagonal Entries (in %)

Figure 4.7: Average Execution Times of Improved and Basic Algorithms

over 16 Nodes Using 5x Agents

45

I
.
A
/SN
s/ \
/ 3
s/ 4
14— / y —
/ A
/ 1
7 A
/ Y
7 A
/ Y
L / , _
12 y \
I 4
/ \
7 \
J \
/ \
/ \
= / \ —
/ 4
; !
/ Y
/ !
/ Y
/
Average) Y
08— ; \ —
Convergence ; \
Time(in sec) J |
/ \
/ \
/ B \
061 // P ‘a‘\i\ b —
s -
/ s T
/ 7 Tl
,/J // T
L // ‘-—-__‘_ﬂ\
Pt v
04 - // a
1= e
Pl T #
- = |
P
.
-
P
-
.
= .
02~ =TT -
"D'”'
55,4“
| | \ | \ | |
0 n an 40 50 60 70 a0

Number of Holes/Total Non-diagonal Entries(in %)

Figure 4.8: Average Execution Times of Improved and Basic Algorithms
over 16 Nodes Using 10x Agents

46

Basic1s
—B —Improved5

Average

Convergence
Time(in sec) .

!

/

/

/

!

40
Number of Holes/Total Non-diagonal Entries(in %)

with 16 Nodes Using 15x Agents

47

Figure 4.9: Average Execution Times of Improved and Basic Algorithms

Chapter 5

Conclusions

A conclusion is the place where you got tired of thinking. — Arthur
Bloch

5.1 Introduction

In this chapter, we discuss our conclusions and future work that can be done.
5.2 Conclusions

We have verified that parallelization benefits the method of Differential Evolu-
tion in solving CCOMAT problems. In the algorithms we have seen, fitness test
function ReachFunc() is the most computationally intensive one and in our paral-
lel implementations we could distribute it evenly to different cores in the cluster.
We could deduce that communication cost dominates while executing the parallel
algorithm due to the increase in the execution time and the increase in the num-
ber of iterations. When the method converges in a lesser number of iterations, the
running time is significantly reduced due to a decrease in communication cost. We
observed that the number of agents used for increases, the corresponding number
of iterations that may be needed for convergence decreases and hence total cost of

the algorithm decreases since the communication cost is the one dominating factor.

48

In summary, we would recommend the Parallel DE approach for solving CCO-
MAT problems when the cluster of computers available is connected with a very

high speed network so that the communication cost is kept to a minimum.

5.3 Future Work

We would hope to see a better heuristic that could reduce the number of iterations
as this would have a reduction in communication cost which is a major component

of the total execution time of the parallel algorithm.

In Chapter 2, we have seen some specific theoretical structures which would
easily be solved for a correlation completion. We could have an add-on to our
algorithm to pre-check if a given partial matrix pertains to a known theoretical
structure that has already been studied so that handling those cases is straight-
forward. The evaluation of the theoretical formula may be done in parallel with

greater efficiency.

An important problem could be completing a correlation matrix with a certain
definite property such as lowest rank or maximum determinant, etc. If someone
could come up with a variation in the Evolutionary Strategy step of DE and the way
that ReachFunc() is evaluated, one can directly incorporate such a development
into our algorithms to work using parallel computers. We look forward for such a

contribution from the Heuristic Algorithmic/Scientific Computing community.

One could extend the algorithm by including an island migration strategy as de-
scribed by Tasoulis et al. while describing their proposed parallel Differential Evo-
lution approach [28]. Every island has an independent population which evolves
separately and migration of elements takes place periodically through a ring or a
more sophisticated topology. This could give improved results in terms of conver-

gence.

49

Bibliography

[1]

(2]

(3]

[5]

[6]

[7]

Anthony Austin and Jose Garcia and Stephen Jong and Gilberto Hernandez.
Matrix Completion: An Overview. URL
http://cnx.org/content/m33136/latest/. — pages 1

Hannes Werthner, Hans Robert Hansen, and Franceso Ricci. Recommender
systems. Hawaii International Conference on System Sciences, 0:167, 2007.
ISSN 1530-1605.
doi:http://doi.ieeecomputersociety.org/10.1109/HICSS.2007.459. — pages
2

Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix Factorization
Techniques for Recommender Systems. Computer, 42(8):30-37, August
2009. ISSN 0018-9162. doi:10.1109/MC.2009.263. URL
http://dx.doi.org/10.1109/MC.2009.263. — pages 3

Raghunandan H. Keshavan and Sewoong Oh and Andrea Montanari. Matrix
Completion from a Few Entries. CoRR, abs/0901.3150, 2009. — pages 3

Y Koren. The BellKor Solution to the NetFlix Grand Prize. URL
http://www.netflixprize.com/assets/GrandPrize2009_BPC_BellKor.pdf. —
pages |3

A Toscher and M Jahrer and R Bell. The BigChaos Solution to the Netflix
Grand Prize. URL
http://www.netflixprize.com/assets/GrandPrize2009_BPC_BigChaos.pdf. —
pages |3

Martin Piotte and Martin Chabbert. The Pragmatic Theory solution to the
Netflix Grand Prize. URL http:
/lwww.netflixprize.com/assets/GrandPrize2009_BPC_PragmaticTheory.pdf.
— pages 3

50

http://cnx.org/content/m33136/latest/
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/HICSS.2007.459
http://dx.doi.org/10.1109/MC.2009.263
http://dx.doi.org/10.1109/MC.2009.263
http://www.netflixprize.com/assets/GrandPrize2009_BPC_BellKor.pdf
http://www.netflixprize.com/assets/GrandPrize2009_BPC_BigChaos.pdf
http://www.netflixprize.com/assets/GrandPrize2009_BPC_PragmaticTheory.pdf
http://www.netflixprize.com/assets/GrandPrize2009_BPC_PragmaticTheory.pdf

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Amit Singer. A remark on global positioning from local distances.
Proceedings of the National Academy of Sciences, 105(28):9507-9511,
2008. doi:10.1073/pnas.0709842104. URL
http://www.pnas.org/content/105/28/9507.abstract. — pages 4

Robert Grone, Charles R. Johnson, Eduardo M. S4, and Henry Wolkowicz.
Positive definite completions of partial hermitian matrices. Linear Algebra
and its Applications, 58:109 — 124, 1984. ISSN 0024-3795.
doi:DOI:10.1016/0024-3795(84)90207-6. URL
http://www.sciencedirect.com/science/Marticle/B6VOR-45GWNPR-S/2/
e6¢f9f07533aa113b7456d76130cb138. — pages 8, 9

Ronald L. Smith. The positive definite completion problem revisited. Linear
Algebra and its Applications, 429(7):1442 — 1452, 2008. ISSN 0024-3795.
doi:DOI:10.1016/.1aa.2008.04.020. URL http://www.sciencedirect.com/
science/article/B6VOR-4SPSHNG6-2/2/56d6cbe1694dc7fcef1a8f4d007ff52c.
— pages 9

Wayne Barrett, Charles R. Johnson, and Pablo Tarazaga. The real positive
definite completion problem for a simple cycle. Linear Algebra and its
Applications, 192:3 — 31, 1993. ISSN 0024-3795.
doi:DOI:10.1016/0024-3795(93)90234-F. URL
http://www.sciencedirect.com/science/article/B6VOR-45F5BKX-44/2/
6b5156e0896414f4cabbb4d7ce6b9297. — pages 9, 10

He Ming and Michael K. Ng. Toeplitz and positive semidefinite completion
problem for cycle graph. Numerical Mathematics, A Journal of Chinese
Universities, 14(1), Feb 2005. URL
http://math.nju.edu.cn/CiNM/pdf/2005067.pdf. — pages 11

W. Glunt, T. L. Hayden, Charles R. Johnson, and P. Tarazaga. Positive
definite completions and determinant maximization. Linear Algebra and its
Applications, 288:1 — 10, 1999. ISSN 0024-3795.
doi:DOI:10.1016/S0024-3795(98)10211-2. URL
http://www.sciencedirect.com/science/article/B6VOR-3W6M0B4-1/2/
b782d1a82af8970d873e6e95e0ae4400. — pages 12

Higham, Nicholas J. Computing the nearest correlation matrix - A problem
from finance. IMA Journal of Numerical Analysis, 22(3):329-343, 2002.
doi:10.1093/imanum/22.3.329. URL
http://imajna.oxfordjournals.org/content/22/3/329.abstract. — pages 12

51

http://dx.doi.org/10.1073/pnas.0709842104
http://www.pnas.org/content/105/28/9507.abstract
http://dx.doi.org/DOI: 10.1016/0024-3795(84)90207-6
http://www.sciencedirect.com/science/Marticle/B6V0R-45GWNPR-S/2/e6cf9f07533aa113b7456d76130cb138
http://www.sciencedirect.com/science/Marticle/B6V0R-45GWNPR-S/2/e6cf9f07533aa113b7456d76130cb138
http://dx.doi.org/DOI: 10.1016/j.laa.2008.04.020
http://www.sciencedirect.com/science/article/B6V0R-4SPSHN6-2/2/56d6cbe1694dc7fcef1a8f4d007ff52c
http://www.sciencedirect.com/science/article/B6V0R-4SPSHN6-2/2/56d6cbe1694dc7fcef1a8f4d007ff52c
http://dx.doi.org/DOI: 10.1016/0024-3795(93)90234-F
http://www.sciencedirect.com/science/article/B6V0R-45F5BKX-44/2/6b5156e0896414f4cabbb4d7ce6b9297
http://www.sciencedirect.com/science/article/B6V0R-45F5BKX-44/2/6b5156e0896414f4cabbb4d7ce6b9297
http://math.nju.edu.cn/CiNM/pdf/2005067.pdf
http://dx.doi.org/DOI: 10.1016/S0024-3795(98)10211-2
http://www.sciencedirect.com/science/article/B6V0R-3W6M0B4-1/2/b782d1a82af8970d873e6e95e0ae4400
http://www.sciencedirect.com/science/article/B6V0R-3W6M0B4-1/2/b782d1a82af8970d873e6e95e0ae4400
http://dx.doi.org/10.1093/imanum/22.3.329
http://imajna.oxfordjournals.org/content/22/3/329.abstract

[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

(23]

[24]

C. Kahl and M. Gunther. Complete the correlation matrix. In From Nano to
Space, pages 229-244. Springer, 2008. URL
http://www.springerlink.com/content/t3005r255003w68v. — pages 13

Mark Budden, Paul Hadavas, Lorrie Hoffman, and Chris Pretz. Generating
valid 4 x 4 correlation matrices. Applied Mathematics E-notes, 7:53-59,
2007. URL http://www.emis.de/journals/AMEN/2007/060311-1.pdf. —
pages 13

SK Mishra. Completing correlation matrices of arbitrary order by
Differential Evolution method of global optimization: A Fortran program.
MPRA Paper 2000, University Library of Munich, Germany, March 2007.
URL http://ideas.repec.org/p/pra/mprapa/2000.html. — pages 13, 33

Rainer Storn and Kenneth Price. Differential Evolution - A Simple and
Efficient adaptive scheme for Global Optimization over Continuous Spaces.
Technical report, 1995. URL http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.67.5398&rep=rep1&type=pdf. — pages 13

Rainer Storn and Kenneth Price. Differential Evolution A Simple and
Efficient Heuristic for Global Optimization over Continuous Spaces.
Journal of Global Optimization, 11:341 — 359, 1997. URL
http://www.springerlink.com/content/X555692233083677. — pages 16

Cyclops Home Page. URL http://cyclops.cs.ubc.ca/. — pages 29

Lyndon Clarke and Ian Glendinning and Rolf Hempel. The MPI Message
Passing Interface Standard. URL
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.54.6740. —
pages 29

Mersenne Twister Home Page. URL
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html. — pages 29

MCSANL. Message Passing Interface. URL
http://www.mcs.anl.gov/research/projects/mpi/. — pages 30

Satish Balay and Kris Buschelman and William D. Gropp and Dinesh
Kaushik and Matthew G. Knepley and Lois Curfman Mclnnes and Barry F.
Smith and Hong Zhang. PETSc Web page, 2009.
http://www.mcs.anl.gov/petsc. — pages 30

52

http://www.springerlink.com/content/t3005r255003w68v
http://www.emis.de/journals/AMEN/2007/060311-1.pdf
http://ideas.repec.org/p/pra/mprapa/2000.html
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.67.5398&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.67.5398&rep=rep1&type=pdf
http://www.springerlink.com/content/X555692233083677
http://cyclops.cs.ubc.ca/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.54.6740
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
http://www.mcs.anl.gov/research/projects/mpi/

[25] Satish Balay and Kris Buschelman and Victor Eijkhout and William D.
Gropp and Dinesh Kaushik and Matthew G. Knepley and Lois Curfman
Mclnnes and Barry F. Smith and Hong Zhang. PETSc users manual.
Technical Report ANL-95/11 - Revision 3.0.0, Argonne National
Laboratory, 2008. — pages 30

[26] Vicente Hernandez, Jose E. Roman, and Vicente Vidal. SLEPc: A Scalable
and Flexible Toolkit for the Solution of Eigenvalue Problems. ACM
Transactions on Mathematical Software, 31(3):351-362, September 2005.
— pages 30

[27] J. E. Roman, E. Romero, and A. Tomas. SLEPc Users Manual. Technical
Report DSIC-11/24/02 - Revision 3.1, D. Sistemas Informaticos y
Computacién, Universidad Politécnica de Valencia, 2010. — pages 30

[28] D. K. Tasoulis and N.G. Pavlidis and V. P. Plagianakos and M. N. Vrahatis.
Parallel Differential Evolution. In IEEE Congress on Evolutionary
Computation (CEC), 2004. — pages 49

53

	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgments
	1 Introduction
	1.1 Motivation
	1.1.1 Finding Missing Correlation Values of Time Series Data
	1.1.2 Collaborative Filtering
	1.1.3 Global Positioning Systems

	1.2 Terms and Definitions
	1.2.1 Graph of a Partial Matrix

	1.3 The Problem
	1.4 Our Approach

	2 Background
	2.1 Introduction
	2.1.1 PSD Completion to Chordality

	2.2 Correlation Matrix Completion for Special Structures
	2.2.1 The Simple Cycle Graph
	2.2.2 PSD Completion of Cnk Pattern Matrix

	2.3 More Generic Correlation Matrix Completion Approaches
	2.3.1 Generic PSD Completion & Determinant Maximization
	2.3.2 Nearest Correlation Matrix
	2.3.3 Correlation Matrix Completion using Gaussian Elimination
	2.3.4 Completion of a Correlation Matrix of Limited Size
	2.3.5 Correlation Matrix Completion using Sequential Differential Evolution

	3 The Algorithms
	3.1 Introduction
	3.2 Evolution Strategies and Differential Evolution
	3.3 The Sequential Algorithm for CCOMAT Problem
	3.4 Basic Parallel Approach for Solving the CCOMAT Problem
	3.5 Improved Parallel DE Approach for Solving the CCOMAT Problem

	4 Experimental Results
	4.1 Introduction
	4.2 The Setup
	4.2.1 The Physical Cluster
	4.2.2 The Libraries/Tools
	4.2.3 Test Cases
	4.2.4 An Example with Implementation Details

	4.3 The Experimental Parameters
	4.4 Results for the Algorithms
	4.4.1 Evaluation of Basic Parallel DE Algorithm
	4.4.2 Evaluation of Improved Parallel DE Algorithm

	5 Conclusions
	5.1 Introduction
	5.2 Conclusions
	5.3 Future Work

	Bibliography

