
Solving Correlation Matrix Completion Problems using
Parallel Differential Evolution

by

Srujan Kumar Enaganti

B. Tech, Indian Institute of Technology Guwahati, 2006

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE STUDIES

(Computer Science)

The University Of British Columbia

(Vancouver)

November 2010

c© Srujan Kumar Enaganti, 2010

Abstract

Matrix Completion problems have been receiving increased attention due to their

varied applicability in different domains. Correlation matrices arise often in study-

ing multiple streams of time series data like technical analyses of stock market

data. Often some of the values in the matrix are unknown and some reasonable

replacements have to be found at the earliest opportunity to avert an unwanted

consequence or keep up the pace in the business. After looking to background re-

search related to solving this problem, we propose a new parallel technique that

can solve general correlation matrix completion problems over a set of computers

connected to a high speed network. We present some of our results where we could

reduce the execution time.

ii

Table of Contents

Abstract . ii

Table of Contents . iii

List of Tables . v

List of Figures . vi

Acknowledgments . vii

1 Introduction . 1
1.1 Motivation . 1

1.1.1 Finding Missing Correlation Values of Time Series Data . 2

1.1.2 Collaborative Filtering 2

1.1.3 Global Positioning Systems 3

1.2 Terms and Definitions . 4

1.2.1 Graph of a Partial Matrix 5

1.3 The Problem . 5

1.4 Our Approach . 6

2 Background . 8
2.1 Introduction . 8

2.1.1 PSD Completion to Chordality 8

2.2 Correlation Matrix Completion for Special Structures 9

2.2.1 The Simple Cycle Graph 9

2.2.2 PSD Completion of Ck
n Pattern Matrix 11

iii

2.3 More Generic Correlation Matrix Completion Approaches 12

2.3.1 Generic PSD Completion & Determinant Maximization . 12

2.3.2 Nearest Correlation Matrix 12

2.3.3 Correlation Matrix Completion using Gaussian Elimination 13

2.3.4 Completion of a Correlation Matrix of Limited Size 13

2.3.5 Correlation Matrix Completion using Sequential Differen-

tial Evolution . 13

3 The Algorithms . 15
3.1 Introduction . 15

3.2 Evolution Strategies and Differential Evolution 15

3.3 The Sequential Algorithm for CCOMAT Problem 18

3.4 Basic Parallel Approach for Solving the CCOMAT Problem . . . 22

3.5 Improved Parallel DE Approach for Solving the CCOMAT Problem 25

4 Experimental Results . 28
4.1 Introduction . 28

4.2 The Setup . 29

4.2.1 The Physical Cluster . 29

4.2.2 The Libraries/Tools . 29

4.2.3 Test Cases . 30

4.2.4 An Example with Implementation Details 31

4.3 The Experimental Parameters . 32

4.4 Results for the Algorithms . 33

4.4.1 Evaluation of Basic Parallel DE Algorithm 33

4.4.2 Evaluation of Improved Parallel DE Algorithm 41

5 Conclusions . 48
5.1 Introduction . 48

5.2 Conclusions . 48

5.3 Future Work . 49

Bibliography . 50

iv

List of Tables

4.1 The average execution time (in seconds) of 8×8 matrix completions 34

4.2 The average execution time(in seconds) of 8×8 matrix completions 38

4.3 Comparisons of Average Number of Iterations between Basic Par-

allel DE Algorithm and Improved Parallel DE Algorithm 41

4.4 Average Execution Time for Different Algorithms 42

v

List of Figures

1.1 Graph of the partial matrix A . 5

2.1 A Ring Graph . 10

4.1 Average Execution Times for Basic DE Algorithm Run over 4 Nodes 35

4.2 Average Execution Times for Basic DE Algorithm over 4 Nodes

without Outliers . 36

4.3 Execution Times for Sequential FORTRAN Program 37

4.4 Average Number of Iterations Needed for Basic DE Algorithm

over 16 Nodes without Outliers 39

4.5 Average Number of Iterations Needed for Basic DE Algorithm

over 16 Nodes without Outliers 40

4.6 Number of Iterations Needed for Improved Algorithm over 16 Nodes 44

4.7 Average Execution Times of Improved and Basic Algorithms over

16 Nodes Using 5x Agents . 45

4.8 Average Execution Times of Improved and Basic Algorithms over

16 Nodes Using 10x Agents . 46

4.9 Average Execution Times of Improved and Basic Algorithms with

16 Nodes Using 15x Agents . 47

vi

Acknowledgments

This thesis would have never taken this shape without the exemplary supervision

of Dr. Alan Wagner throughout my thesis period. He made himself available

whenever needed and was extremely helpful with his suggestions steering me in

the right direction and helping me progress and complete this thesis. I cannot

express my gratitude to Dr. Ed Knorr in any simple terms for all the useful informal

discussions giving me insights and finally for his scrupulous reviews as a second

reader which helped me refine the thesis. Special thanks to Cody Brown for his

awesome technical support in porting the programs on to the Cyclops cluster and

troubleshooting any problems that have arisen. Last but not the least, I would like

to thank all the people in NSS lab and my fellow grad friends for their cordiality

and moral support throughout my stay.

vii

Chapter 1

Introduction

If I have seen farther it is by standing on the shoulders of Giants.
— Sir Isaac Newton

1.1 Motivation

The Matrix Completion problem is the problem of finding unknown entries in

a matrix by using some known properties of the expected completed matrix [1].

Real world applications involve the collection of data from different sources and

processing it to yield valuable information. Often some of the data may be unreli-

able or unavailable for a host of reasons. It becomes imperative that such data be

reclaimed. Sometimes such missing data is needed at the earliest convenience to

either avert an unwanted consequence or to keep up with the competition among

the ones who need similar data. Although it is impossible to extract the exact data,

it is possible to get the lost data which may follow certain properties that can help

to predict the missing values.

Numerical data from the real world is typically represented in a rectangular ar-

rangement such as a matrix. Recovering data entries would amount to recovering

certain unknown entries in the matrix. The Matrix Completion problem arises

precisely when there is a need to recover the data entries in such an incomplete

1

matrix. The solution to the problem comes from the fact that certain known con-

straints will be valid in a completed matrix. For example, correlation matrices are

formed by noting correlations of each pair of different streams of data. Such ma-

trices are known to have certain properties including being positive semidefinite.

When some of the values are unknown, we exploit the known properties to predict

the unknown entries.

The Matrix Completion problem is receiving increased attention for its applica-

tions in a variety of areas including:

1. Finding Missing Correlation Values of Streaming Time Series Data

2. Collaborative Filtering in Recommender Systems

3. Global Positioning Systems

4. Remote Sensing

1.1.1 Finding Missing Correlation Values of Time Series Data

A useful function is to predict unknown correlation values among real time stream-

ing data like in stock market data where some values may be unreliable or un-

known. Numerous applications that perform technical analysis to compute such

data would need reasonable data to work upon when the real data is either unavail-

able or unknown. Consider the correlation matrix that is formed by taking pairwise

correlations of all possible pairs of observed stock data. There is a need to estimate

the values that are missing in such a way that maximum risk is minimized.

1.1.2 Collaborative Filtering

Recommender systems are applications that can help someone to make an ap-

propriate choice among a set of alternatives. Collaborative filtering is the most

important functional aspect of the same [2].

2

Typically, major companies host surveys wherein their customers are asked to

rate certain objects based on various criteria. These ratings are used by the com-

panies to understand consumer behavior. But it may happen that most of the users

may not rate all the objects for all the criteria. In this case, it becomes vital to ex-

tract the possible ratings of those objects that are not rated by the users to serve the

business end of the company. This is done based on a ratified hypothesis that there

are only few criteria/factors that drive a user to make her ratings and choices of

objects. This problem can be modeled as a Matrix Completion problem by using

Matrix Factorization technique where, corresponding to users and items, factors

are given which are inferred from item rating patterns [3] [4]. A higher correspon-

dence between a user and an item will lead to the recommendation of the item for

the user. Since not all entries are available at the beginning, it is a matrix comple-

tion problem.

Netflix is a subscription service that streams movies and TV episodes over the

Internet and sends DVDs by mail. They conduct online surveys from their users of

TV series/movies on several criteria, but typical users may not fill in all the survey

entries completely. In order to capture users’ interests in all fields of all possible

movies/serials, they have built an in-house recommender system to predict the un-

known entries. In 2007 they conducted a competition called the NetFlix Challenge

to find a better algorithm than they have that can predict users’ unknown ratings by

using their known historical data. A minimum performance improvement of 10%

over the predictive ability of their existing algorithms was required. Out of a large

number of submissions, an algorithm proposed by Yehuda Koren from AT&T labs

called the BellKor solution [5] won the first prize in the competition. The other

optimal solutions proposed were [6] and [7].

1.1.3 Global Positioning Systems

The global positioning system works by receiving satellite signals from different

points to compute an object’s location on earth. Often the values can be corrupted

due to noise in transmission or reception and this can lead to errors in the calcu-

lation of positions of various nodes that the system is supposed to work upon. An

3

extensive research article addressed this problem [8].

1.2 Terms and Definitions
Before stating the exact problem that I am solving, I give the definitions that will

be useful in understanding the context of the same.

Definition Matrix

A matrix is a rectangular arrangement of numbers.

Definition Square Matrix

A square matrix is a matrix which has the same number of rows and columns. An

n-by-n matrix is known as a square matrix of order n.

Definition Positive Semidefiniteness

A square n×n matrix A is said to be positive semidefinite (PSD)

iff ∀x ∈ ℜn,xT Ax ≥ 0. Every PSD matrix will have all its eigenvalues as non-

negative.

Definition Positive Definiteness

A square n×n matrix A is said to be positive definite (PD)

iff ∀x ∈ℜn,xT Ax > 0. Every PD matrix will have all its eigenvalues as positive.

Definition Real Partial Matrix

A real partial matrix A is one in which some entries are specified as real numbers

and the remainder are unspecified, i.e., free variables over the set of real numbers.

Definition Partial Positive Definite Matrix

A partial positive definite matrix is a partial symmetric matrix each of whose spec-

ified principal submatrices is positive definite.

Definition Pattern of a Square Matrix

A pattern for an n× n matrix is a list of positions of {1,2, ...,n}×{1,2, ...,n}. A

partial matrix specifies the pattern if its specified entries are exactly those listed in

the pattern. A pattern Q is called symmetric if (i, j) ∈ Q implies (j, i) ∈ Q.

4

1.2.1 Graph of a Partial Matrix

A partial symmetric matrix can be represented by an undirected graph as given

below.

Let A be a partial positive definite n× n matrix. The undirected graph G =
(N,E) of A has node set N = {1,2, ...,n} and an edge {i, j} ∈ E, i 6= j, iff entry ai j

is specified.

For example, suppose we have the following partial symmetric matrix as our A,
5 2 ? 2

2 4 1 ?

? 1 3 ?

2 ? ? 6

The resultant graph G of the above matrix A is shown in figure 1.1.

Figure 1.1: Graph of the partial matrix A

1.3 The Problem

The various real world situations given in the motivation section are examples

where the matrix completion problem has been found to be useful. A type of the

5

matrix completion problem is the correlation matrix completion problem. In this

thesis, we discuss approaches to solve correlation matrix completion problems that

are found particularly in the area of finance where certain streaming values may be

unknown or known to be spurious. A formal definition for the correlation matrix

completion problem can be given as follows:

Definition Complete Correlation Matrix Problem (CCOMAT)

The problem is to find missing entries in a partial symmetric matrix where all the

given entries and the unknown entries fall within -1 and 1 such that the resultant

complete matrix is positive semi-definite. All correlation matrices have all 1’s on

their diagonal and the property that they are positive semi-definite. The problem

here will be referred to as CCOMAT in this thesis.

1.4 Our Approach
The problem is being solved by parallelizing an optimization method called Dif-

ferential Evolution. It is an evolutionary strategy which can be used for solving

optimization problems where the cost function may be non-differentiable or non-

continuous in the domain over which it is optimized. It works by having a randomly

chosen sample of initial potential candidates and then evolving them incrementally

through iterations and improving them at every step. This simple parallel method

has been improved to a version which can dynamically adapt itself by employ-

ing the concept of simultaneous independent evolution on separate islands and the

migration of element(s) between them.

The thesis is organized as follows. Chapter 1 has focussed on the problem that is

being solved and the motivation behind choosing to solve it that way. In Chapter 2

we look at a background survey of various approaches that have been taken to solve

either the CCOMAT problem or similar problems that can lead to solving the same.

Chapter 3 gives insights to the algorithmic approach proposed in this thesis with

the backdrop of the sequential algorithm that has been used as a base. Chapter

4 gives details regarding the different tools used and the experimental results of

executing the algorithms in parallel on a cluster of computers. Chapter 5 gives the

6

general conclusions of the thesis, as well as future works that could provide a more

robust approach towards solving the CCOMAT problem more efficiently.

7

Chapter 2

Background

A good short-story writer has an instinct for sketching in just enough
background to ground the specific story. — Lynn Abbey

2.1 Introduction

In order to solve the correlation matrix completion problem in parallel, it was

pertinent to look at the progress that has been made in solving the same problem in

a serial way. Since the correlation matrix completion problem is a special case of

the PSD completion problem with an additional constraint that all unknown entries

are correlation values (and hence between -1 and 1), some results in the latter are

directly applicable.

2.1.1 PSD Completion to Chordality

Definition Chordality of a graph

A graph is said to be chordal if it does not have any simple cycle of length more

than 3 nodes.

A vital result in relating PSD completion to the structure of a graph correspond-

ing to an incomplete graph was obtained by Grone et al. [9]:

8

Theorem 2.1.1 Every partial positive definite (semidefinite) matrix with graph G

has a positive definite (semidefinite) completion if and only if G is chordal.

Proof This was originally proved by Grone et al. [9] by using complex analytic

techniques. It has also been recently proved by Smith [10] using only matrix/graph

theoretic tools.

2.2 Correlation Matrix Completion for Special
Structures

Some theoretical structures were especially treated in the literature probably be-

cause of their simplistic nature and occasional occurrence of such structures in

solving practical problems.

2.2.1 The Simple Cycle Graph

When the graph of a partial matrix is a simple cycle, the correlation matrix com-

pletion problem can be deterministically solved using the following result [11].

Since the known entries of a correlation matrix are within [-1,1], it is possible to

represent them as cosine values of a particular value.

Theorem 2.2.1 Suppose n ≥ 4, let N = {1,2, ...,n}, and 0 ≤ θ1,θ2, ...,θn ≤ π .

Then the matrix

C =

1 cosθ1 cosθn

cosθ1 1 cosθ2 ?

cosθ2 1
. . .

.

?
. cosθn−1

cosθn cosθn−1 1

9

Figure 2.1: A Ring Graph

has a positive semidefinite completion if and only if for each S⊆ N with |S| odd,

∑
i∈S

θi ≤ (|S|−1)π + ∑
i∈Sc

θi. (2.1)

Proof The theorem has been proved in [11]

Definition The Ck
n pattern

Let n/2 > k ≥ 1, then the symmetric pattern

Q = {(1,k +1),(2,k +2), ...,(n− k,n),(n− k +1,1), ...,(n,k)} (2.2)

is called a Ck
n pattern.

Definition Symmetric Toeplitz Matrix

A symmetric n×n matrix A = (ai j) is called a symmetric Toeplitz matrix if ai, j =
r|i− j| for all i, j = 1,2, ...,n. A partial Toeplitz matrix is a partial symmetric matrix

and if an entry in position (i, j) is specified then all entries in positions (i+ l, j + l)
(mod n) are also specified and these entries are equal.

10

Cycle graphs which are generated by a Ck
n pattern are a generalization of ring

graphs. We can see that the Ck
n pattern with k = 1 is a ring (See Figure 2.1).

2.2.2 PSD Completion of Ck
n Pattern Matrix

When does a partial matrix specified as a Ck
n pattern have a correlation completion?

C =

1 cosθ1 cosθn−k+1 ?

1 cosθ2 ?
. . .

cosθ1 1
. . . cosθn

cosθ2 ? 1
. . .

cosθn−k+1 ?
. cosθn−k

.

? cosθn cosθn−k 1

(2.3)

Theorem 2.2.2 Let n≥ 4,1≤ k < n/2,d = gcd(n,k) and t = n/d. Then we have:

1. If t = 3, then the partial PSD matrix (2.3) has a PSD completion.

2. If t ≥ 4, then the partial PSD matrix (2.3) has a PSD completion if and only

if for each Si ⊂ Ni ≡ {i, i+ k, i+2k, ..., i+(t−1)k} with |Si| odd,

∑
j∈Si

θ j ≤ (|Si|−1)π + ∑
j∈NiSi

θ j, (2.4)

i = 1,2, ...,d.

Proof The proof can be seen in [12]

The theoretical treatments of the above structures discussed so far have all been

very elegant and directly applicable to solving CCOMAT in a deterministic way.

However, the fact that they are applicable to only the structures specified restricts

their applicability to those that can arise in practical scenarios. All these ap-

proaches have made inroads towards coming up with theoretically elegant solu-

tions to special cases of CCOMAT. The general solution which can be applied to

11

all possible cases that can arise in a CCOMAT problem is apparently not treated in

a theoretical deterministic way so far.

2.3 More Generic Correlation Matrix Completion
Approaches

In this section, we present approaches that have been developed to solve the prob-

lem of CCOMAT in a general way, i.e., there are fewer assumptions on the structure

of unknown entries. Some approaches to solve similar problems to CCOMAT will

be examined here to see if they would provide insight to solving the CCOMAT

problem.

2.3.1 Generic PSD Completion & Determinant Maximization

An iterative method was proposed by Glunt et al. for solving the positive semi-

definite completion of a general matrix [13]. The authors proved that their itera-

tive algorithm does converge after a finite number of iterations and gives a unique

matrix that is positive definite which has the maximum possible value for the de-

terminant. Even though it is generically applicable, the problem of the correlation

matrix completion is not contained within that because the entries filling in the in-

complete entries would not necessarily stay within the absolute value of 1. Hence,

we concluded that this algorithm cannot be directly applied to solving the correla-

tion completion problem.

2.3.2 Nearest Correlation Matrix

A similar problem to CCOMAT is to find the nearest correlation matrix, and

it has been studied by Nicholas Higham [14]. The solution proposed is through

semidefinite programming where a variant of Newton’s method is used. The com-

pletion of the correlation matrix may use concepts from the nearest correlation ma-

trix solution but are not directly applicable as some of the entries have to remain

fixed in the former.

12

2.3.3 Correlation Matrix Completion using Gaussian Elimination

Kahl and Gunther presented an algorithm for correlation matrix completion

when the matrix is a multi-dimensional stochastic volatility model [15]. They

explain the specific structure of the incomplete correlation matrices that they are

working upon. They make use of properties of the resultant graph representation

of the incomplete matrix and use Gaussian elimination to arrive at a completion

having the maximum possible determinant. The correlation completion solution,

although very efficient, is only restricted to a certain type of incomplete correlation

matrix thereby limiting its application in diverse real world situations.

2.3.4 Completion of a Correlation Matrix of Limited Size

Budden et al. introduced a deterministic solution to complete correlation matri-

ces up to order 4 [16]. The algorithm for a correlation matrix of 4 variables assumes

that correlations of one of the variables with three others are given as known en-

tries and then deterministically predicts the possible ranges of each of the missing

correlation values one after the other. That is, it can give the range of the first un-

known correlation value and when that is fixed, it can give the range for the next

one, and so on to finally complete the matrix. They have made an improvement on

prior solutions that could work up to matrices of order 3. The authors showed that

their proposed algorithm runs much more efficiently than an optimization problem.

However, the authors state towards the end that extending it to any n×n for n > 4

would be very difficult.

2.3.5 Correlation Matrix Completion using Sequential Differential
Evolution

An approach to solve the correlation matrix completion problem using the opti-

mization method called Differential Evolution (DE) was proposed by Mishra [17].

The Differential Evolution procedure of global optimization was originally pro-

posed by Storn and Price [18]. As part of using the method, a random population

of elements (consisting of numbers between -1 and 1) that fit the holes in a given in-

13

complete correlation matrix are generated. Every element of the population would

hence correspond to a completion of the matrix. By calculating its eigenvalues, it

is possible to determine if it is indeed a desired completion. The author formulated

a heuristic measure to give the extent of negativity of the negative eigenvalues or

in other words, how far the matrix is from being positive-semidefinite. Using a

heuristic way of mixing, a new generation of elements is generated from the given

population. The child of an element would replace its parent only if it is stronger

than the parent, that is it has a smaller value for the function. The process is re-

peated for a number of iterations (which is specified by the user) until the desired

result is achieved.

I have chosen this method for developing a parallel algorithm for the following

reasons.

1. The method does not assume any kind of specific pattern of the unknown

entries in the matrix.

2. The method has inherent parallelization that can be exploited.

3. The author claims that the Differential Evolution method is perhaps the

fastest evolutionary computational procedure yielding the most accurate so-

lutions to continuous global optimization problems.

14

Chapter 3

The Algorithms

In fact, there was general agreement that minds can exist on
nonbiological substrates and that algorithms are of central

importance to the existence of minds. — Vernor Vinge

3.1 Introduction

This chapter discusses the algorithms involved in the approaches to solve the

correlation matrix completion problem. Firstly, Evolutionary Strategies (ES) which

are part of evolutionary approaches to solve optimization problems are introduced

and then an algorithm which makes use of this approach to solve the CCOMAT

completion problem is given. The later sections introduce the proposed approach

to solve CCOMAT completion in a parallelized way. Finally, an advanced parallel

algorithm is proposed.

3.2 Evolution Strategies and Differential Evolution

A global optimization method is a technique which can give best element(s)

among all possible alternative elements. Mathematically, it could be a problem to

find the point(s) at which the objective value/cost associated with the problem has

its optimal (minimal/maximal) value among all others in the known domain. The

15

minimization problem is a special case of the optimization problem where only the

minimal value is looked for. It may be formally defined as below:

Definition Minimization Problem

For an objective function f : X ⊆ RD→ R where the feasible set X 6= φ , the mini-

mization problem is to

Find x∗ ∈ X such that f (x∗)≤ f (x) ∀x ∈ X where f (x∗) 6=−∞

Evolution Strategies are black-box optimization techniques which are developed

based upon nature-based processes of adaptation and evolution. Here by “black-

box” technique, we mean that no knowledge of the derivative of the function to be

optimized is used and that the evaluations of the objective function that needs to

be optimized at various points in the domain are sufficient for finding the optimal

value.

Differential Evolution is an Evolutionary Strategy method which is used for

global optimization over real continuous spaces. It was first proposed by Stone

and Price [19] to solve Chebyshev polynomial fitting. The method was designed

not only for being able to use non-differentiable nonlinear cost functions but also

having features such as ease of use (with minimal parameters), consistent conver-

gence properties, and parallelizability.

The basic algorithm is given in Algorithm 1.

The algorithm takes the three control parameters as below:

• NP - The total number of agents in the population

• CR - Cross-Over Ratio ∈ [0,1]

• F - Recombination Constant ∈ [0,2]

The algorithm also has a function called CostFunc(Agentx) which is a function

value associated with each agent and the final goal of the algorithm is to find

agent(s) whose CostFunc is almost equal to zero.

16

Algorithm 1 BasicDiffEvol
Require: NP, CR, F

1: Initialize NP agents of population
2: for each agent xi in the population do
3: pick three other distinct agents ai, bi and ci

4: Generate ri as Normal[0,1] {The mutation and recombination of the algo-
rithm takes place}

5: if ri < CR then
6: yi := ai +F(bi− ci)
7: end if
8: if CostFunc(Y) < CostFunc(X) then
9: xi := yi

10: end if
11: end for

A Differential Evolution algorithm then can be broken down to the following

steps:

1. Initialization: Step one of the algorithm performs this where all the agents

are initialized to certain random values. Each agent is a value randomly

picked out of the available pool of all values.

2. Recombination and Mutation: Steps 3-7 show the recombination and mu-

tation. It starts by picking three other distinct agents randomly from the

population. This automatically puts the lower limit for NP as four. The val-

ues of CR and F come into use here to make a decision for mutation and

the way recombination is done. The child is produced by adding one of the

agents to the differential weight (bi− ci) multiplied by the Recombination

constant F.

3. Selection: This phase is implemented in Steps 8-10. If the child is fitter

than its corresponding parent, it is retained by the algorithm. Otherwise, the

parent will prevail in the population of the next generation.

The loop defined between Steps 2 and 11 takes care of applying the steps for

all the agents in the population. In a typical practical scenario, these steps may be

17

repeated for a predefined number of iterations, as will be seen in the next section.

In the sections below, the acronym DE is used to refer to Differential Evolution.

3.3 The Sequential Algorithm for CCOMAT Problem

A DE algorithm that can solve the correlation matrix completion problem is

given here. The method works for any general real partial symmetric matrix, that

is. without assuming any particular pattern of unknown entries within the matrix.

The inputs of the algorithm are

• the partial matrix that needs to be completed

• MAX IT ER which is the maximum number of iterations the algorithm will

go through

• EPS ≈ 0 used as a cutoff to terminate the algorithm if a sufficiently close

solution is achieved

The algorithm is an application of the DE algorithm in a more extended form in

order to solve the correlation matrix completion problem. A detailed analysis of

the steps of Algorithm 2 are given below.

• Step 1 is the same as the one in BasicDiffEvol where the potential candidates

are filled in.

• The loop enclosed within steps 2 and 17 takes care of the maximum number

of iterations that the algorithm can take.

• In Steps 3-5, values for ReachFunc() are calculated for each of the available

agents in the population at the moment, and are stored in a buffer array FV.

• In Step 6, the minimum among the FV arrays is chosen as FVmin.

• In Steps 7-9, an early termination criteria is set where if the FVmin is suffi-

ciently close to zero, the corresponding mutant may be taken as a solution

and the loop is terminated.

18

• The loop defined within Steps 10 and 16 is the corresponding loop between

Steps 2 and 11 in BasicDiffEvol wherein each agent is separately processed.

• In Step 11, IR[1..3] are generated which is analogous to selecting three dis-

tinct agents ai,bi,ci different from xi.

• Step 12 encompasses the recombination and mutation steps in a go. The

random number generation and normal distribution are all part of it.

• In Steps 13-15, the selection of tougher agents is done. At the end of the

step, better agents are selected.

Algorithm 2 Complete Correlation Matrix - Sequential

Require: Partial Matrix M, MAX ITER, EPS, CR, F
1: Generate N vectors of size m consisting of real numbers in [−1,1]
2: for MAX IT ER iterations do
3: for i = 1 to N do
4: FV [i] = ReachFunc(Pi)
5: end for
6: FVmin = Min(FV [1...N])
7: if FVmin < EPS then
8: break
9: end if

10: for i = 1 to N do
11: Generate distinct IR[0], IR[1]&IR[2] where each of them 6= i
12: Childi = Evolution Strategy(Pi,PIR[0],PIR[1],PIR[2],CR,F)
13: if ReachFunc(Childi) < ReachFunc(Pi) then
14: Replace Pi with Childi

15: end if
16: end for
17: end for

The algorithm starts with a population of N elements where each element is a

vector of real numbers which is a potentially fillable set of entries into the holes of

the partial matrix. It uses a random sample of umpteen number of starting elements.

Then the idea is to modify them and create children which are at least as good

19

as they are so that one of the elements would reach being the target. Once the

algorithm reaches the target, it terminates.

This algorithm has the function ReachFunc(Matrix) which calculates a numer-

ical real value for any given completed matrix. Its value indicates the degree of

how far the matrix is from being positive semidefinite. For an already PSD matrix,

its value will be zero. At the end of the execution of the algorithm, which is de-

termined by the number of iterations, the program hopefully gives us at least one

element among N which is desirable.

Pseudocode for computing the function ReachFunc is given in Algorithm 3.

Algorithm 3 ReachFunc(Matrix A)
Require: A square symmetric real matrix A

1: F ← 0
2: sumW ← 0
3: prodW ← 1
4: eig[1..morder]← Eigen values(A)
5: for i = 1 to morder do
6: if eig[i] < 0 then
7: sumW ← sumW + |eig[i]|
8: F ← F + eig[i]∗ eig[i]
9: prodW ← prodW ∗ eig[i]

10: end if
11: end for
12: if ((prodW < 0)||(prodW > 1)) then
13: F ← (F + sumW + prodW ∗ prodW)2

14: end if
15: return F

The algorithm takes a square matrix as its input and calculates its eigenvalues;

and depending upon them, it returns a floating point value F .

• In Steps 1-3, three variables F , sumW and prodW are initialized.

• In Step 4, eigenvalues are calculated by a user provided function.

• In Steps 5-11, sumW , prodW and F are calculated as the sum, product and

sum of squares respectively of all the negative eigenvalues of matrix A.

20

• In Steps 12-14, depending upon the value of prodW , the value of F is ad-

justed.

• In Step 15, F is returned.

The way random mutation of the elements is done and the way the cost function

is defined are such that there is a gravity towards having elements that gives a cost

function of zero. In other words, these elements give a completion which is positive

semidefinite.

21

3.4 Basic Parallel Approach for Solving the CCOMAT
Problem

In this section, a parallelized version of Algorithm 3 is presented. The paral-

lelization is done by distributing the computation of each of the members of the

population in a separate thread of execution. The computationally intensive part of

the sequential algorithm is the multiple executions of ReachFunc(). The parallel

version makes sure that each parallel thread of execution has calls to ReachFunc

about the same number of times. This is the way in which the computation is

fairly divided among all the processes running in parallel. The pseudocode of the

algorithm is as given in Algorithm 4.

The algorithm takes the following inputs:

• Partial matrix M with m unknown entries

• The size of the population n

• Maximum number of iterations MAX IT ER

• EPS≈ 0

The algorithm is an application of the DE algorithm in a more extended form in

order to solve the correlation matrix problem. A detailed analysis of steps of the

algorithm is given below.

• Step 1 initiates a set of n processes where each process takes responsibility

for one agent in the population.

• Step 2 happens simultaneously in all processes where an agent is created

with a random value in [-1,1].

• The loop enclosed within steps 3 and 25 takes care of the maximum number

of iterations the algorithm will execute.

• In Step 4, values for ReachFunc() are calculated for each of the available

agents in the population simultaneously and are stored in FV array.

22

Algorithm 4 Complete Correlation Matrix - Parallel

Require: Partial Matrix M, n, MAX ITER, EPS, F, CR, MAX AGE
1: Start n processes which is the same as the size of population :
2: In Parallel Generate a random vector of size m with each entry in [−1,1]
3: for MAX IT ER iterations do
4: In Parallel Calculate for each process i, FV [i] = ReachFunc(Pi)
5: Broadcast FV[i] to every other process
6: At root, calculate FVmin←Min(FV [1...N])
7: if FVmin then
8: Break the execution of all parallel processes
9: end if

10: In Parallel
11: for each Process i do
12: Generate distinct IR[0],IR[1] and IR[2] each of which ∈ Int0,n−1 6= i
13: Childi = Evolutionary Strategy(F,CR,Pi,PIR[0],PIR[1],PIR[2])
14: if ReachFunc(Childi) < ReachFunc(Pi) then
15: Replace Pi with Childi

16: Age(Pi)← 0
17: else
18: Age(Pi)← Age(Pi)+1
19: if Age(Pi) > MAX AGE then
20: Generate a random agent and replace Pi with it
21: end if
22: end if
23: end for
24: Broadcast all of the Pi’s to all the processes
25: end for

• All the values of FV array are broadcasted to all the processes in Step 5.

• Step 6 happens only at the root process where the minimum among the FV

arrays is calculated as FVmin.

• In Steps 7-9, an early termination criteria is set where if the FVmin is suffi-

ciently close to zero, the corresponding agent would be taken as a solution

and the loop is terminated.

• The loop defined within Steps 11 and 23 is the corresponding loop between

Steps 2 and 11 in BasicDiffEvol wherein each agent is separately processed.

23

• Step 10 specifies that all the indented steps below from Step 11 to 23 happen

simultaneously in parallel in all the processes.

• In Step 14, IR[1..3] are generated which is selecting three distinct agents

ai,bi,ci different from xi from the population.

• Step 12 encompasses the recombination and mutation steps in a go. The

random number generation and normal distribution are all part of it

• In Steps 14-22, the selection of tougher agents is done. At the end of the

step, better agents among parents and their respective children are selected.

• In Step 16, the values of Pi’s are broadcasted to all the processes present in

the population.

The algorithm has a potential bottleneck of broadcasting the values after every

iteration which could cause a lot of communication cost. The suitability of this

algorithm for practically reducing the time taken to solve the problem hence be-

comes conspicuous when the nodes are not connected with a very high speed and

reliable network.

Another problem that could arise in this algorithm is the high number of pro-

cesses that may be spawned while running it. Typically the operating system re-

stricts the maximum number of processes it allows a user to spawn.

24

3.5 Improved Parallel DE Approach for Solving the
CCOMAT Problem

Based on the basic parallel algorithm presented in the previous section, we pro-

pose an improved version of the parallel DE algorithm with features that can make

it potentially better. The feature we have added is to pack agents among pro-

cesses rather than have a process for every single agent. This could optimize the

algorithm because interprocess communication is in general way more expensive

than intraprocess communication. This could lead to communication happening in

somewhat bigger bulk but it lessens the number of such communications.

In Algorithm 5:

• Step 1 initiates a set of NUM CORE processes where each process has one

full core to execute upon. Therefore, NUM CORE should be less than the

total number of physical cores available throughout the cluster.

• Step 2 happens simultaneously in all processes where each agent is assigned

a random value in the available domain.

• The loop enclosed within Steps 4 and 28 takes care of the maximum number

of iterations the algorithm will execute.

• In Step 5, values for ReachFunc() are calculated for each of the available

agents in the population simultaneously and are stored in FV[].

• In Step 6, all the values of FV array are broadcasted to all the processes.

• Step 7 happens only at the root process where the minimum among the FV

arrays is calculated as FVmin.

• In Steps 8-10, an early termination criteria is set where if the FVmin is suffi-

ciently close to zero, the corresponding agent would be taken as a solution

and all the processes are terminated.

• The loop defined within Steps 11 and 27 is the corresponding loop between

Steps 2 and 11 in BasicDiffEvol where each agent is separately processed.

25

Algorithm 5 Complete Correlation Matrix - Parallel

Require: M, NUM PROCS, MAX ITER, EPS, F, CR, MAX AGE
1: Start NUM PROCS processes
2: In Parallel for each process i, Generate NA/NP number of random vector of

size m with each entry in [−1,1]
3: In Parallel for each process i, Calculate the range of agents as range(i)
4: for MAX IT ER iterations do
5: In Parallel for each process i, Calculate FV [i] = ReachFunc(Pi)
6: Broadcast FV[i] to every other process
7: At root: calculate FVmin←Min(FV [1...N])
8: if FVmin < EPS then
9: Break the execution of all parallel processes

10: end if
11: In Parallel
12: for each process i do
13: for j ∈ range(i) do
14: Generate distinct IR[0],IR[1] and IR[2] each of which 6= i
15: Childi = Evolutionary Strategy(F,CR,Pj,PIR[0],PIR[1],PIR[2])
16: if ReachFunc(Child j) < ReachFunc(Pj) then
17: Replace Pj with Child j

18: Age(Pi)← 0
19: else
20: Age(Pi)← Age(Pi)+1
21: if Age(Pi) > MAX AGE then
22: Generate a random agent and replace Pi with it
23: end if
24: end if
25: end for
26: Broadcast all of the Pi’s to all the processes
27: end for
28: end for

26

• Steps 11 and 12 specify that all the indented Steps below from Step 13 to 25

happen in parallel in all the processes.

• In Step 14, IR[1..3] are generated which is analogous to selecting three dis-

tinct agents ai,bi,ci different from xi.

• Step 15 encompasses the recombination and mutation Steps in a go. The

random number generation and normal distribution are all part of it.

• In Steps 16-24, the selection of tougher agents is done. An agent may survive

if it is at least as good as its child. Otherwise, the child will replace it. Also,

we implemented aging in these Steps where an agent will be replaced by

a freshly generated one if it does not produce a capable child for as many

iterations as MAX IT ER.

• In Step 26, the values of the Pi’s are broadcasted to all the processes present

in the population.

27

Chapter 4

Experimental Results

It doesn’t matter how beautiful your theory is, it doesn’t matter how
smart you are. If it doesn’t agree with experiment, it’s wrong.

— Richard Feynman

4.1 Introduction

In this chapter, we discuss the experimental verification of our proposed algo-

rithms. In Sections 4.2.1 and 4.2.2, we give a description of the entire setup for

conducting our experiments. That includes the physical cluster we used, and the

different libraries/tools primarily for Scientific Computing. In Sections 4.2.3 and

4.2.4, we explain how we generated our test cases and give an example of a typical

test case that we used with an incomplete matrix. Then, as a possible solution we

fill up the unknown entries to make it a correlation matrix. In further sections, we

describe the results for the test cases and explain our observations and give our

analysis of the findings.

28

4.2 The Setup

4.2.1 The Physical Cluster

The cluster over which experiments were carried out consisted of a set of nodes

from the Cyclops high performance distributed memory system [20]. It consists of

an IBM iDataPlex dx360 M2 system running Ubuntu Server 10.04. Each node on

the cluster consists of two quad-core Xeon x5550 2.67 GHz Intel processors which

effectively makes 8 cores and has access to 12 GB of memory. All the nodes are

connected to a 10 Gb dual-port Ethernet high-speed network.

4.2.2 The Libraries/Tools

The algorithms are implemented in the C programming language assuming a dis-

tributed memory model where each node has its own memory space and the nodes

communicate with each other through passing messages via the Message Passing

Interface (MPI) model. MPI is a widely used standard for implementing portable

parallel distributed applications [21]. Throughout the algorithm, for generating

newer agents, Mersenne Twister random number generation is used. For evalua-

tion of eigenvalues of matrices which are used in the evaluation of ReachFunc(),
eigen-solvers from SLEPc have been used. SLEPc works over data structures avail-

able in PETSc which is a suite of data structures such as matrices that facilitate the

eigenvalue computations. Brief descriptions of these can be seen in the paragraphs

below.

Mersenne Twister random number generator has been used to generate the

scalar values in the agents generated. Every agent is a vector of scalar values

which are as many as the number of unknown entries in the initial partial matrix.

Mersenne Twister generates random integers with a period of (219937− 1) [22].

We normalize every integer thus generated to a unique corresponding real value

between -1 and +1 and then used it as a scalar value in an agent.

29

Message Passing Interface (MPI) is a specification for an Application Pro-

gramming Interface that has functions facilitating several processes of a program

which can run independently on multiple computers and can communicate with

each other by passing messages [23]. When the different MPI processes are ex-

ecuted, they all have separate process spaces and run completely independent of

each other except during communications. The user can instantiate as many pro-

cesses as she wants and start all of them simultaneously and independently. An

MPI process has to run within a communicator and different processes within a

communicator are recognized with their respective IDs. The root process will have

the ID ’0’. The rest of the processes will be assigned IDs from 1 to the value of

(total number of processes - 1). We have used MPICH2 which is a widely used

implementation of the Message Passing Interface (MPI).

PETSc stands for Portable Extensible Toolkit for Scientific Computation and

is a suite of data structures and routines that can be used for coding large-scale

scientific applications running on parallel computers [24]. It provides solutions

by modeling problems as partial differential equations. The data structures it pro-

vides includes parallel matrices, i.e. matrices that may be spread across different

nodes. The parallel processes using PETSc communicate with each other using

MPI routines. Details of usage can be found in the user reference manual [25].

SLEPc stands for Scalable Library for Eigenvalue Problem Computations [26].

It is a package developed for solving large sparse eigenvalue problems on parallel

computers and particularly targeted to solving matrix problems having low ranks.

SLEPc works on the top of PETSc and hence it is necessary to install PETSc before

installing SLEPc. In a way it is an extension of PETSc with functionality to do

eigenvalue computations [27].

4.2.3 Test Cases

The generation of test cases is done by extracting historical time series data

from stock market data for some of the known stock indices. We construct a com-

30

pleted correlation matrix by calculating the correlation between every pair of in-

dices. Then we mask some of the values in a random manner and take them as

unknowns. We have masked varied numbers of entries in increments of 10% from

10% of all the non-diagonal entries up to 90% of them.

4.2.4 An Example with Implementation Details

Here given below is a partial matrix M which is one of the typical inputs the

algorithm takes. The symbol ”?” is used to denote an unknown value.

M =

1.000 0.454 ? ? ? ? ? ?

0.455 1.000 0.278 ? ? ? 0.728 0.552

? 0.278 1.000 ? 0.634 ? 0.553 0.270

? ? ? 1.000 ? 0.117 0.627 ?

? ? 0.634 ? 1.000 ? 0.259 0.004

? ? ? 0.117 ? 1.000 0.612 0.711

? 0.729 0.553 0.627 0.259 0.612 1.000 0.534

? 0.552 0.269 ? 0.004 0.710 0.534 1.000

Since the matrix is a symmetric one, we can restrict our attention to one half,

i.e. the upper triangular matrix or the lower triangular one. The final values for

unknown entries in either of the halves will be the same due to symmetry. In the

given example we see 14 unknown entries in the upper triangle. This fixes the

vector size of an agent to 14. Every agent will be a vector of 14 scalars in the

range of [-1,1] corresponding to each unknown location of M. Our algorithm will

generate as many agents as specified. At each step, it applies the DE strategy and

recombination step to improve agents, i.e., obtain agents with as small value of

ReachFunc() as possible. Once it finds an agent/a set of agents it would terminate

and using those agent(s), a completed matrix such as A may be formed. We have

set the maximum number of iterations as 100,000 although in most typical cases

that converge, the convergence happens within few hundred iterations.

31

In the completed matrix A, the new entries have been highlighted in bold so

that they are conspicuous. This is one of the possible completions of the partial

matrix M given that we want to preserve the positive semidefinite property intact.

The number of such possible completions become limited when we induce more

properties to be preserved.

A =

1.000 0.454 0.531 0.723 0.404 0.475 0.583 0.489
0.455 1.000 0.278 0.537 0.315 0.459 0.729 0.552

0.531 0.278 1.000 0.272 0.634 0.689 0.553 0.270

0.723 0.537 0.272 1.000 0.451 0.117 0.627 0.383
0.404 0.315 0.634 0.451 1.000 0.322 0.259 0.004

0.475 0.459 0.689 0.117 0.322 1.000 0.612 0.711

0.583 0.729 0.553 0.627 0.259 0.612 1.000 0.534

0.489 0.552 0.269 0.383 0.004 0.711 0.534 1.000

In the current implementation of the parallel algorithms, the inputs/outputs are

completely handled by the process with rank zero. The root process will input the

partial matrix from a file and broadcasts it to remaining processes in the communi-

cator.

4.3 The Experimental Parameters

The basic DE parameters of NP, F and CR used in the parallel algorithms were

mostly influenced by the original sequential algorithm. NP is taken depending

upon the vector size of agents which in our case is the number of holes in the

original partial matrix. We have tested for values of NP that are multiples of the

number of holes. For example, in the tables below, 5X refers to the fact that the

population size NP is 5 times the corresponding size of number of holes. In the

case of 8 x 8 matrices, the number of non-diagonal entries will be 56. Considering

only the upper triangular matrix, it will be 28. 10% of it is approximately 3. So,

when the number of holes is 3 the size of NP corresponding to 5X is 15 and when

32

corresponding to 10X will be 30 and so on. The value of CR has been set to 0.9

and F has been set to 1. The EPS value of 10−11 is chosen for testing proximity to

zero. As explained in the previous section, we have used the test cases where the

number of holes varies between 10% of all the non-diagonal entries to 90% of all

non-diagonal entries so that we get to study the performance of our algorithms on

all of them.

4.4 Results for the Algorithms

We have taken 8x8 matrices as our test cases and carried out a set of experiments

on our cluster. We divide the section into following subsections.

• Evaluation of Basic Parallel DE Algorithm

• Evaluation of Improved Parallel DE Algorithm

4.4.1 Evaluation of Basic Parallel DE Algorithm

We have used the sequential algorithm of SK Mishra as our benchmark to eval-

uate our basic parallel algorithm. We have run the sequential FORTRAN program

given by SKMishra [17] on a single node of the cluster. Effectively, the sequential

program runs over a single core of a CPU as it is a single thread of execution.

We have deployed our implementation of the Basic Parallel algorithm on the

cluster and run it on 4 nodes and 16 nodes of the cluster and measured the execution

times.

We report our initial set of results in Table 4.1. We have run the programs for 10

different random test cases and averaged the execution times of all converged cases.

The execution time reported is in the number of seconds taken. Rows represent the

number of holes in the initial partial matrix as a percentage with respect to the total

number of non-diagonal entries. Columns are used for giving the hardware that is

used for execution and the number of agents (per hole) in the population.

33

Table 4.1: The average execution time (in seconds) of 8×8 matrix completions

Holes % 5X 10X 15X
Single 4 16 Single 4 16 Single 4 16

10 3.116 0.053 0.051 6.197 0.057 0.05 9.337 0.0676 0.046
20 6.264 0.217 0.213 12.405 0.249 0.15 18.734 0.5134 0.157
30 8.184 0.249 0.178 16.329 0.756 0.225 24.344 1.1051 0.229
40 11.075 0.524a 0.308a 22.414 1.721 0.375 33.622 2.3159 0.425
50 14.201 34.303b 12.844c 28.293 2.384 0.503 42.551 3.6266 0.661
60 16.995 2.044c 0.632c 33.933 5.69 1.098 51.007 8.4510 1.154
70 20.203 1.170c 0.336c 40.226 3.657 1.553 60.315 8.5990 6.241
80 21.968 68.997d 15.322d 43.904 3.487 0.605 65.990 8.5355 2.123
90 24.771 0.478 0.22 47.631 1.982 0.368 71.359 4.5480 1.276

a An underestimate average time as two out of the ten cases did not converge.
b The bulky average time is due to an outlier and is still an underestimate as one of the ten

cases did not converge.
c An underestimate average time as one out of the ten cases did not converge.
d The bulky average time is due to presence of one outlier.

In order to explain the average behavior more robustly, we present the median

results along with the average results of the algorithm for execution on 16 nodes in

Table 4.2.

We have plotted the average execution times when the algorithm is run over 4

nodes in Figure 4.1. We have removed some outliers to make a more elegant

looking graph which is Figure 4.2. Correspondingly, we have plotted the average

execution times over 16 nodes in Figure 4.4 and Figure 4.5.

Discussion

We make the following observations:

• The time of execution of the sequential program increases steadily with an

increase in the number of agents/holes as seen in Figure 4.3.

• The parallel execution time is minimal when the number of holes is minimal

34

Figure 4.1: Average Execution Times for Basic DE Algorithm Run over 4
Nodes

and it increases with an increase in the number of holes up to certain point

and then starts decreasing.

• The average times of execution of certain 5X cases is extremely high due to

the presence of certain outliers.

35

Figure 4.2: Average Execution Times for Basic DE Algorithm over 4 Nodes
without Outliers

We can explain the increase in sequential algorithm execution times by the fact

that the execution time there depends almost exclusively on the number of fitness

tests, i.e., the number of function calls to ReachFunc(). Due to differences in

implementation details such as the way random numbers are generated, the running

time of the sequential program has slightly different characteristics to that of the

36

Figure 4.3: Execution Times for Sequential FORTRAN Program

corresponding parallel implementation. That’s one of the reasons we also do not

see outlier data. When there are more agents in the population, there are more

fitness-tests for each iteration and this increases the execution time. When the

number of holes increases, we have more agents correspondingly (as tabulated)

and this results in a greater number of fitness tests.

37

Table 4.2: The average execution time(in seconds) of 8×8 ma-
trix completions

Holes % 5X 10X 15X
Avg Med Avg Med Avg Med

10 0.051 0.050 0.05 0.076 0.046 0.030
20 0.213 0.136 0.15 0.118 0.157 0.304
30 0.178 0.120 0.225 0.174 0.229 0.291
40 0.308a 0.307a 0.375 0.272 0.425 0.455
50 12.844b 0.166b 0.503 0.282 0.661 0.318
60 0.632b 0.561b 1.098 0.619 1.154 1.168
70 0.336b 0.120b 1.553 0.619 6.241 2.161
80 15.322 0.211 0.605 0.400 2.123 1.941
90 0.22 0.053 0.368 0.102 1.276 0.919

a An underestimate average time as two out of the ten cases
did not converge.

b An underestimate average time as one out of the ten cases
did not converge.

In the case of parallel execution, the execution times increase steadily up to a

certain point which can be explained in the same way as the sequential one. But

we see that it decreases beyond a point. This is due to the fact that the execution

time depends so much upon the communication that happens between processes

after every iteration. The number of iterations needed to converge decreases when

the number of unknowns is very high. This eventually decreases the execution

time, although we notice that it is still higher than the execution time when we had

very few holes and few nodes to work with.

In Table 4.1, we have footmarked some cases where we have seen bulky exe-

cution times due to the presence of an outlier. In the case of 50% of non-diagonal

entries being holes, the times of execution when 4 nodes are used are 0.127878,

113.945515, 0.171923, 0.055251, 0.593854, 0.079021, 0.120626, 0.279233, 0.220109

and a case of 399.700662 seconds which did not converge. We see that among the

nine convergent cases, one of them is very high. The corresponding number of

38

Figure 4.4: Average Number of Iterations Needed for Basic DE Algorithm
over 16 Nodes without Outliers

iterations for convergence is reported as 27848 which is pretty high compared to

the rest of the converged cases whose highest is 139. This outlying condition can

be best attributed to the randomness of the algorithm. Also we note that the same

problem occurs when we use 10X the number of nodes, and here the problem con-

verges in 131 iterations. This clearly shows that it takes a long while before we

39

Figure 4.5: Average Number of Iterations Needed for Basic DE Algorithm
over 16 Nodes without Outliers

get a desired agent in the case of lesser nodes. This could be attributed to lesser

choices of recombination or lesser randomness in the initial population that makes

it difficult to reach the goal state in certain problems.

40

Figure 4.1 clearly demonstrates that barring the outliers, algorithms converge

quickly when they use a smaller number of agents such as 5x. This shows that

even though on average the running time of 5x is small, it can be very large in

some cases depending upon the particular problem at hand.

4.4.2 Evaluation of Improved Parallel DE Algorithm

In this section, we present the results we have obtained after running the Im-

proved Parallel DE algorithm which is presented in the previous chapter as Al-

gorithm 5. We have used the same 10 cases which we used for testing the Basic

DE algorithm and recorded the total number of iterations needed and the execu-

tion time taken for convergence. In Table 4.3 we tabulate the average number of

iterations required for convergence for the Basic Parallel DE algorithm and the Im-

proved Parallel DE algorithm. We have plotted the average iterations required for

convergence for Improved DE Algorithm in Figure 4.6.

Table 4.3: Comparisons of Average Number of Iterations between Basic
Parallel DE Algorithm and Improved Parallel DE Algorithm

Holes % 5x 10x 15x
Basic Improved Basic Improved Basic Improved

10 12.1 12.1 9.5 6.9 5.7 4.8
20 56.1 56.1 34.3 32.1 27.6 25.9
30 48.0 48.0 44.4 44.4 36.9 38.4
40 77.38a 77.375a 64.2 64.2 40.6 41.2
50 3129.9b 3129.9b 61.4 50.6 41.5 49.3
60 128.7b 128.7b 102.5 49.3 60.2 49.3
70 58.11b 66.0b 47.3 43.5 44.5 43.5
80 2749.7 2749.6 36.4 37.6 33.7 33.2
90 14.3 15.7 15.5 13.8 14.0 10.6

a An underestimate average time as two out of the ten cases did not con-
verge.

b An underestimate average time as one out of the ten cases did not con-
verge.

41

We now tabulate the comparisons of average execution times of Basic and Im-

proved DE algorithms in Table 4.4. We have plotted the comparison of execution

times for each of the algorithms in each case of the number of agents separately.

The plots in Figure 4.7, Figure 4.8 and Figure 4.9 display the comparisons of the

times for the cases of 5x, 10x and 15x respectively.

Table 4.4: Average Execution Time for Different Algorithms

Holes % 5x 10x 15x
Basic Improved Basic Improved Basic Improved

10 0.051 0.047 0.05 0.042 0.046 0.042
20 0.213 0.175 0.15 0.148 0.157 0.187
30 0.178 0.171 0.225 0.227 0.229 0.283
40 0.308a 0.295a 0.375 0.377 0.425 0.476
50 12.844b 12.70b 0.503 0.335 0.661 0.502
60 0.632b 0.622b 1.098 0.615 1.154 0.580
70 0.336b 0.358b 1.553 0.522 6.241 0.518
80 15.322 15.656 0.605 0.454 2.123 0.621
90 0.22 0.119 0.368 0.183 1.276 0.205

a An underestimate average time as two out of the ten cases did not con-
verge.

b An underestimate average time as one out of the ten cases did not con-
verge.

Some of the observations include the following:

• The average number of iterations needed for convergence for Improved Par-

allel DE is less than or equal to that required for Basic Parallel DE algorithm.

• The graph of average number of iterations required for convergence is similar

to a normal graph with the average around 50-60% of the total number of

holes.

• The average time of execution has improved from Basic Parallel DE as com-

pared to Improved Parallel DE.

• The outliers are very moderate for the Improved Parallel DE algorithm.

42

Discussion

The execution time of the parallel algorithm will involve the computation cost

at each of the nodes and the communication cost which is the cost of sending and

receiving data elements through messages. We can see that the communication

cost of parallel execution time is directly related to the number of iterations. This

is because in every iteration, we broadcast certain data within processes.

In Table 4.3, we see how the number of iterations required for convergence

varies with the number of holes for different cases. We observe that when the

number of holes is neither high nor low, the iterations are at a maximum. Iterations

are at a minimum whenever the number of holes is too high or too low. This clearly

shows that the parallel time is to a great extent affected by the number of iterations

as this will result in the increase in the communication cost. One can see from the

plotted data in Figure 4.4 that the number of iterations is at a maximum in the

middle when the number of known and unknown entries in the matrix is nearly

equal. We have removed a couple of outliers where the number of iterations for 5X

is very high so that we have an elegant look at the general trend.

43

Figure 4.6: Number of Iterations Needed for Improved Algorithm over 16
Nodes

44

Figure 4.7: Average Execution Times of Improved and Basic Algorithms
over 16 Nodes Using 5x Agents

45

Figure 4.8: Average Execution Times of Improved and Basic Algorithms
over 16 Nodes Using 10x Agents

46

Figure 4.9: Average Execution Times of Improved and Basic Algorithms
with 16 Nodes Using 15x Agents

47

Chapter 5

Conclusions

A conclusion is the place where you got tired of thinking. — Arthur
Bloch

5.1 Introduction

In this chapter, we discuss our conclusions and future work that can be done.

5.2 Conclusions

We have verified that parallelization benefits the method of Differential Evolu-

tion in solving CCOMAT problems. In the algorithms we have seen, fitness test

function ReachFunc() is the most computationally intensive one and in our paral-

lel implementations we could distribute it evenly to different cores in the cluster.

We could deduce that communication cost dominates while executing the parallel

algorithm due to the increase in the execution time and the increase in the num-

ber of iterations. When the method converges in a lesser number of iterations, the

running time is significantly reduced due to a decrease in communication cost. We

observed that the number of agents used for increases, the corresponding number

of iterations that may be needed for convergence decreases and hence total cost of

the algorithm decreases since the communication cost is the one dominating factor.

48

In summary, we would recommend the Parallel DE approach for solving CCO-

MAT problems when the cluster of computers available is connected with a very

high speed network so that the communication cost is kept to a minimum.

5.3 Future Work

We would hope to see a better heuristic that could reduce the number of iterations

as this would have a reduction in communication cost which is a major component

of the total execution time of the parallel algorithm.

In Chapter 2, we have seen some specific theoretical structures which would

easily be solved for a correlation completion. We could have an add-on to our

algorithm to pre-check if a given partial matrix pertains to a known theoretical

structure that has already been studied so that handling those cases is straight-

forward. The evaluation of the theoretical formula may be done in parallel with

greater efficiency.

An important problem could be completing a correlation matrix with a certain

definite property such as lowest rank or maximum determinant, etc. If someone

could come up with a variation in the Evolutionary Strategy step of DE and the way

that ReachFunc() is evaluated, one can directly incorporate such a development

into our algorithms to work using parallel computers. We look forward for such a

contribution from the Heuristic Algorithmic/Scientific Computing community.

One could extend the algorithm by including an island migration strategy as de-

scribed by Tasoulis et al. while describing their proposed parallel Differential Evo-

lution approach [28]. Every island has an independent population which evolves

separately and migration of elements takes place periodically through a ring or a

more sophisticated topology. This could give improved results in terms of conver-

gence.

49

Bibliography

[1] Anthony Austin and Jose Garcia and Stephen Jong and Gilberto Hernandez.
Matrix Completion: An Overview. URL
http://cnx.org/content/m33136/latest/. → pages 1

[2] Hannes Werthner, Hans Robert Hansen, and Franceso Ricci. Recommender
systems. Hawaii International Conference on System Sciences, 0:167, 2007.
ISSN 1530-1605.
doi:http://doi.ieeecomputersociety.org/10.1109/HICSS.2007.459. → pages
2

[3] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix Factorization
Techniques for Recommender Systems. Computer, 42(8):30–37, August
2009. ISSN 0018-9162. doi:10.1109/MC.2009.263. URL
http://dx.doi.org/10.1109/MC.2009.263. → pages 3

[4] Raghunandan H. Keshavan and Sewoong Oh and Andrea Montanari. Matrix
Completion from a Few Entries. CoRR, abs/0901.3150, 2009. → pages 3

[5] Y Koren. The BellKor Solution to the NetFlix Grand Prize. URL
http://www.netflixprize.com/assets/GrandPrize2009 BPC BellKor.pdf. →
pages 3

[6] A Töscher and M Jahrer and R Bell. The BigChaos Solution to the Netflix
Grand Prize. URL
http://www.netflixprize.com/assets/GrandPrize2009 BPC BigChaos.pdf. →
pages 3

[7] Martin Piotte and Martin Chabbert. The Pragmatic Theory solution to the
Netflix Grand Prize. URL http:
//www.netflixprize.com/assets/GrandPrize2009 BPC PragmaticTheory.pdf.
→ pages 3

50

http://cnx.org/content/m33136/latest/
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/HICSS.2007.459
http://dx.doi.org/10.1109/MC.2009.263
http://dx.doi.org/10.1109/MC.2009.263
http://www.netflixprize.com/assets/GrandPrize2009_BPC_BellKor.pdf
http://www.netflixprize.com/assets/GrandPrize2009_BPC_BigChaos.pdf
http://www.netflixprize.com/assets/GrandPrize2009_BPC_PragmaticTheory.pdf
http://www.netflixprize.com/assets/GrandPrize2009_BPC_PragmaticTheory.pdf

[8] Amit Singer. A remark on global positioning from local distances.
Proceedings of the National Academy of Sciences, 105(28):9507–9511,
2008. doi:10.1073/pnas.0709842104. URL
http://www.pnas.org/content/105/28/9507.abstract. → pages 4

[9] Robert Grone, Charles R. Johnson, Eduardo M. Sá, and Henry Wolkowicz.
Positive definite completions of partial hermitian matrices. Linear Algebra
and its Applications, 58:109 – 124, 1984. ISSN 0024-3795.
doi:DOI:10.1016/0024-3795(84)90207-6. URL
http://www.sciencedirect.com/science/Marticle/B6V0R-45GWNPR-S/2/
e6cf9f07533aa113b7456d76130cb138. → pages 8, 9

[10] Ronald L. Smith. The positive definite completion problem revisited. Linear
Algebra and its Applications, 429(7):1442 – 1452, 2008. ISSN 0024-3795.
doi:DOI:10.1016/j.laa.2008.04.020. URL http://www.sciencedirect.com/
science/article/B6V0R-4SPSHN6-2/2/56d6cbe1694dc7fcef1a8f4d007ff52c.
→ pages 9

[11] Wayne Barrett, Charles R. Johnson, and Pablo Tarazaga. The real positive
definite completion problem for a simple cycle. Linear Algebra and its
Applications, 192:3 – 31, 1993. ISSN 0024-3795.
doi:DOI:10.1016/0024-3795(93)90234-F. URL
http://www.sciencedirect.com/science/article/B6V0R-45F5BKX-44/2/
6b5156e0896414f4cabbb4d7ce6b9297. → pages 9, 10

[12] He Ming and Michael K. Ng. Toeplitz and positive semidefinite completion
problem for cycle graph. Numerical Mathematics, A Journal of Chinese
Universities, 14(1), Feb 2005. URL
http://math.nju.edu.cn/CiNM/pdf/2005067.pdf. → pages 11

[13] W. Glunt, T. L. Hayden, Charles R. Johnson, and P. Tarazaga. Positive
definite completions and determinant maximization. Linear Algebra and its
Applications, 288:1 – 10, 1999. ISSN 0024-3795.
doi:DOI:10.1016/S0024-3795(98)10211-2. URL
http://www.sciencedirect.com/science/article/B6V0R-3W6M0B4-1/2/
b782d1a82af8970d873e6e95e0ae4400. → pages 12

[14] Higham, Nicholas J. Computing the nearest correlation matrix - A problem
from finance. IMA Journal of Numerical Analysis, 22(3):329–343, 2002.
doi:10.1093/imanum/22.3.329. URL
http://imajna.oxfordjournals.org/content/22/3/329.abstract. → pages 12

51

http://dx.doi.org/10.1073/pnas.0709842104
http://www.pnas.org/content/105/28/9507.abstract
http://dx.doi.org/DOI: 10.1016/0024-3795(84)90207-6
http://www.sciencedirect.com/science/Marticle/B6V0R-45GWNPR-S/2/e6cf9f07533aa113b7456d76130cb138
http://www.sciencedirect.com/science/Marticle/B6V0R-45GWNPR-S/2/e6cf9f07533aa113b7456d76130cb138
http://dx.doi.org/DOI: 10.1016/j.laa.2008.04.020
http://www.sciencedirect.com/science/article/B6V0R-4SPSHN6-2/2/56d6cbe1694dc7fcef1a8f4d007ff52c
http://www.sciencedirect.com/science/article/B6V0R-4SPSHN6-2/2/56d6cbe1694dc7fcef1a8f4d007ff52c
http://dx.doi.org/DOI: 10.1016/0024-3795(93)90234-F
http://www.sciencedirect.com/science/article/B6V0R-45F5BKX-44/2/6b5156e0896414f4cabbb4d7ce6b9297
http://www.sciencedirect.com/science/article/B6V0R-45F5BKX-44/2/6b5156e0896414f4cabbb4d7ce6b9297
http://math.nju.edu.cn/CiNM/pdf/2005067.pdf
http://dx.doi.org/DOI: 10.1016/S0024-3795(98)10211-2
http://www.sciencedirect.com/science/article/B6V0R-3W6M0B4-1/2/b782d1a82af8970d873e6e95e0ae4400
http://www.sciencedirect.com/science/article/B6V0R-3W6M0B4-1/2/b782d1a82af8970d873e6e95e0ae4400
http://dx.doi.org/10.1093/imanum/22.3.329
http://imajna.oxfordjournals.org/content/22/3/329.abstract

[15] C. Kahl and M. Gunther. Complete the correlation matrix. In From Nano to
Space, pages 229–244. Springer, 2008. URL
http://www.springerlink.com/content/t3005r255003w68v. → pages 13

[16] Mark Budden, Paul Hadavas, Lorrie Hoffman, and Chris Pretz. Generating
valid 4×4 correlation matrices. Applied Mathematics E-notes, 7:53–59,
2007. URL http://www.emis.de/journals/AMEN/2007/060311-1.pdf. →
pages 13

[17] SK Mishra. Completing correlation matrices of arbitrary order by
Differential Evolution method of global optimization: A Fortran program.
MPRA Paper 2000, University Library of Munich, Germany, March 2007.
URL http://ideas.repec.org/p/pra/mprapa/2000.html. → pages 13, 33

[18] Rainer Storn and Kenneth Price. Differential Evolution - A Simple and
Efficient adaptive scheme for Global Optimization over Continuous Spaces.
Technical report, 1995. URL http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.67.5398&rep=rep1&type=pdf. → pages 13

[19] Rainer Storn and Kenneth Price. Differential Evolution A Simple and
Efficient Heuristic for Global Optimization over Continuous Spaces.
Journal of Global Optimization, 11:341 – 359, 1997. URL
http://www.springerlink.com/content/X555692233083677. → pages 16

[20] Cyclops Home Page. URL http://cyclops.cs.ubc.ca/. → pages 29

[21] Lyndon Clarke and Ian Glendinning and Rolf Hempel. The MPI Message
Passing Interface Standard. URL
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.54.6740. →
pages 29

[22] Mersenne Twister Home Page. URL
http://www.math.sci.hiroshima-u.ac.jp/∼m-mat/MT/emt.html. → pages 29

[23] MCSANL. Message Passing Interface. URL
http://www.mcs.anl.gov/research/projects/mpi/. → pages 30

[24] Satish Balay and Kris Buschelman and William D. Gropp and Dinesh
Kaushik and Matthew G. Knepley and Lois Curfman McInnes and Barry F.
Smith and Hong Zhang. PETSc Web page, 2009.
http://www.mcs.anl.gov/petsc. → pages 30

52

http://www.springerlink.com/content/t3005r255003w68v
http://www.emis.de/journals/AMEN/2007/060311-1.pdf
http://ideas.repec.org/p/pra/mprapa/2000.html
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.67.5398&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.67.5398&rep=rep1&type=pdf
http://www.springerlink.com/content/X555692233083677
http://cyclops.cs.ubc.ca/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.54.6740
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
http://www.mcs.anl.gov/research/projects/mpi/

[25] Satish Balay and Kris Buschelman and Victor Eijkhout and William D.
Gropp and Dinesh Kaushik and Matthew G. Knepley and Lois Curfman
McInnes and Barry F. Smith and Hong Zhang. PETSc users manual.
Technical Report ANL-95/11 - Revision 3.0.0, Argonne National
Laboratory, 2008. → pages 30

[26] Vicente Hernandez, Jose E. Roman, and Vicente Vidal. SLEPc: A Scalable
and Flexible Toolkit for the Solution of Eigenvalue Problems. ACM
Transactions on Mathematical Software, 31(3):351–362, September 2005.
→ pages 30

[27] J. E. Roman, E. Romero, and A. Tomas. SLEPc Users Manual. Technical
Report DSIC-II/24/02 - Revision 3.1, D. Sistemas Informáticos y
Computación, Universidad Politécnica de Valencia, 2010. → pages 30

[28] D. K. Tasoulis and N.G. Pavlidis and V. P. Plagianakos and M. N. Vrahatis.
Parallel Differential Evolution. In IEEE Congress on Evolutionary
Computation (CEC), 2004. → pages 49

53

	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgments
	1 Introduction
	1.1 Motivation
	1.1.1 Finding Missing Correlation Values of Time Series Data
	1.1.2 Collaborative Filtering
	1.1.3 Global Positioning Systems

	1.2 Terms and Definitions
	1.2.1 Graph of a Partial Matrix

	1.3 The Problem
	1.4 Our Approach

	2 Background
	2.1 Introduction
	2.1.1 PSD Completion to Chordality

	2.2 Correlation Matrix Completion for Special Structures
	2.2.1 The Simple Cycle Graph
	2.2.2 PSD Completion of Cnk Pattern Matrix

	2.3 More Generic Correlation Matrix Completion Approaches
	2.3.1 Generic PSD Completion & Determinant Maximization
	2.3.2 Nearest Correlation Matrix
	2.3.3 Correlation Matrix Completion using Gaussian Elimination
	2.3.4 Completion of a Correlation Matrix of Limited Size
	2.3.5 Correlation Matrix Completion using Sequential Differential Evolution

	3 The Algorithms
	3.1 Introduction
	3.2 Evolution Strategies and Differential Evolution
	3.3 The Sequential Algorithm for CCOMAT Problem
	3.4 Basic Parallel Approach for Solving the CCOMAT Problem
	3.5 Improved Parallel DE Approach for Solving the CCOMAT Problem

	4 Experimental Results
	4.1 Introduction
	4.2 The Setup
	4.2.1 The Physical Cluster
	4.2.2 The Libraries/Tools
	4.2.3 Test Cases
	4.2.4 An Example with Implementation Details

	4.3 The Experimental Parameters
	4.4 Results for the Algorithms
	4.4.1 Evaluation of Basic Parallel DE Algorithm
	4.4.2 Evaluation of Improved Parallel DE Algorithm

	5 Conclusions
	5.1 Introduction
	5.2 Conclusions
	5.3 Future Work

	Bibliography

